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Selection Of Independent Binary Features Using Probabilities: 
An Example From Veterinary Medicine 

 
 Ludmila I. Kuncheva     Zoë S.J. Hoare            Peter D. Cockcroft 

  School of Informatics   Department of Clinical Veterinary Medicine 
         University of Wales, Bangor, UK     University of Cambridge, UK 

 
 
Supervised classification into c mutually exclusive classes based on n binary features is considered. The 
only information available is an n×c table with probabilities. Knowing that the best d features are not the 
d best, simulations were run for 4 feature selection methods and an application to diagnosing BSE in 
cattle and Scrapie in sheep is presented.  
 
Key words: Feature selection, classification, independent features, binary features, veterinary medicine. 
 
 

Introduction 
 
Consider the differential diagnosis of BSE in 
cattle based on the probabilistic description of 
BSE and 56 alternative diseases with similar 
symptoms. There are many possible disease-
related signs that may be observed as 
present/absent on an animal. For example, over 
240 signs related to BSE and the 56 other 
diagnoses can be listed (Brightling et al., 1996; 
White, 1984). To build a diagnostic system, a 
data set is needed with observations for a 
number of cattle with their verified diagnoses. In 
the lack of such a data set, one must rely on 
estimates of the individual class-conditional 
probabilities that sign xi is present, given disease 
ωj,  where  },...,2,1{ ni ∈   and  },...,2,1{ cj ∈ .  
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The information available in this problem is 
organized as shown in Table 1. 
 
Table 1. Class-conditional probabilities for the 
individual features (the only information 
available) 
 

 ω1 ... ωi ... ωc 
x1 

… 
 …  

xk … )|1( ikxP ω=  … 

… 
xn 

 …  

 
 
 It is unrealistic to     expect     that      a     
system      based on these probabilities will fare 
well in practice because no relationship between 
the diagnostic signs (features) has been taken 
into account. In an ideal scenario, a data set will 
be collected using all features and the 
relationships between the features will be 
estimated from it. In reality, measuring only a 
small number of relevant features may be 
feasible. 

The goal is to select d features (d < n), 
which form a subset with the smallest 
classification error. Denote by x the binary 
vector with the n features. The features are 
assumed to be conditionally independent, that is, 

∏
=

=
n

i
jij xPP

1

)|()|( ωωx                       (1)                     
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The assumption of independence is 
enforced upon this study because only (some 
estimates of) the individual class-conditional 
probabilities are available. Pattern recognition 
literature in the 1970s abounds with analyses of 
the case of independent binary features. Perhaps 
the most curious result is due to Toussaint 
(1971). If there are three independent binary 
features, the best combination of two features 
may not include the single best feature. Thus, 
the most desirable selection criterion – the 
probability of error – will not guarantee the 
optimal solution if applied in a stepwise manner 
as in stepwise linear regression.  

In this article, four procedures for 
selecting a subset of features are examined and 
the results are compared with those obtained 
with the whole feature set. The feature selection 
methods are illustrated on two problems taken 
from veterinary medicine: differential diagnosis 
of BSE in cattle and Scrapie in sheep. 

 
Methodology 

 
Feature selection is one of the oldest topics in 
pattern recognition and machine learning 
(Stearns, 1976; Van Campenhout, 1982; Jain 
and Chandrasekaran, 1982; Patrick, 1972). 
Surveys on more recent state-of-the-art and 
comparisons between feature selection 
procedures can be found in (Dash & Liu, 1997; 
Blum & Langley, 1997; Jain & Zongker, 1997; 
Aha & Bankert, 1995).  
 
Evaluation of the Feature Subsets 

The most intuitive measure of quality of 
a feature subset is the error of a classifier built 
on these features. In theory, one can calculate 
the error under the assumption that the 
probabilities are equal to their expert estimates. 
The optimal classifier for independent features is 
the Naïve Bayes classifier. Denote by Pj the 
prior probability for class ωj. Let x = [x1,…,xn]

T 
be a binary vector to be labeled into one of the c 
mutually exclusive classes. A discriminant 
function is calculated for each class, 

  

1

( ) ( | )

( | ),   1, ...,

j j j

n

j i j
i

P P

P P x j c

µ ω

ω
=

=

= =∏

x x

   (2)       

 
x is labeled in the class with the largest 
discriminant value. There are 2d possible binary 
vectors x for a candidate subset S with d 
features. The (probability for the) minimum 
classification error for the subset can be 
calculated as  

( , error)

