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Statistical Model And Estimation Of The Optimum Price
For A Chain Of Price Setting Firms

Chengjie Xiong
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Kegjun Zhu
Coallege of Management
China University of Geosciences (Wuhan)

A stochastic approach is used to model the economics of a chain of price setting firms. It is assumed that
these firms have fixed capacities in their products, but random demands for their products. The optimum
price, the optimum revenue, and the expected marginal revenue at a given price are investigated. The
method of maximum likelihood is used to provide both point and confidence interval estimates. The
coverage probabilities of confidenceinterval estimates based on a simulation study are presented.

Key words: Asymptotic confidence interval; capacity; gamma distribution; marginal revenue; maximum
likelihood estimate (MLE); optimum revenue; Poisson distribution.

Introduction

Fixed capacity is very common in businesses.
For example, an established hotel must operate
with a fixed number of rooms, and an
established restaurant has a fixed number of
seats. While the capacity is fixed for many
firms, the demand for their products is uncertain.
By their very nature, the hotel and the restaurant
cannot respond to the uncertain demand by
inventory adjustments, nor for that matter, by
using high priced resources to temporarily
increase production when demand is high. The
most important goal for these firms is to choose
a price that maximizes their expected profits
under random demand for a fixed capacity.
Many authors have studied the problem of firm
decision making when demand for the product is
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uncertain. Epstein (1978) and Turnovsky (1973),
provided the classic approach to the problem.
Scott, Highfill, and Sattler (1988) and Balvers
and Miller (1992) studied several production
side questions such as the derived factor demand
with capacity constraints. Flacco and Kroetch
(1986) and Booth (1990), investigated the
production levels and/or inventory adjustments
in the decision making.

In this article, it is assumed that these firms
operate as monopolies and are risk neutral. It is
also assumed that capacity is a strict upper
bound on the provision of service and must be
set before the demand is arriving. With these
same assumptions, Scott, Sattler, and Highfill
(1995) studied the optimum price for a single
firm when the demand is random. Highfill,
Quigg, Sattler, and Scott (2000) investigated the
problem of capacity decision for a single firm
when the product demand is uncertain. Here, a
chain of price seting firms with random
demands are considered and the optimum price
and its estimation applicable to a population of
firms is studied. There are two levels of
uncertainty in the demand side now: one is the
demand uncertainty for any given firm in the
chain, the other is the demand uncertainty from
firm to firm in the chain. Therefore, two
statistical models are needed to modd the
demand at two different stages, one for a given
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firm and the other for across the firms in the
chain.

A simple example of the kind of
problem under consideration in this article is a
chain of hotels which operates with the number
of rooms as the strict upper bound for the
service. The variability in demand will cause the
hotels to experience excess capacity and excess
demand. Both excesses will depend on the
capacity of the firms and the probability
distribution for the demand. The question
answered in this article is, for a randomly
selected hotel in the chain, how the price should
be set and estimated so that the maximum profit
can be achieved.

In the following section, the statistical
model is proposed and the optimum price is
studied by assuming that all the parameters are
known in the model. Also, the effect of capacity
on the optimum price is considered. Next, the
estimation for the model parameters is provided
and asymptotic confidence intervals for the
optimum price, the optimum revenue, and the
expected marginal revenue at a given price are
presented.

It is convenient to use a chain of hotels
as the economic reference of a chain of firmsin
this article. Theresultsin this article apply to all
businesses where capacity is a strict upper bound
on the provision of service and the demand is
random.

The Modd and the Optimum Price
For a given hotel H in a chain of hotels, |et

Y |, be the number of people to rent a room.

The uncertain number of peopleto rent aroomis
treated as a standard queuing problem with the
quantity demanded a random variable distributed

as Poisson whose meanis 4, , i.e,
y
P(Y |y=y)=€" V

for y=0,1,2,....

