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Statistical Model And Estimation Of The Optimum Price 
For A Chain Of Price Setting Firms 

 
   Chengjie Xiong    Kejun Zhu 
              Division of Biostatistics   College of Management 
  Washington University in St. Louis China University of Geosciences (Wuhan) 

 

 
A stochastic approach is used to model the economics of a chain of price setting firms. It is assumed that 
these firms have fixed capacities in their products, but random demands for their products. The optimum 
price, the optimum revenue, and the expected marginal revenue at a given price are investigated. The 
method of maximum likelihood is used to provide both point and confidence interval estimates. The 
coverage probabilities of confidence interval estimates based on a simulation study are presented. 
 
Key words: Asymptotic confidence interval; capacity; gamma distribution; marginal revenue; maximum 
 likelihood estimate (MLE); optimum revenue; Poisson distribution. 
 
 

Introduction 
 
Fixed capacity is very common in businesses. 
For example, an established hotel must operate 
with a fixed number of rooms; and an 
established restaurant has a fixed number of 
seats. While the capacity is fixed for many 
firms, the demand for their products is uncertain. 
By their very nature, the hotel and the restaurant 
cannot respond to the uncertain demand by 
inventory adjustments, nor for that matter, by 
using high priced resources to temporarily 
increase production when demand is high. The 
most important goal for these firms is to choose 
a price that maximizes their expected profits 
under random demand for a fixed capacity. 
Many authors have studied the problem of firm 
decision making when demand for the product is  
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uncertain. Epstein (1978) and Turnovsky (1973), 
provided the classic approach to the problem. 
Scott, Highfill, and Sattler (1988) and Balvers 
and Miller (1992) studied several production 
side questions such as the derived factor demand 
with capacity constraints. Flacco and Kroetch 
(1986) and Booth (1990), investigated the 
production levels and/or inventory adjustments 
in the decision making. 

In this article, it is assumed that these firms 
operate as monopolies and are risk neutral. It is 
also assumed that capacity is a strict upper 
bound on the provision of service and must be 
set before the demand is arriving. With these 
same assumptions, Scott, Sattler, and Highfill 
(1995) studied the optimum price for a single 
firm when the demand is random. Highfill, 
Quigg, Sattler, and Scott (2000) investigated the 
problem of capacity decision for a single firm 
when the product demand is uncertain. Here, a 
chain of price setting firms with random 
demands are considered and the optimum price 
and its estimation applicable to a population of 
firms is studied. There are two levels of 
uncertainty in the demand side now: one is the 
demand uncertainty for any given firm in the 
chain, the other is the demand uncertainty from 
firm to firm in the chain. Therefore, two 
statistical models are needed to model the 
demand at two different stages, one for a given 
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firm and the other for across the firms in the 
chain. 

A simple example of the kind of 
problem under consideration in this article is a 
chain of hotels which operates with the number 
of rooms as the strict upper bound for the 
service. The variability in demand will cause the 
hotels to experience excess capacity and excess 
demand. Both excesses will depend on the 
capacity of the firms and the probability 
distribution for the demand. The question 
answered in this article is, for a randomly 
selected hotel in the chain, how the price should 
be set and estimated so that the maximum profit 
can be achieved. 

In the following section, the statistical 
model is proposed and the optimum price is 
studied by assuming that all the parameters are 
known in the model. Also, the effect of capacity 
on the optimum price is considered. Next, the 
estimation for the model parameters is provided 
and asymptotic confidence intervals for the 
optimum price, the optimum revenue, and the 
expected marginal revenue at a given price are 
presented. 

It is convenient to use a chain of hotels 
as the economic reference of a chain of firms in 
this article. The results in this article apply to all 
businesses where capacity is a strict upper bound 
on the provision of service and the demand is 
random. 