 = 1 max ( | )

e

j i j
j

i S

P P

P P x ω
∈

=

⎡ ⎤− ⎢ ⎥
⎣ ⎦

∑

∑ ∏
x

x

x

             (3) 

Equation (3) shows the difficulty in calculating 
the error for large d. Every x must be visited to 
decide which class label to assign to it. There are 
indirect criteria related to the error which may 
be faster to calculate, but direct calculation of 
the error in some form is preferable (Dash & 
Liu, 1997). Monte Carlo simulations were 
chosen for estimating the error of the selected 
feature subset. The probabilities for each class 
were available and it was therefore possible to 
generate randomly a sample from each class 
with n independent features. Using the selected 
feature subset, the Naïve Bayes classifier was 
applied for the objects in this sample.  
 
The Single-Best Method (SB) 

It is known that the individually best d 
features do not necessarily form the best subset 
of d features (Toussaint, 1971). Nonetheless, the 
method is quick and sometimes surprisingly 
efficient. The error for each feature is calculated 
separately using (3) (note that there are only two 
possible x’s for each feature: present or absent), 
the errors are sorted in ascending order and the 
top d features are retained. In this method, one 
can pick a desired value for d. 

The complexity of a feature selection 
algorithm is typically measured by the number 
of calculations of the classification error needed 
to select d out of n features. Thus the single-best 
method needs just n evaluations regardless of the 
number d.  
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Sequential Forward Selection (SFS) 
This is the method traditionally used in 

stepwise regression. To start, there is an empty 
set, S, of chosen features. Each feature must be 
evaluated separately as in the single-best method 
and the best individual feature is placed in S. At 
the next step, all pairs of features which contain 
the feature selected already and one other feature 
are evaluated. The pair with the smallest error is 
retained as S. Then, one must check all triples of 
features, and so on, until the desired cardinality 
d of S is reached. This procedure does not 
guarantee finding the optimal set of d features 
even in this simple case of independent binary 
features. The reason for this can be explained 
again with the Toussaint’s counter example: the 
best set of two does not necessarily contain the 
single best feature.  

Below, an example illustrating both the 
non-optimality of the sequential feature selection 
(SFS) and the calculation of the error though 
equation (3) is shown. 

Consider three features, x1, x2, and x3, 
and two classes, Ω ={ω1, ω2}. The non-
traditional data considered in this study is given 
in the form of probability estimates 

)|1( jixP ω= , as shown in Table 2. 

 
Table 2. An example of a set of probabilities for 
3 features and 2 classes 
 

 ω1 ω2 
x1 0.1 0.5 
x2 0.6 0.1 
x3 0.8 0.4 

 
Denote )|1( 1ω== kxPa  and 

)|1( 2ω== kxPb  for some xk. Assuming 

equal prior probabilities for the two classes, the 
probability of correct classification for feature xk 
is  

 
{ })1,1max(),max(21)( babakP −−+=     (4)  

 
Using (4), the individual errors for the features 
are  ε1  =  1 – ½ [max (.1,.5) + max (.9,.5)]  =  0.30,  
ε2 = 0.25 , and ε2 = 0.30 . Consider a pair of 
features, (xk,xj), and denote the probabilities for 

xj as )|1( 1ω== jxPp  and 

)|1( 2ω== jxPq . Substituting again in 

equation (3), the probability of correct 
classification for the pair of features is  
 

{

}

( , ) 1 2 max( , )

max[(1 ) , (1 ) ]

max[ (1 ), (1 )]

max[(1 )(1 ),(1 )(1 )]

P k j a p bq

a p b q

a p b q

a p b q

=
+ − −
+ − −
+ − − − −

            (5) 

 
The errors for the three pairs of features 

for the example in Table 2 are 
 

ε12 = 1–½(max(.1×.6,.5×.1) 
+  max(.9×.6,.5×.1) 
+  max(.1×.4,.5×.9) 
+  max(.9×.4,.5×.9)) 

     = 0.25, 
 
ε13 = 0.24, and ε23 = 0.25. 

 
As ε13 is the smallest pair-wise error, 

and ε2 is the smallest individual error, the best 
pair of independent features, (x1,x3), does not 
include the single best feature x2. 

SFS is probably the most widely used 
procedure because it has both reasonable error 
and reasonable complexity for “traditional” data 
sets (Aha & Bankert, 1995; Jain & Zongker, 
1997).  

