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A general simulation procedure is described to validate model fitting algorithms for complex likelihood 
functions that are utilized in periodic cancer screening trials. Although screening programs have existed 
for a few decades, there are still many unsolved problems, such as how age or hormone affects the 
screening sensitivity, the sojourn time in the preclinical state, and the transition probability from disease-
free state to the preclinical state. Simulations are needed to check reliability or validity of the likelihood 
function combined with the associated effect functions. One bottleneck in the simulation procedure is the 
very time consuming calculations of the maximum likelihood estimates (MLE) from generated data. A 
practical procedure is presented, along with results for when both sensitivity and transition probability 
into the preclinical state are age-dependent. The procedure is also suitable for other applications.  
 
Key words: periodic screening, breast cancer, early detection, sensitivity, sojourn time, transition 
 probability, mammogram, clinical breast examination, incidence 
 

 
Introduction 

 
According to a recent report of the National 
Institute of Health (NIH 2000), breast cancer is 
the most common form of cancer among women 
in the United States and the second leading 
cause of cancer deaths among women. One of 
the  procedures to manage the disease is periodic  
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cancer screening, which has been utilized for a 
few decades. The motivation for screening is to 
detect the disease early even before clinical 
symptoms come up. The benefit for early 
detection is obvious. People in whom cancer is 
detected earlier usually have a better prognosis. 
Early treatments hopefully will lead to more 
cure and prolonged survival of cancer patients.  

In a screening program, a large group of 
asymptomatic individuals are enrolled in the 
program to detect the presence of a specific 
disease. The natural history of the disease for an 
individual is assumed to follow a progressive 
stochastic model, which consists of three states, 
denoted by cp SSS →→0 , corresponding, 

respectively, to the disease-free state; the 
preclinical disease state, in which an 
asymptomatic individual unknowingly has 
disease that the screening exam can detect; and 
the clinical state when the disease manifests 
itself in clinical symptoms. The screening 
sensitivity is the probability that the screening 
exam is positive, given that the individual is in 
the preclinical stage. The sojourn time refers to 
the time beginning when the disease first 
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develops until the manifestation of clinical 
symptoms, that is )( pc SS − . The transition 

probability into the preclinical stage is the 
probability density function of making transition 
from the disease-free to the preclinical state. 
Knowledge of the sensitivity of the screening 
modality is necessary for evaluating the 
predictive performance of a screening exam. The 
screening sensitivity may depend on a variety of 
factors, including age, position, location and size 
of the tumor, and the experience of the 
radiologist, etc. For example, recent studies 
indicate that the sensitivity of mammography 
increases with age at diagnosis (Shapiro, et. al., 
1988; Miller, et. al., 1992a, 1992b), attributable 
to the fact that breast tissue tends to be more 
dense and fibrous in younger women, and more 
soft and fatty in older women (Kerlikowske, et. 
al., 1996).  

There is great interest in determining the 
properties of the sensitivity, the sojourn time 
distribution and the transition probability density 
function into the preclinical state. Much work 
has been done in this area (Shen & Zelen, 1999; 
Shen, et. al., 2001; Wu, et. al., 2005). The 
research is still ongoing because many 
researchers are trying to explore how age or 
hormone changes may affect the sensitivity, the 
sojourn time, and the transition probability. One 
of the common features in the research is to 
derive the correct likelihood function and to 
propose correct age effect (or hormone effect) 
functions based on the stochastic model and the 
screening data. However, it is imperative to 
validate the reliability of the likelihood function 
and the associated effect functions before these 
can be applied to real data. This validation may 
be accomplished through simulation, which has 
become an acceptable procedure to check that 
the model fitting and the complex algorithms 
work well with this complicated likelihood. 

The remainder of the article is organized 
as follows. A generalized stochastic model and 
its likelihood function in a periodic cancer 
screening program is introduced, as well as the 
age-dependent sensitivity and transition 
probability density. The simulation procedure, 
the corresponding algorithm and results of 
applying it to a sample scenario are then 

presented. It will conclude with a discussion of 
the results of the research. 
 