 
The Model and the Optimum Price 

For a given hotel H in a chain of hotels, let 

HY |  be the number of people to rent a room. 
The uncertain number of people to rent a room is 
treated as a standard queuing problem with the 
quantity demanded a random variable distributed 
as Poisson whose mean is ,Hλ  i.e., 
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In order to model the demand variability 
from  hotel to  hotel in  the chain,  it  is  assumed 
that the population of demand mean Hλ  of HY |   
from the hotels follows a Gamma distribution 
with index α>0 and scale parameter θ>0, i.e., 

Hλ  is distributed according to the probability 
density function 
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It is also assumed that α is independent of price 
and θ is linearly and inversely related to unit 
price p, i.e., 
 

θ=a+bp, 
 
where a>0 and b<0 are two constants. 
  
 Let Y denote the number of people to 
rent a room from a hotel randomly sampled from 
the chain. The probability distribution of Y is 
then given by 
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for  y=0,1,2,.... 
  
 The distribution of Y is the well known 
negative binomial distribution when α is a 
positive integer. The index parameter α in the 
model allows for the flexibility to choose 
different densities in the Gamma family to 
model the demand variability across the hotels. 
Let αP  denote the probability of events instead 

of just P to indicate the dependence of the 
probabilities on the parameter α. Notice that 

,)|( bpaEEYEEY HH αααθλ +====  a>0, b<0. 
The expected number of people to rent a room 
from this randomly selected hotel in the chain is 
also linearly and inversely related to price p. 

Suppose that c is the capacity number of 
rooms in the hotel. Let X be the unit sales of the 
hotel. Then 
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When the demand is random and the capacity is 
fixed, there are positive probabilities that excess 
demand (denoted by ED) and excess capacity 
(denoted by EC) occurs. It is straightforward to 
find the probability of excess demand and the 
probability of excess capacity as 
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respectively. Two integral representations of 
these probabilities and their derivatives are 
given, which will be used later in the article: 
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where B(α,β)=Γ(α)Γ(β)/Γ(α+β) is the Beta 
function. (1) and (2) can be obtained by using 
equation (6) and (7) from Highfill, Quigg, 
Sattler and Scott (2000) and applying Fubini’s 
Theorem for the exchange of integrals. (3) and 
(4) can be obtained by directly taking derivatives 
from (1) and (2), respectively. Combining (3) 
and (4) further gives 
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The expected unit sales of the hotel is then  
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Therefore, the expected unit sales of the hotel 
contain two parts, one is the expected demand 
θα multiplied by the probability of excess 
capacity at index α+1, and the other is the 
capacity c multiplied by the probability of 
excess demand. 

For any hotel in the chain, the problem is to 
find the optimum price that maximizes the 
expected profit based on the fixed capacity. It is 
assumed that these hotels have a constant non-
stochastic marginal cost function. Therefore, as 
pointed out by Highfill, Quigg, Sattler and Scott 
(2000), the constant can be set at zero since the 
analysis is not materially affected by the choice 
of this constant (i.e., one can concentrate on the 
expected revenue). Let R be the revenue for a 
randomly selected hotel, i.e., R=Xp. The 
expected revenue is 

 
).()(1 EDpcPECPpER ααθα += +  

 
Therefore, the expected revenue of the 

hotel contains two parts too, one is the expected 
revenue for all demand multiplied by the 
probability of excess capacity at index α+1, the 
other is the revenue at capacity multiplied by the 
probability of excess demand. The following 
theorem gives the optimum price which 
maximizes the expected revenue. 
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Theorem 1  
 The optimum price *p  is the unique 
solution to the equation: 
 

.0)()()( 1 =++ + EDcPECPpb αααθα         (6)                                 

In addition, 
b

a
p

2
* −>  and 

.
2

lim *

b

a
pc −=∞→   Refer to the Appendix 

for the proof. 