At the first step, SFS evaluates all n 
features, at the second step, n-1 evaluations are 
needed as there are n-1 possible pairs. For 
selecting d features, SFS needs the following 
number of evaluations of the error 

 

∑
−

=
−

1

0

)(
d

i

in                                     (6) 

 
However, the complexity calculation is not that 
simple when the features from probabilistic data  
 
as shown in Table 1 are selected. For the 
calculation of the theoretical error, the algorithm 
has to visit every x in the possible feature space, 
find out which is the maximum discriminant 
function, and add the contribution of the error 
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for x based on the class label decision. The fact 
that the features are treated as independent does 
not make the task any easier. The complexity of 
SFS will depend heavily on the number of 
features in the evaluated subsets.  

Complexity of feature selection 
algorithms for probabilistic data can be 
evaluated by the total number of x’s visited in 
the process of selecting d out of the n features. 
The  complexity  for  the  single-best  method  is  
CSB = 2n, and for the SFS, 

∑
−

=
+−= 1

0

12)(
d

i

i
SFS inC . 

 
Class-Pairs Feature Selection (CP) 

Ji and Bang (2000) proposed the 
following feature selection method. A single 
feature is selected for each pair of classes.  

Table 3 shows the data structure used by 
the algorithm, where Cij = class pairs, ( i ≠ j ), xk 

= k-th feature, (k = 1,..,n), Pij(k) = discriminatory 
power of feature k for Cij. Using (4), the values 
of Pij(k) are calculated as the probability of 
correct classification between classes ωi and ωj 
for feature xk.   

 
Table 3. The table for the class-pairs method for 
feature selection (Ji and Bang, 2000). 
 

  Cij   
  …   

xk … Pij(k) … Tk 
  …   
  Eij   

 
 

The following values are then calculated 
 

• ∑=
k ijij kPE )( , the relative ease of 

classifying the pair Cij , and 

• ,)(∑=
ij ijk kPT the relative 

discriminatory power of feature xk.  
 

 
 
 
 
 

The algorithm begins with an empty set 
of features. The class pair that is the hardest to 
discriminate (has the smallest Eij) is identified 
from the table. The feature with the highest 
discriminatory power for this pair is added to the 
subset, if not already selected. If more than one 
feature  has   the   highest  Pij(k)   in  the   chosen  
column, then the feature with the highest value 
of Tk is selected.. The hardest pair is removed 
from the table and the process continues with the 
next hardest pair of classes (Note that the classes 
are not removed altogether, only the column of 
the table is removed.). The process stops once 
all class pairs have been covered. 
 The maximum number of features this 
method will select is max{(c(c-1)/2, n}. 
However, Ji and Bang (2000) claim that the 
number selected will be much less than either of 
these. This method may also be restricted at any 
point to pick only d features. The complexity of 
the class-pair method (measured again by the 
total number of x’s visited) is CCP = c (c-1) n. 
This calculation reflects only the preparation 
phase  (setting  up  Table 3), and  does  not  take  
into account the actual procedure which 
constructs the feature subset. 
 
Feature-Pairs Feature Selection (FP) 

The selection methods considered above 
are either overly simplistic but scale well with n, 
c, and d (single-best) or they are 
computationally demanding but more accurate 
(SFS). Optimality of the selected feature subset 
is not guaranteed in any case. The class-pairs 
method is one possible method that scales well 
and may be accurate. Here, another method is 
proposed for feature selection from probabilities, 
called feature-pairs method.  

The process is started with an empty set 
of features. All pairs of features are evaluated 
and the best pair is added to the set. While the 
desired number of features is not reached, add 
the features from the next best pair which are not 
already among the selected features. Suppose 
that d-1 features are already in the set, and there  
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is a pair of features such that neither of the two 
members of the pair is in the set. One may either 
take both features and exit with d+1 features or 
randomly select one member of the pair to make   
up the total of d features in the set. The 
complexity of the feature-pairs method (using 
the number of visited x’s) is CFP = n (n-1). 

All four methods are based on a true 
calculation of the classification error plus some 
heuristic about how one forms the feature 
subset. The experimental results in the next 
section help to evaluate the assets and 
drawbacks of the four methods. 

 
Results 

 
A Small-Scale Simulation Study 

To include SFS in the comparisons, a 
relatively small example with n = 20 features 
was chosen and the number classes, c, was 
varied from 3 to 10. The number of selected 
features, d, was varied from 2 to 10. 