In order to model the demand variability
from hotel to hotd in thechain, it is assumed

that the population of demand mean 4, of Y |
from the hotels follows a Gamma distribution
with index o>0 and scale parameter 6>0, i.e,

A,, is distributed according to the probability
density function

A

f(A) = o )ea Jle o

It is also assumed that o is independent of price
and 6 is linearly and inversdy related to unit
pricep, i.e,

6=a+bp,
where a>0 and b<0 are two constants.

Let Y denote the number of people to
rent aroom from a hotel randomly sampled from
the chain. The probability distribution of Y is
then given by

oo A

PY=y)=| e*Z=f(1)dA

bety

a(a+1) (a+y- 1)(

yi(l+6)” +1)

for y=0,1,2,....

The distribution of Y is the well known
negative binomial distribution when o is a
positive integer. The index parameter o in the
model allows for the flexibility to choose
different densities in the Gamma family to
model the demand variability across the hotels.
Let P, denote the probability of events instead

of just P to indicate the dependence of the
probabilities on the parameter o. Notice that
EY=E(EY|,)=EA, =a6=0a+dbp a>0, b<0.
The expected humber of people to rent a room
from this randomly selected hotel in the chainis
also linearly and inversdy related to price p.

Suppose that ¢ is the capacity number of
rooms in the hotel. Let X be the unit sales of the
hotel. Then

Y, Ys<c
e, Y>c
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Therefore
P, (X = Xx)
P(Y = x), X<c
— c-1
1-> P(Y=Xx), x=c
x=0
oAot))...oxD (g \X
X(:+6)” (9+1) ' X<C
= c1

N\ Aok (g \K _
1 ; KI(1+6)” (9+1)’ X=C

When the demand is random and the capacity is
fixed, there are positive probabilities that excess
demand (denoted by ED) and excess capacity
(denoted by EC) occurs. It is straightforward to
find the probability of excess demand and the
probability of excess capacity as

P, (ED) = ) “oRd ()"
X=c+1
and
O (@) (e xD) x
a(a+l)..( o+ X—
P, (EC) = ) stellerch (Co ),
0

respectively. Two integral representations of
these probabilities and their derivatives are
given, which will be used later in the article:

+1 tc
R(E D_B(otc+1)‘9C r (L+tg)> a @
T A
Fa(EC)= B(e, c)e J (L+to)> *© @
dP, (ED) _ 6° -
dé  B(a,c+D(1+6)*
dP,(EC) _ 0% _ @
de B(e,c)(1+6)

where B(o,B)=T'(o)I'(B)/T(c+p) is the Beta
function. (1) and (2) can be obtained by using
equation (6) and (7) from Highfill, Quigg,
Sattler and Scott (2000) and applying Fubini’s
Theorem for the exchange of integrals. (3) and
(4) can be obtained by directly taking derivatives
from (1) and (2), respectively. Combining (3)
and (4) further gives

dPaJrl(EC) +c dPa (ED)
dp dp

o

=0. (5)
The expected unit sales of the hotel is then

EX = Z a(a+1) (o+x-1) (m) +CP0((ED)

x(1+6)*

605P 1 (EC)+cP,(ED).

Therefore, the expected unit sales of the hotel
contain two parts, one is the expected demand
6o multiplied by the probability of excess
capacity at index o+l, and the other is the
capacity ¢ multiplied by the probability of
excess demand.

For any hotd in the chain, the problem is to
find the optimum price that maximizes the
expected profit based on the fixed capacity. It is
assumed that these hotels have a constant non-
stochastic marginal cost function. Therefore, as
pointed out by Highfill, Quigg, Sattler and Scott
(2000), the constant can be set at zero since the
analysis is not materially affected by the choice
of this constant (i.e., one can concentrate on the
expected revenue). Let R be the revenue for a
randomly selected hotd, i.e, R=Xp. The
expected revenueis

ER= p6oP, ., (EC)+ pcP,(ED).

