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Nonparametric Pooling And Testing Of Preference Ratings For 
Full-Profile Conjoint Analysis Experiments 

 
         Rosa Arboretti G.           Marco Marozzi       Luigi Salmaso 
                  University of Ferrara                 University of Padua 
 
 
The problem of pooling customer preference ratings within a conjoint analysis experiment has been 
addressed. A method based on the nonparametric combination of rankings has been proposed to compete 
with the usual method based on the arithmetic mean. This method is nonparametric with respect to the 
underlying dependence structure and so no dependence model must be assumed. The two methods have 
been compared using Spearman’s rank correlation coefficient and related test. Moreover, a further 
nonparametric testing method has been considered and proposed; this method takes both correlation and 
distance between ranks into account. By means of a simulation study it has been shown that the NPC 
Ranking method performs better than the arithmetic mean. 
 
Key words: conjoint analysis, nonparametric inference, nonparametric combination, ranking. 
 
 

Introduction 
 
In recent years, there has been a growing level 
of competitiveness in the offer of products. 
From a company point of view, one of the 
conditions of competitive success is a product’s 
high level of correspondence to the varying 
requirements of the customer (Porter, 1998). 
Indeed, successful companies invest 
considerable resources and skills into planning 
and designing their products in order to 
incorporate the various requirements of 
customers into the product itself. The most 
competitive companies are currently those which 
use   approaches   and  instruments   designed  to  
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capture the so-called voice of customer (VOC). 
In order to do so, companies describe the 
product idea in terms which the customer can 
actually perceive. After its definition, the newly 
developed concept is tested by means of surveys 
in the field which aim to highlight which 
characteristics are most important to the 
customer and what his/her true intentions are in 
terms of purchasing/fruition. In this way, it is 
possible to modify the product concept before 
fully implementing it, in order to maximize 
adherence to the needs and expectations of 
potential customers by identifying specific 
segments of customers. The methods used are 
generally based on Conjoint Analysis (Dolan, 
1993; Gustafsson, Herrmann, & Huber, 2001).  

The term Conjoint Analysis refers to a 
set of predominantly statistical methodologies 
which aim to study customer choice models 
starting with opinions and preferences expressed 
by customers on various profiles of a product 
which is going to be developed. Even recent 
literature on such methodologies is rather 
fragmented and presents some critical elements, 
both in terms of the procedure for the definition 
of the survey design and in terms of the 
subsequent statistical analysis of gathered data 
(Gustafsson et al., 2001; Green, Krieger, & 
Wind, 2001). In particular, it should be noted 
that the arithmetic mean (whether weighted or 
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not) is mainly used for pooling preference 
ratings.  

One problem that may arise when 
customer preference ratings are averaged is the 
so-called majority fallacy (Moore, 1980). This 
problem occurs when the item chosen by the 
average customer is not the item chosen most 
often. For example, if half of the people like 
large cars and the other half like small ones, the 
average person would like medium-sized cars, 
even if no real person wants one. In this article, 
the problem of pooling preference ratings is 
addressed. In particular, the Nonparametric 
Combination of Rankings method (NPC 
Ranking; Lago & Pesarin, 2000; Arboretti, 
2003) is used and extended. A simulation study 
is performed to show that the NPC Ranking 
method performs generally better than the 
arithmetic mean. To this end, Spearman’s rank 
correlation coefficient is considered and a new 
nonparametric test Tp for ranking comparison is 
proposed. Furthermore, to study the power of 
Spearman’s Ts and Tp test in detecting ranking 
shifts, a further simulation study is performed. 
 
The pooling of preference ratings using the NPC 
Ranking methodology 
 In developing a new product/service a 
company may take K≥2 attributes (factors) with 
P1,P2, ...,PK values (levels) into consideration. 