For each c, 50 random matrices of size 
20×c were generated from uniform random 
distribution. Each matrix represented the 
probabilities for the features and classes as 
shown in Table 1. For each such matrix and each 
d, the four feature selection algorithms were 
applied and the best subset of size d was found.  

To evaluate the selected subsets, a 
traditional data set was generated randomly for 
every pair (c,d). One hundred data points were 
generated from the distribution of each class and 
the Naïve Bayes classifier was used to label 
these points. The error was estimated as the 
percent mismatch with the true class label. 

An example of the simulation algorithm 
is given below. Consider the problem presented 
in Table 2. Suppose that Method X picked 
features (x1, x3). Set a misclassification counter 
to 0. The steps below are repeated 100 times for 
each class. 

(Step 1) Generate a data point from class 
ω1. To do this, pick a vector of 3 random 
numbers, one for each feature, e.g. [0.2736, 
0.9241, 0.7102]T. Compare this vector with the 
first column of Table 2 (corresponding to ω1). If 
the generated number for xi is smaller than the 
corresponding probability in the table, set xi to 1; 
else set xi to 0. For this example, the generated 
data point is x = [0, 0, 1]. 

(Step 2) Classify the data point using 
Naïve Bayes and only the chosen features. For 
this example (x_1=0, x_3=1), the two 
discriminant functions for x are 

  

10.0)4.05.0(21)(

36.0)8.09.0(21)(

2

1

=×=
=×=

x

x

µ
µ

 

 
(Step 3) Choose a class label by the 

maximum discriminant function and note 
whether there is a mismatch with the class label 
whose distribution is currently being used. In the 
example, label ω1 is chosen so the 
misclassification counter remains unchanged. 

Figure 1 shows the probability of error 
versus the number of selected features, d, for     
c = 10 classes. Each point on the figure is the 
average error over the 50 random matrices. 

As expected, SFS gives the lowest error. 
The single-best and the feature-pairs methods 
are approximately the same with a slight 
preference to feature-pairs, and the class-pairs 
method is the worst. For d=2 selected features, 
SFS is the second best method because feature 
pairs selects the true best pair features.  
   
Figure 1. Probability of error versus the number 
of selected features (n=20, c=10). 
 

2 4 6 8 10
0.2

0.4

0.6

0.8

Error 

Number of selected features 

Class-pairs 

Single best 

Feature-pairs 

SFS 

 
 
 Table 4 gives the classification error 
averaged across the 50 random matrices of 
probabilities for 2 and 10 selected features (out 
of 20), for c = 3,…, 10 classes. 
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Table 4. Classification error (in %) with 2 and 
10 features for c = 3,…, 10 classes. CP stands 
for class-pairs method, SB for the single-best 
method and FP for the feature-pairs method. 
 
(a) 

d = 2 selected features 
c CP SFS SB FP 
3 21.2 17.9 22.7 16.8 
4 40.1 31.7 36.1 30.3 
5 49.6 42.9 47.2 41.1 
6 57.9 51.0 54.2 49.4 
7 62.6 56.2 60.3 54.3 
8 67.5 61.3 64.3 59.4 
9 70.2 65.1 67.8 63.8 
10 72.8 67.8 70.6 66.8 

(b) 
d = 10 selected features 

c CP SFS SB FP 
3 14.4 4.2 4.4 4.5 
4 16.8 7.3 7.9 8.0 
5 16.1 9.8 10.8 11.2 
6 21.2 13.7 15.0 15.1 
7 25.0 15.5 17.2 17.3 
8 29.1 18.4 20.4 19.8 
9 31.2 20.8 23.0 22.8 
10 33.6 22.3 24.3 23.9 

 
 The results in Table 4 confirm the 
superiority of SFS for more than 2 features and 
it also shows that the class-pairs method gives 
the largest error. There is an interesting turn 
about the single-best and feature-pairs methods. 
For small number of classes (3 to 7) SB was 
slightly better whereas for larger number of 
classes (8 to 10) FP was the better of the two 
methods. This behavior is an indication that for 
larger scale problems FP may be the more 
accurate method. 
 
A Larger-Scale Simulation Study 

SFS was excluded from this experiment 
because of its large computational time. The 
same experiments, as in the previous section, 
were run with a total number of features n = 100 
and number of classes c = 50. The number of 
selected features was d ∈ {5, 10, 15,…, 50}. 
Figure 2 shows the error versus the number of 
selected features for SB, CP and FP.  The curves 
are close together but the errors for all d are  

related as EFP < ESB < ECP. The differences 
between EFP  and ESB are not statistically 
significant.  
 