Therefore, the expected revenue of the
hotel contains two parts too, one is the expected
revenue for al demand multiplied by the
probability of excess capacity at index o+1, the
other isthe revenue at capacity multiplied by the
probability of excess demand. The following
theorem gives the optimum price which
maximizes the expected revenue.
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Theorem 1
The optimum price p~ is the unique
solution to the equation:

(6o + pba)P, ., (EC) +cP, (ED) = 0. (6)

>—i and
2b

lim_,_p = _Zib' Refer to the Appendix

In  addition, p’

for the proof.

Let & =a+bp . Denocte the optimum
expected revenue, the probability of excess
capacity and the probability of excess demand at
optimum price p by ER’, P,(EC") and

P,(ED"), respectively. Recall that the

expected demand is EY=a(atbp) and the
expected unit sales is

EX =60P, ,(EC)+cP,(ED). It is aways
true that EX<EY, because X<Y. If the capacity is
hypothetically infinity, then X= Y and
ER=po(atbp). Therefore ER attains the
maximum  —ca®/(4b)  when  price
p =—a/(2b). Theorem 1 indicates that in real

world business applications where the capacity ¢
is always a finite number, the optimum price for
the hotel is always larger than that in the limiting
capacity situation, and the optimum revenue for
the hotel is aways smaller than that in the
limiting capacity situation. But, as the capacity
increases, the optimum price and the optimum
revenue approach their limiting values
respectively.

Scott, Sattler and Highfill (1995)
defined the expected marginal revenue (EMR) as
EMR=dER/JEX. The expected marginal
revenue measures the change in expected
revenue for a given change in expected unit
sales. Noticethat dEX /dp =boP,, (EC).

Therefore,
EMR = dER/ dEX
dp dp
_ (6a + ppba)P,, ,(EC)+cP, (ED)
baPIZ+1(EC)

P (ED
a cR,(ED)

= 2P+
b baPaJrl(EC)

As the capacity approaches infinity, P,(ED)

approaches 0 and P,,,(EC) approaches 1.

Therefore, the expected margina revenue
approaches the standard marginal revenue under
linear demand.

In order to understand the dependence

of P  on capacity c, the effect of an additional
unit of capacity on the optimum price p’is

analyzed. Suppose that the hotel capacity is
increased from ¢ to c+l. Assume that the

optimum price is changed from p  to p* +Ap’
and the optimum expected revenue is changed

from ER" to ER +AER" accordingly. The
following theorem presents the effect of an

additional unit of capacityon p” and ER’.

Theorem 2
(1) There exists a constant C depending only on

a and o such that if ¢c>C then Ap’ <0. In
addition, lim_,_ Ap” =0.
(2) AER >0 for evey c>1. In addition,

lim,,. AER =0. Refer to the appendix for

the proof.

Theorem 2 indicates that the optimum
price will decrease after the capacity increases to
acertain level, but the drop in optimum price for
each unit increase of capacity approaches 0
when the capacity approaches infinity. On the
other hand, when the capacity increases, thereis
aways a positive probability that the extra unit
will be taken by customers. Therefore, the
optimum expected revenue will always increase.
But the increase in the optimum revenue for
each unit increase of capacity also approaches 0
when the capacity approaches infinity.

Estimation and Inference

In the previous section, the optimum
price and optimum revenue were discussed
when all model parameters are assumed known.
In this section, it is first assumed that the index
parameter o is known in the model and the
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estimate of the unknown parameters a and b is
discussed using data collected from the hotels in
the chain. Suppose that hotels operate
independently and n hotels in the chain have
been observed, resulting in the data

(p,c,x%,0,), i=1,2..,n, where p,,C,Xx are

the price, the capacity, and the unit sales of thei-
th hotd, respectively, and

5 b ¥%=¢
1o y>e’
where Y; is the demand of the i-th hotel. The

maximum likelihood estimators for a and b
maximize the likelihood function:

5>s

a,b) H{(e me[ »(ED);]™ }

where

¢+l
. o(eH)...(o+x-1) ( @ )X
Pa(ED)I - Z Xl(l+6| )0( 6|+l ]

x=0

and

Because
|n|_oc[iél‘>§ Ing -4 (a+x)IN(@ +])}
+2[(1-8)InP,(ED), ],

the maximum likelihood estimators of a and b
solve the following system of equations:

alnL ox oO(a+x)
Z{ - 6 +1 }

R { (1-8)6° }:o,
= | B(ar,c, +1)(1+6,)**“"* P, (ED),

aInL - |8%  d(a+Xx)
e { q+1 }

4 1-6,)6°
+Z P { B ( )aJrci +1 }
i=1 (o, +1)(1+6) P,(ED),
=0.
It is assumed that there are at least two different
prices in the data and n is large enough so that
not all &, are 0. Then, the maximum likelihood
estimates uniquely exist. However, except for
trivial situations, the solutions to the system
cannot be found in a close form. But numerical
methods as discussed in Press, Flannery,
Teukolsky, and Vetterling (1986) such as
Newton-Raphson method can be easly
implemented to find the solutions. The symbols

4 and b are used to denote the maximum
likelihood estimator for a and b, respectively.

Let
' ' -1
Z—l — Gll ()-12 — Gll ()-12
O, On) \On 0n)

where
o%InL
on=E [_ 0a’ j
Z a+1( EC) 0![(1— Pa(ED)| ) + el Pa‘Fl(EC)i]
:1 a (@ +1?

n 05" —(a+1)6,
_,Z{B(a c +1){ (1+6,)%* }}
n eizcu
+§{Bz(a,q +1)(6, +1)***<* P, (ED), }

d%InL
:E —
1 [ aaabj




558

BNELNC)

pia[(l_ Pa(ED)i ) + ei Pa+1(EC)i]}

6+

o+l ( EC) }

—(ax+1)86,
(1+ 9 )0{+q+2

] 8%7p,
_,Z{B(a C +1){

n O, 26 P
+ ' :
Zl: B*(a,c, +1)(6, +1)*“***Y P, (ED),

22InL
%ZE[_ b7 J

_ . pizaPaJrl(EC)i
-3, e

_Zn: o[(1-P,(ED);)+ 6P, ,(EC)]
i pi_z(ei +1)2

|
)

. eiq_lpiz ¢ —(a+1)6,
_E{B(a,q +1){ (1+6,)+2

n aZCi p'2
+ i i
Zl: B*(a.c +1)(6, +)**% P, (ED),

and
2 @)@+ 6 )
60 - wrbed) 4]

These equations are obtained by using equation
(3) in the previous section and

STATISTICAL MODEL AND ESTIMATION OF THE OPTIMUM PRICE

E(1l-6,) =P, (ED),,
E(6X,)=60P,,,(EC),, i=1.2,..n.

A randomly selected hotel from the
chain is considered and the estimate for the
optimum price and the optimum revenue for the
hotel is given. Also, the expected marginal
revenue at a given price p is estimated. Again, it
is assumed that c is the capacity of the hotdl and
similar notations are used. Let p" = p (a,b)
be the solution to

(6o + pba)P, ., (EC) +cP, (ED) = 0.

o+l

A direct application of the chain rule when
taking the derivative from both sides of the
equation gives
op*
oa

p*bo* P —B(ar+1,¢)(1+ 6*)*™ P, (EC*)

T H2B(ar +1,c)(A+ 8*)* P, (EC*) — p* bg*© 7]
()

op*
b
_ p*[p*be*P 2B(ar+1 c)(1+ )P, (ECY)]
~ b| 2B(ar+1,0)(1+6*)“ P, ,(EC*) - p*bo*? |

(8)

Notice that

ER = p'[0«P,  (EC)+cP,(ED")]
= p ZbaP +1(EC )

Applying the chain rule again,

JER*

8p*}
a
ba,p*Z 9*(‘3—1)
B(or +1,¢)(1+ 6*) ¢ }

oo
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JER*
ab

a*
=ﬂm{@m%4nﬂaﬁam}

a,p*Z b@*(c_l)