Let ∏
=

=
K

k
kPM

1

 be the number of possible 

combinations of levels (treatments). For each 
treatment (product/service profile) a 
hypothetical dummy variable is defined as 
dmkp=1, if the level of factor k is p for treatment 
m, otherwise dmkp=0. It is assumed that 
customers assess the overall utility (worth) of a 
product/service by combining the separate utility 
value of each attribute. The additive model for 
total worth of profile m is therefore: 

m

K

k

P

p
mkpkpm

K

dvY ε+= ∑ ∑
= =1 1

, m=1, ..., M, 

where the coefficient vkp denotes the part-worth 
for level p of factor k and ε1, ..., εm are iid 
random residuals with 0 mean and σ2 variance. 
 The full-profile method of treatment 
presentation is considered. Each treatment is 
described on a profile card. Let us consider n 

customers who are asked to rate each of M 
profiles on a scale of 1 to 10. The problem of 
how to obtain this ranking, i.e. how to pool 
customer preferences, is addressed in the article. 
Let Xmi be the rate of profile m given by 
customer i (i=1, ..., n). Of course, if immi XX '> , 
then customer i rates profile m better than profile 
m’. In the literature this problem is solved by 

averaging customer ratings ∑
=

=
n

i
imm X

n
X

1

1
, 

m=1, ..., M, and profile m~  such that 

( )Mm XXX ,...,max 1~ =  is then the best profile 

MRmA =~  (first rank position), profile m̂  such 

that 
{ }

( )M
mmMi

m XXX ,...,max 1~,,...,1
ˆ

≠=
=  is the profile 

with the second rank position 1ˆ −= MRmA , and 
so on. For simplicity’s sake, it is assumed that 
there are no ties in ranking positions. 
 An alternative way to pool preferences 
is based on the NPC ranking method (Lago & 
Pesarin, 2000). The procedure consists of three 
steps. In the first step, a score for profile m is 
computed as follows: 
 

( )
1

5.0# '

+
+≥=

M

XX immi
miλ , 

 
where ( )immi XX '# ≥  indicates the rank 
transformation of Xmi. This step is repeated for 
each customer i and profile m. With respect to 
relative rank transformation ( ) MXX immi '# ≥  
of Xmi, 0.5 and 1 have been added respectively to 
the numerator and the denominator to obtain λmi 
varying in the open interval (0, 1). The reason 
for such corrections is merely computational, in 
order to avoid numerical problems with 
logarithmic transformations later on. Note that 
the scores λmi  
are one-to-one increasingly related with the 
ranks ( )immi XX '# ≥ . By considering λmis after 
the first step, it is straightforward to obtain a 
(partial) ranking of the M profiles for each 
customer, but it is the global profile rank that is 
of interest. 
 In the second step, the scores that 
customers have assigned to profile m are 
combined as follows: 
 



ARBORETTI G., MAROZZI, & SALMASO 547  

( )∑
=

−−=
n

i
mimC

1

1ln λ . 

 
This step is repeated for the remaining M-1 
profiles and it performs a nonparametric 
combination of customers’ scores. In the last 
step, the (global) ranking for profile m is 

computed as ( )'#B m m mR C C= ≥ . Of course 

profile m~  with MRmB =~  is the first rank 

position profile, m̂  with 1ˆ −= MRmB  is the 
second one, and so on. 
 It should be noted that Fisher’s omnibus 
combining function is used in the second step. 
Other possible combining functions are Liptak’s 

( )∑
=

−Φ
n

i
mi

1

1 λ , where Φ is the cumulative 

distribution function of a standard normal 
distribution, Tippett’s 

{ }
( )mi

ni
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,...,1
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∈

, the logistic 

function ∑
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 and the additive 

function ∑
=

n

i
mi

1

λ  (Lago & Pesarin, 2000). These 

combining functions (say ψ) satisfy three 
properties: 
 
(i) ψ is continuous in all λmi arguments; 
(ii) ψ is non-decreasing in each λmi 
argument: ( ) ( ),...'...,,......, mimi λψλψ ≥  if 

1'0 <<< mimi λλ  for whatever i∈{1, …, n}; 

(iii) ψ is symmetric with respect to 
permutations of the arguments: if u1, …, un is a 
permutation of 1, …, n then 

( ) ( )
nmumumnm λλψλλψ ,...,,...,

11 ≥ . 

  
 It should also be noted that a central 
feature of NPC Ranking is the possibility of 
assigning different degrees of importance to 
different types of customers. If the company 
developing the new product/service is more 
interested in a certain group of customers, it can 
assign them a weight of 0.5<w<1 (and weight 1-
w to the remaining ones). This weighted 
approach is taken into account in step two of the 

procedure by computing ( )∑
=

−−
n

i
miiw

1

1ln λ  

instead of ( )∑
=

−−
n

i
mi

1

1ln λ , where wi=w if 

customer i belongs to the group of interest and 
wi=1-w if he does not. It is straightforward to 
consider more than two weights. 
 