Figure 2. Probability of error versus the number 
of selected features (n = 100, c = 50). 

 

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Class-pairs 

Single best 

Feature-pairs 

Number of selected features 

Error 

 
 
Figure 3 shows the histogram of the 50 

differences ESB – EFP for 50 and 25 selected 
features. For 50 features, ESB – EFP was positive 
in 64% of the runs, the same in 6% of the runs 
and negative in 30% of the runs. For 25 selected 
features, ESB – EFP was positive in 94% of the 
runs and negative in 6% of the runs. This 
suggests that there may be optimal ratios c:d:n 
for which FP is distinctly better than SB. 
 
Figure 3. Histograms of the 50 differences ESB – 
EFP for d = 50 selected features (a) and d = 25 
selected features (b). 

 

-0.02 0 0.02 0.04 0.06
0

10

20
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0
0

10

20

30

 
   (a)   (b) 
 
The computational time ratio for the 

three methods was approximately CSB:CCP:CFP = 
1:8:23. 

The above simulations do not assume 
any relationship between the classes. The 
matrices are generated uniformly which means 
that the correlations between the columns will be  
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close to 0, as will be the correlations between 
the rows. In real problems, the class profiles will 
rarely  be  uncorrelated.  Below, the four 
methods are explored on two real diagnostic 
problems where only probabilistic data is 
available. 
 
An Application to Diagnosis of BSE in cattle 
and Scrapie in Sheep 
 The above feature selection methods 
were applied for selecting diagnostic signs in 
two problems coming from veterinary medicine. 

BSE and Scrapie are fatal neurodegene-
rative diseases. Both are notifiable diseases 
which have no known cure. There is currently no 
ante-mortem test for the diseases that can be 
used routinely in the field. Notifiable diseases 
have a major impact on human health, welfare 
and economics. There was a BSE epidemic in 
Britain in the 90’s and with the first ever BSE 
case diagnosed in the USA at the end of 2003, 
the problem of these diseases is global. 
Therefore, the recognition of the clinical 
presentations of the two diseases and the need to 
differentiate them from other diseases is 
important. In veterinary medicine, prevalence of 
disease, the conditional dependencies of clinical 
signs, and the sign frequencies within diseases 
are rarely, if ever available; demonstrating the 
need to work with probability data.  

Table 5 shows the results from the 
feature selection experiments with the BSE data. 
SFS was applied to select 10 of the 242 features 
and simulated data from the distributions of the 
57 classes. The three selection methods SB, CP, 
and FP, which have lower capacity  than SFS 
were run for d = 10 features too. The first 4 rows 
in Table 4 show the classification error for d = 
10.  
 Next, the class-pairs method was run 
letting it stop when all class pairs have been 
accounted for. CP selected a total of 58 features. 
Leaving SFS aside, the other two low-
complexity  methods   were  run  for 58 features. 
The classification error is displayed in rows 5-8 
in Table 5. Finally, the error with using all 
features was estimated as a tight lower bound on 
the classification error. 
 
 

 

Table 5. Results from feature selection on the 
BSE probabilities. 
 

Method (d) Error 
SFS (10) 0.4258 
SB (10) 0.6432 
CP (10) 0.5865 
FP (10) 0.5482 
CP (58) 0.0172 
SB (58) 0.0309 
FP (58) 0.0256 

ALL (242) 0.0049 
 
The results show that the closest rival to 

SFS for small number of features is the FP 
method proposed here. Contrary to the results in 
the previous section though, CP is better than 
SB. This shows that in real-life problems when 
there is dependency between the classes, CP 
may be a better solution than SB. When run all 
the way, CP provides the smallest classification 
error of the three low complexity methods 
followed by FP and then SB.  

Note the large differences between the 
error probabilities for small number of features. 
These differences strongly suggest that SFS 
should be applied as long as the computation 
time is acceptable. To illustrate the differences 
between the selected sets of features, Table 6 
shows the signs selected by SFS (a) and SB (b) 
in the order they entered the set. 
 The same pattern of experiments was 
repeated for the data containing the probabilities 
for Scrapie and 62 alternative diseases. Twelve 
features were selected by SFS. The 3 lower-
complexity methods were run for d = 12. The 
errors are shown in Table 7. The class-pairs 
method (CP) was run again until all class pairs 
were covered. The number of selected features 
was 77. SB and FP were then run for the same 
number of features. Table 7 ranks the feature 
selection methods exactly in the same way as 
Table 5. Again, the discrepancies with the 
simulation study in the previous sub-section can 
be attributed to the fact that the classes here are 
not independent. The CP method manages to 
capture some dependency between the classes 
and, if run all the way, it selects better subsets of 
features than SB and FP. Table 8 mirrors table 6 
by showing the signs selected for diagnosing 
Scrapie and the 63 alternative diseases.  
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Table 6. Signs selected by SFS and SB for 
diagnosing BSE and 56 other diseases in cattle  
 