%
P ob )B(ar+1c)(d+6*)* e

where dp* /da and dp* / db aregiven by (7)
and (8). Recall that at a given price p, the
expected marginal revenue

EMR=2p+a/b+cP,(ED)/[boP,,,(EC)]

isafunction of a and b. Another application of

the chain ruleyields

JEMR 1
==+

oa b
co0°[B(er+1,c)6P,.,(EC) + B(ar,c+ 1P, (ED)]
baB(ar,c+1)B(er+1 )1+ 6)** P, (EC)?

o

JEMR

b
a b, (ED)
b boP,,(EC)

g [B(ar+1,0)6P, . (EC) + B(er,c+1P, (ED)]
" boB(a,c+1)B(ar+1,¢)(1+6)“ P, (EC)®

Let

o_(3 3 \oafop o)
da db dJa db )’

52 _[9ER  9ER JER" oER
Ja ob Ja ob )’

and

TZ_[&)EMR BEMRjz_l[aEMR BEMRjt
da ob da ob )’

wheret stands for the transpose. Finally, let

i—l :(6—%1 612} =((§-ﬂ (f'lzj_l
bethe MLE of =7*. Let p*, 62, ER’, &2,
EMR, and # be the MLEs of p’,0?, ER ,
0%, EMR, and 1, respectively. Since p ,07,
ER*, 0%, EMR, and 1 are functions of a and b.

Their MLEs are obtained by replacing a and b
by a and b intheir functions, respectively.

For 0<y<1, let Z be the standard normal
distribution and z,, be such that
Pr(Z>z,,)=y/2. The following theorem
gives the confidence interval estimations for a,

* *
b,p ,ER , and EMR.

Theorem 3
If there exist two constants D, and D,

not dependent on n such that p, <D,,
a+bD, >0, and ¢ <D, for i=1,2,...,n, then

the following statements are correct (refer to the
appendix for the proofs):

(1) An asymptotic 100(1-y)% confidence

interval for ais atz,,,4/0y,

(20 An asymptotic 100(1-y)% confidence

interval for bisb+z,,,4/0,, ,

(3) An asymptotic 100(1-y)% confidence
interval for p* is p*+z,,6,
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(4 An asymptotic 100(1-y)% confidence
interval for ER" is ER' +z,,,6,

(5 An asymptotic 100(1-y)% confidence
interval for EMR a a given price p is
EMRtz ,7.

In the more redlistic situation when none of
parameter o, a and b are known, a stepwise
procedure to find the maximum likelihood
estimators of o, a and b is proposed. The
traditional approach of maximizing a likelihood
function is simply by setting the derivative of
the likelihood function with respect to each
parameter to 0 simultaneously and then solving
the system of equations. This approach becomes
very complicated in this case because the
derivative of the likelihood function with respect
to theindex parameter o is rather complicated.

It is proposed that the maximum

likelihood estimators (a?,é, b) should be
obtained by first using the method described
above to get the maximum likelihood estimators
&(cr) and b(ex) for specified o values, and then

combining with a search procedure to obtain,
the value of o that
maximizesL ., (a) = L(a,é(a),b(a)). The
simplex search method of Nelder and Mead
(1965) has proved successful in many problems,
particularly when there are not too many
parameters present. Other search procedures
such as those of Powell (1964) and Fletcher and
Reeves (1964) are also widely used. After the
maximum likelihood estimators (&,é, b) are
obtained, Theorem 3 can still be used to obtain
the asymptotic confidence intervals for model
parameters when o is replaced by & . These
asymptotic confidence intervals are still valid
based on the fact that ¢ is a strongly consistent
estimator to o.