A comparison of preference pooling methods: 
Spearman’s Is and Ip indicators  
 To show that NPC Ranking generally 
performs better than the arithmetic mean in 
pooling preference ratings, a new indicator Ip is 
presented and Spearman’s rank correlation 
coefficient is also considered. Spearman’s well-
known correlation coefficient is defined as: 
 

( )
( )1

3

2
1

2

−

−
=
∑
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M

m
mm

s

π
, 

 
where Rm is the observed rank for profile m and 
πm is the reference rank. Is takes values in [0, 1] 
and small values of Is are associated with similar 
values of Rm and πm. Another indicator is 
considered: 
 

( )[ ]∑
<

++=
'

''' 1
mm

mmmmmmp hlkI , 

 
where 1' =mmK  when ( )( ) 0'' <−− mmmm RRππ  

otherwise 0' =mmK , 1'' −−= mmmml ππ  and 

1'' −−= mmmm RRh . 'mmK  takes into account 

whether or not the observed and reference 
rankings are coherent (i.e. positive correlated), 

'mml  ( 'mmh ) and it takes into account how far 
observed (reference) ranks are from each other. 
Values of Ip close to 0 indicate that the observed 
ranking is very similar to the reference ranking. 
It is straightforward to show that  
 

( )( )⎥⎦
⎤
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6

1
0 MMMI p  

and so 
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 takes values in [0, 1]. 
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 A simulation study has been performed. 
More precisely, a conjoint analysis experiment 
with three factors (I, II and III) each with two 
levels (+ and -) is considered. There are 23=8 
different profiles. It is assumed that the true 
profile ranking (reference ranking) is known. 
Consider table 1, where profile 8 is the best and 
profile 1 is the worst. Assume the eight profiles 
are presented to five customers. 
 
 

Table 1 Reference ranking of profiles 

Profile Factors 
Preference 

Rating 
 I II III  

1 - - - 1 
2 - - + 2 
3 - + - 3 
4 - + + 4 
5 + - - 5 
6 + - + 6 
7 + + - 7 
8 + + + 8 

 
 
 Customer profile ratings are simulated 
by adding to the reference ranking a random 
error taken from continuous distributions such as 
normal N(0,1), exponential exp(1), uniform 
U(0,1) and Cauchy Cau(0,1), and from discrete 
distributions such as binomial Bi(8,0.5) and 
Poisson P(1): Ymi=πm+εmi, where Ymi is the rate of 
profile m for customer i, µm is the reference 
rank/rate of profile m (πm=m) and εmi is the 
random error denoting the distance between Ymi 
and the reference value. [Ymi], m=1,…,8 and 
i=1,…,5 is a 8x5 matrix of real numbers. By 
computing the arithmetic mean or applying the 
NPC Ranking, two 8x1 vectors of ranks RA  or 

RB  are obtained. 1000 matrixes are randomly 
generated and 1000 pairs of vectors are then 

computed. Let )(c
A R  and )(c

B R  indicate the 
vector of ranks obtained by using the arithmetic  
 
 
 
 
 

mean and the NPC Ranking for simulation 
c(c=1,…,1000). Let ( )8,...,2,1'=π . In order to 
establish which of the two methods is better, 
Spearman’s Is and Ip indicators are computed. 

More precisely, the two methods are 
compared using the Ip indicator by computing 
 

( ) ( )( ) 1000,,#' )()( ππ c
Ap

c
BppAB RIRIQ ≤= , 

 
the proportion of simulations in which 

( )π,)(c
Bp RI  is less than or equal to ( )π,)(c

Ap RI . 

If this proportion is greater than 

( ) ( )( ) 1000,,#'' )()( ππ c
Bp

c
AppAB RIRIQ ≤= , then 

the NPC Ranking method is preferable because 
rankings obtained using this method are more 
similar to the reference ranking than those 
obtained using the arithmetic mean. It is worth 
noting that 1''' >+ pABpAB QQ  because the 

equalities are counted both in 'pABQ  and ''pABQ . 