(a) Signs selected by SFS 
Gait abnormal, unspecified 
Circling in one direction 
Hypo-responsive to external stimuli 
Milk yield less than normal (individual) 
Rumen rate nil, (0 per 2min) 
Eye menace response absent 
Hyper-responsive to external stimuli 
Dyspoena, unspecified 
Posture recumbency 
Temperature >39.5 degrees Celsius 
 
 
(b) Signs selected by SB 
Gait abnormal, unspecified 
Dyspoena, unspecified 
Dyspoena, rate increased shallow 
Diarrhoea, unspecified 
Gait uncoordinated\exaggerated 
Rumen rate slow (1 per 2min) 
Diarrhoea, acute, profuse 
Circling in one direction 
Gait stiff 
Head rotated, tilted or deviated 
 
 
 
Table 7. Results from feature selection on the 
Scrapie probabilities. 
 

Method (d) Error 
SFS (12) 0.5975 
SB (12) 0.7635 
CP (12) 0.6930 
FP (12) 0.6610 
CP (77) 0.0625 
SB (77) 0.0992 
FP (77) 0.0649 

ALL (285) 0.0252 
 

 
 
 
 

 
 

Table 8. Signs selected by SFS and SB for 
diagnosing Scrapie and 63 other diseases in 
sheep 
 
(a) Signs selected by SFS 
Foul odour skin 
Mastitis 
Exercise intolerance 
Paraparesis 
Weight Loss 
Generalized weakness 
Anorexia 
Generalized lameness or stiffness 
Ataxia 
Underweight, thin etc 
Dullness 
Reluctant to move 
 
(b) Signs selected by SB 
Foul odour skin 
Mastitis 
Matted \ dirty wool \ hair 
Moist skin\wool \hair 
Skin necrosis 
Exercise intolerance 
Hyperkeratosis 
Lymphadenopathy 
Alopecia 
Pruritus 
Weight loss 
Dullness 
 

 
Conclusion 

 
The problem of selecting a subset of n binary 
features to discriminate between c mutually 
exclusive classes was explored. The information 
available here is in the  form of an  n×c table 
with class-conditional probabilities    for    the    
n binary    features,  i.e., P(xi=1|ωj), i = 1,…,n, j 
= 1,…,c. Selecting the best subset of features 
seems    easy    because    all   the     probabilistic       
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information is available and the features are 
assumed to be independent. The difficulty comes 
from the complexity of the evaluation of the 
theoretical classification error for a subset of 
features. 
 An easy way out would be to generate a 
sample and run it through the Naïve Bayes 
classifier using only the features in the subset. 
Three methods were applied from the literature 
(SFS, SB and CP) and a method was proposed 
based on features pairs (FP) for feature selection 
using probabilities. It was found that SFS was 
the most accurate but also the most 
computationally demanding of the four methods. 
The simulation experiments with generated 
random distributions suggested that CP was 
inferior to SB and FP, but did not favor strongly 
any of SB or FP. The experiments with two real 
data matrices from veterinary medicine 
demonstrated that CP is also a valuable method 
when larger subsets of features are acceptable. 
FP was found to be the best alternative to SFS 
for small and medium subsets. 

There are at least two caveats that need 
to be mentioned. First, features are rarely 
independent in real life problems. By assuming 
independence, one runs the risk of missing an 
important feature which does not have a 
reasonable predictive value on its own, but is 
highly important in combination with others. 
However, in the absence of any further 
information, the independence assumption is the 
only option. Second, the estimates of the 
probabilities given as the information to work 
upon (Table 1) might not be very close to the 
true probabilities. A sensitivity study can be run 
by perturbing the probability estimates and 
observing how the selected feature subset 
changes.  

The acid test for the quality of the 
selected subset of features would be the error on 
real data. However, the aim of this study is a 
preliminary feature selection so that a real data 
set can be collected using these features. 
Therefore, at this stage, a reasonably large 
feature set should be provided. The hope is that 
highly discriminative combinations of features 
will be discovered within using systematically 
collected data. 
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