Notice that all confidence intervals given by
Theorem 3 are asymptotic confidence intervals
whose coverage probability approaches 100(1-
v)% when the sample size n approaches infinity.
In order to assess how these confidence intervals
perform with a limited sample size, a smulation
study was carried out to compare the empirical
coverage to the nominal coverage probability for
a sdected set of sample size n. The following
values were chosen o=2, ¢c=50, a=100, b=-1. For
each selected sample size for X, one third of the
sample comes from each unit price of p=40, 65,
90. For a given unit price p, the one third of the
sample for X are simulated by using the
distribution of X as given in Section 2.

In order to generate these samples,
random samples on the integer set {1, 2,...,51}
based on the 51 probabilities of X from X=0 to
X=50 as given in Section 2 are first generated
using the random number generating function
RANTBL from Statistical Analysis System
(1999). One is then subtracted from the samples
to give the random samples for X. Table 1
presents the empirical coverage probability of
the true parameter values. Each empirical
coverage probability reported by Table 1 is
computed from a simulation of 500 independent
confidence intervals based on 500 independent

samples of X for parametersa, b, p',ER’, and

EMR at p=60. The optimum price p as the

solution to (6) is computed using the Newton-
Raphson method. All confidence intervals are
computed based on Theorem 3 when the index
parameter o is replaced by the maximum
likelihood estimator o.. The maximum likelihood

estimators (0?, 4, 6) are obtained by the stepwise

procedure described above using the simplex
search method of Nelder and Mead (1965) when

L, (3) = Lle, &(e),b(er)) is maximized. All
the nominal confidence levels in Table 1 are
95% (y=5%).
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Table 1. Empirical Coverage Probability of Confidence Intervals

o=2, c=50, a=100, b=-1

%k sk

Sample size a b 0 ER Egilgoat
18 0.910 0.912 0.924 0.896 0.906
24 0.924 0.940 0.970 0.936 0.924
30 0.962 0.932 0.938 0.936 0.944
36 0.932 0.944 0.938 0.960 0.952
42 0.960 0.964 0.942 0.928 0.958
48 0.932 0.972 0.938 0.942 0.946
60 0.962 0.946 0.932 0.952 0.958
75 0.972 0.948 0.946 0.958 0.946
20 0.958 0.940 0.960 0.946 0.958
105 0.954 0.952 0.944 0.952 0.964
120 0.956 0.946 0.948 0.954 0.952
150 0.958 0.952 0.944 0.948 0.950
180 0.946 0.952 0.954 0.954 0.946
240 0.944 0.958 0.944 0.954 0.946
300 0.948 0.956 0.958 0.944 0.956
Conclusion

This article has proposed a two-stage statistical
model to model the demand variability from a
chain of price seting firms. The demand
variability from within a firm is modeled by a
Poisson distribution, and the demand variahility
from across the firms is modeled by a Gamma
distribution. It was shown that the optimum
price under a capacity constraint decreases after
the capacity increases to a certain level. On the
other hand, the optimum expected revenue
increases when the capacity increases. The
article also provides a stepwise procedure to find
the maximum likelihood estimates of model
parameters. The proposed method does not
require taking the derivative of the likelihood
function with respect to theindex parameter a.

Asymptotic confidence interval estimates are
developed for the optimum price, the optimum
revenue, and the expected marginal revenue at a
given price based on the asymptotic normality
for the maximum likelihood estimates. A limited
simulation study seems to suggest that a
reatively large sample size (>100) is required
for the asymptotic confidence intervals to
achieve the nominal coverage probability.
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Appendix

Proof of Theorem 1
The optimum price p maximizes ER
and therefore solves dER/dp =0, i.e,

(6e+ pbar)P,,,(EC)

+cP,(ED) + peaw

+ pcwzol

dp

Thus, using equation (5) in Section 2, it is
concluded that p” satisfies the equation:

(6o + pba)P,,, (EC) +cP,(ED) = 0.
In addition,

2
d EZR =2boP, ,(EC) + pbaw
dp

is negative by the fact that b<0 and equation (4).
It then follows that P is the unique solution to
(6). It is clear that the first term in (6) has to be
negative to make (6) hold. Therefore, p°

satisfies @o+pba<0, i.e, p  >-al(2b). Since
lim.,_P,,(EC)=1, it follows from (6) that
im ., _ (6o + ppba) =0, e,

lim .. p = -al(2b).