A similar comparison is performed by 
considering the Is indicator and computing 

( ) ( )( ) 1000,,#' )()( ππ c
As

c
BssAB RIRIQ ≤=  and 

( ) ( )( ) 1000,,#'' )()( ππ c
Bs

c
AssAB RIRIQ ≤= . It is 

also of some interest to compare Ip and Is 
indicators themselves. To this end, 'ApsQ  , 

''ApsQ , 'BpsQ  and ''BpsQ  are computed as 

follows: 
 

( ) ( )( ) 1000,,#' )()( ππ c
As

c
ApAps RIRIQ ≤= , 

( ) ( )( ) 1000,,#'' )()( ππ c
Ap

c
AsAps RIRIQ ≤=  and 

( ) ( )( ) 1000,,#' )()( ππ c
Bs

c
BpBps RIRIQ ≤= , 

( ) ( )( ) 1000,,#'' )()( ππ c
Bp

c
BsBps RIRIQ ≤= . 

 
If ''' ApsAps QQ ≥  then Ip is better than Is when the 

average method is used. If ''' BpsBps QQ ≥  then Ip 

is better than Is when the NPC Ranking method 
is used. 
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As reported in table 2, NPC Ranking is 

better than the arithmetic mean for Exponential, 
Cauchy, Binomial and Poisson distributions, 
using both Ip and Is indicators. Only for normal 
and uniform distributions the arithmetic mean 
(as can be expected) is better than NPC Ranking. 
As regards indicator comparisons, Ip is clearly 
better than Is when the arithmetic mean is used 
as well as when NPC Ranking is used, because 

'ApsQ  and 'BpsQ  are greater than ''ApsQ  and 

''BpsQ  respectively, for all considered 

distributions. 
 In order to obtain further insight into Ip 
and Is indicator comparison, instead of reference 
ranking ( )8,7,6,5,4,3,2,1'=π , ranking 

( )8,7,5,4,6,3,2,1'=γ  has been considered in 

Monte Carlo simulations. The reference ranking 
is still π , but now random errors εmi are added 

to γ  and not to π . The power simulation study 

is set out as follows: indicators Is and Ip are 
considered as test statistics within a permutation 
framework, i.e.: 
 

( ) BIIT obs
ppp ≥= *#  

 
and  
 

( ) BIIT obs
sss ≥= *# , 

 
where *

pI  and *
sI  are obtained by a random 

permutation of the observed ranking, obs
pI  and 

obs
sI  are the values of indicators Is and Ip 

calculated by   comparing the   observed ranking  
 

 
 
with the reference ranking, and B is the number 
of all possible permutations in a 23 factorial 
design (i.e. 8!=40320 permutations). 
 Tables 3-5 report the results of the 
simulation study when errors are normal N(0,1), 
uniform U(0,1), exponential exp(1), Cauchy 
Cau(0,1), binomial Bi(8,0.5) and Poisson P(1). 
TsA and TsB (TpA and TpB) indicate that the test 
statistic used is in both cases Ts (Tp); although 
the global ranking is obtained either using the 
arithmetic mean (indicated by the subscript A) 
or the NPC method (indicated by the subscript 
B). Simulation results show that a global ranking 
obtained using the arithmetic mean allows both 
test statistics Ts and Tp to gain more power than 
when the global ranking is obtained using the 
NPC method, when the underlying error 
distribution is either normal or uniform. When 
the error distribution is binomial and Poisson, 
the power is very similar between the two global 
ranking procedures.  
 On the contrary, the power is greater for 
both Ts and Tp when the global ranking is 
obtained using the NPC method when the 
underlying error distribution is exponential or 
Cauchy. However, it is important to emphasize 
that both Ts and Tp tests are unbiased, because 
they indicate that the ranking under H1 is 
different with respect to the reference ranking, 
even when the nominal significance level is very 
small. Moreover, they are consistent tests (for 
more details see e.g. Pesarin 2001) 
 

Conclusion 
 

The problem of pooling customer preference 
ratings within a conjoint analysis experiment has  

 

Table 2 Simulation results 

Distribution 'pAB Q  ''pAB Q  'sAB Q  ''sAB Q  'ApsQ  ''Aps Q  'BpsQ  ''Bps Q  

Normal 0.531 0.771 0.526 0.772 1.000 0.076 1.000 0.125 
Exponential 0.650 0.447 0.592 0.461 0.996 0.015 0.991 0.021 

Uniform 0.441 0.757 0.439 0.758 1.000 0.109 1.000 0.017 
Cauchy 0.649 0.378 0.655 0.385 0.771 0.296 0.662 0.412 