The Model 
 Consider a cohort of initially 
asymptomatic individuals who enroll in a 
screening program. The sensitivity is denoted by 
β(t), where t is the individual’s age at the 
screening exam. Define w(t)dt as the probability 
of a transition from S0 to Sp during (t, t+dt). Let 
q(t) be the probability density function of the 
sojourn time in Sp. Finally, let 

,)()( ∫
∞

=
z

dxxqzQ  that is, Q(z) is the survivor 

function of the sojourn time in the preclinical 
state Sp. Throughout this article, the time 
variable t represents the participating 
individual’s age. If random variables T and S are 
the duration times in S0 and Sp respectively, then 
an individual will enter the clinical state Sc at 
age T+S, the probability density function of T+S 
is  

∫ −=
t

dxxtqxwtI
0

)()()( , 

which is the observable incidence of clinical 
cases.  

Consider a cohort of women in the study 
group who are all aged t0 at study entry, and a 
protocol calls for K ordered screening 
examinations occur at ages 

,110 −<<< Kttt � where itti += 0 for annual 

screening exams. Define the i-th screening 
interval as the time interval between the i-th and 
the (i+1)-th screening exams ),,( 1 ii tt −  i=1,2,…, 

K-1. The i-th generation of individuals consists 
of those who enter Sp during this interval. The 0-
th generation includes all who enter Sp before 
the initial screening exam; let .01 ≡−t   

For each screening exam, let 
0,tin  be the 

total   number   of   individuals   in   this   cohort 
examined at the i-th screening; 

0,tis  is the 

number of cases detected at the i-th screening 
exam; and  

0,tir is the number of cases diagnosed 

in the clinical state Sc within the interval 
),( 1 ii tt − . The latter cases are called interval 

cases. 
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Let 
0,tkD  be the probability that an 

individual will be diagnosed at the k-th 
scheduled exam (at which her age is 

101 −+=− kttk ) given that she is already in the 

preclinical state. Let 
0,tkI  be the probability of 

being incident in the k-th screening interval. In 
Wu,  et. al., 2005, these two probabilities were 
derived as: 

0
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The likelihood function for this cohort of women 
is 
 

, , , , , , ,0 0 0 0 0 0 0

0 0 0 0

0

, , , ,
1

( | )
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                                                                     (1) 

   
The full likelihood for the study group across all 
ages is 

, , , , , , ,0 0 0 0 0 0 0

0 0 0 0
0

, , , ,
1

(1 )k t k t k t k t k t k t k t
K s r s r n s r

k t k t k t k t
t k

L

D I D I
− −
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                     (2) 
The age effect was modeled in the sensitivity 
and the transition probability simultaneously in 
the following way. The sensitivity β is 
associated with age t by a logistic link, 
 

,
))(*exp(1

1
)(

10 ttbb
t

−−−+
=β  

Where t is the average age at entry in the whole 
study group. If )(,01 tb β> will be a monotone 
increasing function of age t. 

The transition probability density 
function w(t) is the instantaneous probability of 
a transition from S0 to Sp. The integral 

∫
∞

0
)( dttw represents a lifetime risk for a healthy 

female to transit into the preclinical state. 
According to the NCI’s SEER database (Ries et 
al. 2002), a woman’s lifetime risk of being 
diagnosed with breast cancer is 15.7%, which is 
less than a women’s lifetime risk of entering the 
preclinical disease state. Hence, 20% was 
chosen as a reasonable upper bound. The 
following was chosen 

  

}
2

)(log
exp{

2

2.0
)(

2

2

σ
µ

πσ
−−= t

t
tw , 

 
which is the pdf of lognormal(µ, σ2) multiplied 
by 20%. That is, w(t) is a sub-density function, 
where µ and σ2 are parameters to be estimated.  

The loglogistic distribution was adopted 
to model the sojourn time in the preclinical state, 
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where x is the sojourn time, and κ and ρ are 
positive parameters, represent the scale and 
location in the loglogistic family. An advantage 
of this family over the exponential is that it has 
two parameters and is more robust in the tails. 
Another advantage of this family is that its 
relatively simple form achieved for the survivor 
function and the hazard function. Its first 
moment    can    be    calculated    directly   from  

.csc ⎟
⎠

⎞
⎜
⎝

⎛=
κ
π

ρκ
π

EX  

 
For the r-th moment to exist, r>κ is needed. 
For justifications on how these age effect 
functions are chosen, see Wu et. al., 2005. 
 