Proof of Theorem 2
(1): For 0< p<—a/b and 6=a+bp, let

f(p.C) = ddi; _ (a+ pb)P, . (EC) + P, (ED).
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A direct application of equation (6) gives

C!(1+9*)a (9*4‘1](: f(p*,C+1)

(+))..(x+C)\ 6*
_0*a+p*ba cab, +1(0),
0*+1 (c+1)(6 +1)

where

1(c) =

(@ +1)...(x+c)

cl@+6*)* (6*+1Y
9*

- 0{(0{+1)...(0{+x—1)( o* j
=2 xI(1+ %) 6*+1)

Replacing c by c+1 in equation (1) of Section 1,
provides the following,

Lo(c+a+1)

l(c)=80"%2(1+6")”
(c) ( ) )

Il [(A+67)t]° dt
0 (1+ e*t)a+c+2 '

For any 1>s>0,

Jl [(1+67)t]°
0 (1+ H*t)a+c+2
SO N A ARLY W
0 (1+ H*t)a+c+2
+J~l [(1+ 9**)ti|—0+:;
s (L+6 t)y*°"

Because

r [a+6)y o _[@+o)s o
0 (1+07t)* 2 1+0's |

* c+l
lim,.,.. [ 1A+ 4o by the fact
C— o (1+0t)a+c+2

that lim __,_ 6" _ 8 g ral2)s
2 l+as/2

1.

Because

Jl [(1+6 )t

s (1+9*t)a+c+2 dt <1_S’

it follows that

* c+l
jim_, [P AEEO o
S— s (1+ 9 t)a+C+

where the convergence is uniform on c. Thus,
lim___ 1(c) = 0, which further implies that

C—oo

|imcﬁ{‘9*“+ Pba C"’( o j+|(c)}

1+ 6 c+1l 6 +1

=_0{_a<0.
a+2

Therefore, there exists a constant C depending
on only a and o such that if c>C then

f(p',c+1) <0. Because f(p +Ap,c+1)=0
and df(p,c+1)/dp<0, it follows that
f(p,c+1)>0 when O<p<p +Ap and
f(p,c+1)<Owhen p +Ap < p<-a/b. Hence
p>p +Ap, ie, Ap <O0. lim__Ap =0
follows from the fact that
lim_,. p =-al(2b).

2): For O< p<-alb, let
9(p,c) = ER= p[6oF,., (EC) +cP, (ED)].
Then

AER =g(p +Ap ,c+1)-g(p’.c)
=g(p* +Ap*,c+) —g(p*,c+)
+9(p*,c+D)—g(p*,c) '
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g(p’ +Ap ,c+1)—g(p,c+1) >0 by the

fact that p +Ap maximizes g(p,c+1) over p.
AER" > 0 follows from the fact that

g(p*,c+1)—9g(p*.c)
:p*Zj_c+la(a+1)...(a+x—1)( o* j 0.

x!(1+6*)” 6*+1
Finaly, snce ER =-p“baP,, (EC’) and
lim__P,,(EC") =1, lim__AER =0

follows from the fact that
lim_,_. ER =-ca’/(4b).