Binomial 0.559 0.487 0.600 0.436 0.844 0.196 0.906 0.112 
Poisson 0.534 0.528 0.592 0.461 0.936 0.111 0.961 0.005  
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Table 3 Estimated power, normal and uniform error distributions 

  normal  uniform 
α  TsA TsB TpA TpB  TsA TsB TpA TpB 

0.010  0.030 0.032 0.032 0.038  0.163 0.135 0.163 0.135 
0.025  0.196 0.212 0.206 0.220  0.464 0.384 0.493 0.401 
0.050  0.716 0.634 0.728 0.672  0.776 0.656 0.795 0.672 
0.075  0.896 0.838 0.896 0.836  0.907 0.811 0.907 0.813 
0.100  0.956 0.886 0.958 0.888  0.943 0.870 0.948 0.878 
0.200  1.000 0.996 1.000 0.996  0.996 0.981 0.997 0.986 
0.300  1.000 1.000 1.000 1.000  0.999 0.994 0.999 0.995 
0.400  1.000 1.000 1.000 1.000  1.000 0.998 1.000 0.998 
0.500  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
0.600  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
0.700  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
0.800  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
0.900  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

 
 
 
 

Table 4 Estimated power, exponential and Cauchy error distributions 

  exponential  Cauchy 
α  TsA TsB TpA TpB  TsA TsB TpA TpB 

0.010  0.017 0.020 0.017 0.020  0.054 0.139 0.054 0.139 
0.025  0.051 0.053 0.062 0.059  0.224 0.392 0.238 0.413 
0.050  0.137 0.150 0.147 0.160  0.419 0.649 0.433 0.673 
0.075  0.218 0.220 0.220 0.221  0.537 0.805 0.538 0.806 
0.100  0.286 0.272 0.304 0.279  0.590 0.875 0.595 0.878 
0.200  0.525 0.480 0.558 0.504  0.738 0.968 0.743 0.975 
0.300  0.652 0.625 0.675 0.647  0.819 0.990 0.823 0.991 
0.400  0.772 0.751 0.774 0.755  0.892 0.996 0.889 0.996 
0.500  0.841 0.830 0.842 0.831  0.929 0.999 0.929 0.998 
0.600  0.898 0.883 0.902 0.895  0.955 1.000 0.959 1.000 
0.700  0.936 0.928 0.937 0.928  0.976 1.000 0.976 1.000 
0.800  0.963 0.962 0.964 0.964  0.990 1.000 0.989 1.000 
0.900  0.986 0.984 0.987 0.984  0.996 1.000 0.996 1.000 
1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
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been addressed. A nonparametric method based 
on the nonparametric combination of rankings 
has been proposed to compete with the 
traditional method based on the arithmetic mean. 
In order to compare these two methods, 
Spearman’s rank correlation coefficient has been 
considered. Moreover, a further nonparametric 
method has been considered and proposed. This 
method takes both correlation and distance 
between ranks into account. By means of a 
simulation study, it has been shown that the 
NPC Ranking method performs better than the 
arithmetic mean. 

The NPC Ranking procedure requires 
only one assumption in terms of variables, i.e. 
the inequality immi XX '≥  means that customer i 
rates profile m better than profile m’. It should 
also be noted that a central feature of NPC 
Ranking is the possibility of assigning different 
degrees of importance to different types of 
customers. 

Fisher’s omnibus combining function 
has been used. Other combining functions, such 
as Liptak’s, Tippett’s, the logistic and additive 
functions may also be used (for more details see 
Lago & Pesarin, 2000). 

 
 
 

 
 
 
A power simulation study showed that 

permutation tests based on Is and Ip statistics 
clearly indicate that the ranking under H1 is 
different with respect to the reference ranking, 
even when the nominal significance level, 
chosen for the comparison, is very small. 

Within a conjoint analysis experiment, 
practitioners should take the NPC Ranking 
method into account for the pooling of customer 
preference ratings. A computer program to 
perform the analysis is available at the website 
http://cmcs.unife.it. 
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0.500  1.000 1.000 1.000 1.000  0.833 0.857 0.855 0.855 
0.600  1.000 1.000 1.000 1.000  0.902 0.897 0.923 0.908 
0.700  1.000 1.000 1.000 1.000  0.942 0.936 0.947 0.936 
0.800  1.000 1.000 1.000 1.000  0.967 0.962 0.969 0.966 
0.900  1.000 1.000 1.000 1.000  0.985 0.993 0.987 0.994 
1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  
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