Simulation Procedure and Results 
 The purpose of the simulation is to 
check the reliability of the likelihood function as 
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screening sensitivity and transition probability 
are both age-independent. The key steps were 
summarized in the non-routine simulation study 
here. In fact, based on the steps here, one can 
explore other possible associated functions 
between age and sensitivity, age and transition 
density, age and sojourn time, etc. 

In the proposed model, there are six 
unknown parameters, that is, 

).,,,,,( 2
10 ρκσµθ bb=  Theoretically the 

parameters have a domain of either ),( ∞−∞  or 

),0( ∞ . The practical meaning of these 
parameters will limit them to a finite range. The 
range for each of them was identified as: 

50 0 << b , 2.02.0 1 <<− b , 5.45.3 << µ , 

10 2 << σ , 0.21.0 << ρ , and 51 << κ . For 
justifications of these ranges, see Wu, et. al., 
2005. 

This simulation consisted of two stages. 
First, age-dependent screening data based on 

input values of ),,,,,( 2
10 ρκσµθ bb=  were 

generated, assuming that initially there are about 
100,000 individuals in each age group from age 
40 to 64 who will take part in the periodic 
screening exams. For the input values of θ, the 

values for κσµ ,,,, 2
10 bb and ρ was randomly 

chosen from the valid range above. Second, the 

MLE θ̂  was computed from our likelihood 
function using the simulated data. This 
procedure was repeated n = 1,000 times, then the 
sample mean and the sample standard deviation 
of the MLE were collected, and were compared 
with the input values of θ. If the MLE is close to 
the true input value of θ, then our likelihood 
function and the age- dependent functions work 
well in the modeling. 

Here are more details in Step 1: Suppose 
there are M= 100,000 women who were born in 
the same year, and who will take part in the 
screening exam at age t0. Their duration time 
spent in the disease-free state (S0) and in the 
preclinical state (Sp) can be generated by the 
density functions w(t) and q(t) correspondingly. 
Since w(t) is a sub-density function, it is not 
obvious how to generate random variables 
directly from its density. The number of incident 
cases from disease-free into preclinical state age 

by age will be generated, using the probability 
w(t)dt which is binomially distributed. Then, for 
women in the preclinical state at age t, their 
incident time can be generated uniformly in (t, 
t+1). See Appendix for programming details. 

For details in Step 2: The log likelihood 
function can be implemented in C language. 
Then, taking the negative value of the log 
likelihood and calling the S-PLUS routine 
“nlminb” will provide a local minimum. This 
local minimum corresponds to a local maximum 
in the log likelihood. However, computer 
software has not been found that can find the 
global minimum (maximum) for a general 
function. To overcome this problem, the initial 
point of θ was chosen randomly and the 
procedure was repeated 5 times for each 
simulated data and find the global maximum. 

The simulation programming code, 
written in C++ and S-PLUS, is attached in the 
Appendix. It runs well in a PC environment. 
Eight simulation results are listed in Table 1. For 
each true value of θ, the sample mean and 
sample standard error (S.E.) of the MLE of θ 
from 1000 simulations are listed. The 
consistency between the sample mean of the 
MLE and the input parameters is clearly shown.  
 

Conclusion 
 

The purpose of this article is to provide a 
simulation procedure in periodic cancer 
screening trials, with the computer programming 
code in C++ and S-PLUS. A practical issue 
encountered in the simulation is that it is very 
time consuming when MLE was calculated from 
the simulated data. The procedure for each MLE 
calculation usually takes about 20 minutes if the 
code is written in S-PLUS, making it impractical  
to repeat the procedure for 1000 times. To 
decrease the computation time, the likelihood 
part was implemented in C++, which resulted in 
the whole 1000 simulation procedure finishing 
in two or three days. The simulation and 
programming code can be slightly modified to 
fit other age effect or hormone effect models as 
well. Hopefully this will help other researchers 
in this area to carry out their simulation studies. 



SIMULATION PROCEDURE IN PERIODIC CANCER SCREENING TRIALS 526 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For more details on how to combine C++ and S-
PLUS code, see S-PLUS manual. Current efforts 
are  in  transporting  this  procedure  to  run on a 
cluster of Linux workstations. If this effort is 
successful, the simulation time will be shortened 
to a few hours.  
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