Proof of Theorem 3
The asymptotic normality is first given

for the maximum likelihood estimator (& b)" of

(ab)' (t=transpose). Notice that the data come
from independent but not identically distributed
distributions. Cox and Hinkley (1974) pointed
out that the asymptotic normality for the MLEs
of such distributions requires two conditions:
one is a centra limit theorem to

(@InL/da aInL/ob) with a nonsingular

asymptotic distribution, the other is a weak law
of large numbers to insure the convergence in
probability of

2%2InL 9%InL
1 9a?  dadb

nl 9%InL 9%InL
dadb ob?

to zero.
To prove a central limit theorem

to(dlnL/da dInL/ab)", one only needs to
do so for

9 5,(X, ~a)
-3t )|

+i{ (t, +1,p)(A- )6 }

' | B(a,c, +1)(1+6)*"**P,(ED),
for any choicesof t, and t,. Fori=1.2,.,n, let

T =<t1+t2pi){—‘5‘(x‘ “"6"}

6,(6 +1)

(tl + tz pi )(1_ 5| )0i é
B(a,c, +1)(1+6)*“*P,(ED),

It is clear that ET, =0. Let o7 =ET?. A
careful computation using

E(5| Xi 2) = 0[(0(4‘ 1)9| ? Pa+2,c—l(EC)i + ael Pa+l,c (ED)

gives
o2 (t+t,p)°4*
T 2 2(a+G+1)
B(Of’q +1) (1+0|) Pa,c(ED)i

N t,+t,p)?
6%(6 +1)°

[0((0(+ DO°P,.,.41(EC), ]

n (tl +t2 P; )20((1_ Zaei )Pa
6,(6, +1)?

(EC),

+1,c

n (tl +t2 P )2a2[1_ Pa,c(ED)i ]
6 +1)° a

Notice that in the above equation, two indices o
and ¢ were used in the notation P, (EC),; to

indicate the dependence of the probability on
these two parameters. Since, for given t, and

t,, O'TZI is a positive continuous function of
(6,c) when O<a+bD, <6 <a and
1<c<D,, O'TZI has a positive lower bound and
a positive upper bound not dependent oni. Thus,
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o=> o; approaches infinity when n
i=1

approaches infinity. Notice that T, is bounded.
Therefore, for any £ >0,

n

. 1
lim__ Z — E{T (12003} =0,

i=1 n

where Y., i the indicator of {T, > €0, }
(i.e., the Lindeberg condition for T, holds). This
proves the central limit theorem for

(@InL/oa aInL/ob) .

To prove a weak law of large numbers
to insure the convergence in probability of

2°InL 9%InL
1 9a®  dab |_1
n| 9%InL 9%InL | n
dadb ob?
2°InL ¢
t , t => U,
0 zero write o IZ:l:

5(X +a) 8X,
U, = -
@+ ¢

, 0-8)8""P,(ED), " [ ¢, ~(a+14
B(a,c, +)(1+6)"" ™|  (1+86)

~ (1-8)6"
B2(a,c +1)(1+6,)2* P *(ED), '

and V, = pU, W = p?U,. Since o, o,
and O'\f,l are al positive continuous functions of
(6.,c) when O<a+bD, <6 <a and

1<c<D,, they all have positive upper bounds.
Because

n
2 _ 2
o 9%InL :E: CTlJ. ’
da? i=1
n
2 2
O-azlnL O-Vi’
dadb i=1
" 2
2 —
Gasz GWI’
ab? =1
it follows that
O-BZInL
. 2
lim Ja
n— oo
n
O-BZInL
— Ilm dadb
n— oo
n
O-BZInL
. 2
= lim Jb
n— o
n
= 0.

The weak law of large numbers to

2°InL 9%InL
_1] 9a®  daob
nl 9%InL 9%InL
dadb ob?

follows from Theorem 6.2 of Billingsley (1986).
Therefore, asn—eo,

{56 (ob

in distribution, where |, , is the 2x2 identity
matrix, i.e., asymptotically,

o)
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is distributed as N{[gj,z-l} (1) and (2)

follow directly from the asymptatic normality of
4 and b, respectively. (3) follows from the fact
that as N — oo, the MLE of p = p (ab)
satisfies that

P =P Ny
(e

in distribution. (4) follows from the fact that as
N — oo, theMLE of ER™ satisfies that

ER-ER — N(0Q)

in distribution. (5) follows from the fact that as

N — oo, the MLE of EMR satisfies that

EMR-EMR - N(0J)

in distribution.
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