Let .** bpa +=θ  Denote the optimum 
expected revenue, the probability of excess 
capacity and the probability of excess demand at 

optimum price *p  by ,*ER  )( *ECPα  and 

),( *EDPα  respectively. Recall that the 

expected demand is EY=α(a+bp) and the 
expected unit sales is 

).()(1 EDcPECPEX ααθα += +  It is always 

true that EX<EY, because X<Y. If the capacity is 
hypothetically infinity, then X= Y and 
ER=pα(a+bp). Therefore ER attains the 

maximum )4/(2 baα−  when price 

).2/( bap −=  Theorem 1 indicates that in real 
world business applications where the capacity c 
is always a finite number, the optimum price for 
the hotel is always larger than that in the limiting 
capacity situation, and the optimum revenue for 
the hotel is always smaller than that in the 
limiting capacity situation. But, as the capacity 
increases, the optimum price and the optimum 
revenue approach their limiting values 
respectively. 

Scott, Sattler and Highfill (1995) 
defined the expected marginal revenue (EMR) as 

./ dEXdEREMR =  The expected marginal 
revenue measures the change in expected 
revenue for a given change in expected unit 
sales. Notice that ).(/ 1 ECPbdpdEX += αα   

Therefore, 
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As the capacity approaches infinity, )(EDPα  

approaches 0 and )(1 ECP +α  approaches 1. 

Therefore, the expected marginal revenue 
approaches the standard marginal revenue under 
linear demand. 

In order to understand the dependence 

of *p  on capacity c, the effect of an additional 

unit of capacity on the optimum price *p is 
analyzed. Suppose that the hotel capacity is 
increased from c to c+1. Assume that the 

optimum price is changed from *p  to ** pp ∆+  
and the optimum expected revenue is changed 
from *ER  to ** ERER ∆+  accordingly. The 
following theorem presents the effect of an 

additional unit of capacity on *p  and *ER . 
 
Theorem 2  
(1) There exists a constant C depending only on 

a and α such that if c>C then .0* <∆p  In 

addition, .0lim * =∆∞→ pc  

(2) 0* >∆ER  for every c≥1. In addition, 

.0lim * =∆∞→ ERc  Refer to the appendix for 

the proof. 
Theorem 2 indicates that the optimum 

price will decrease after the capacity increases to 
a certain level, but the drop in optimum price for 
each unit increase of capacity approaches 0 
when the capacity approaches infinity. On the 
other hand, when the capacity increases, there is 
always a positive probability that the extra unit 
will be taken by customers. Therefore, the 
optimum expected revenue will always increase. 
But the increase in the optimum revenue for 
each unit increase of capacity also approaches 0 
when the capacity approaches infinity. 
 
Estimation and Inference 

In the previous section, the optimum 
price and optimum revenue were discussed 
when all model parameters are assumed known. 
In this section, it is first assumed that the index 
parameter α is known in the model and the 
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estimate of the unknown parameters a and b is 
discussed using data collected from the hotels in 
the chain. Suppose that hotels operate 
independently and n hotels in the chain have 
been observed, resulting in the data 
( , , , ),i i i ip c x δ  i=1,2,...,n, where iii xcp ,,  are 

the price, the capacity, and the unit sales of the i-
th hotel, respectively, and 
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where yi is the demand of the i-th hotel. The 

maximum likelihood estimators for a and b 
maximize the likelihood function: 
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the maximum likelihood estimators of a and b 
solve the following system of equations: 
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0.=  
It is assumed that there are at least two different 
prices in the data and n is large enough so that 
not all iδ  are 0. Then, the maximum likelihood 

estimates uniquely exist. However, except for 
trivial situations, the solutions to the system 
cannot be found in a close form. But numerical 
methods as discussed in Press, Flannery, 
Teukolsky, and Vetterling (1986) such as 
Newton-Raphson method can be easily 
implemented to find the solutions. The symbols 

â  and b̂  are used to denote the maximum 
likelihood estimator for a and b, respectively. 
Let 
 

1−Σ  ,
1

2212

1211

'
22

'
12

'
12

'
11

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

σσ
σσ

σσ
σσ

 

 
where  
 

2

11 2

ln L
E

a
σ ⎛ ⎞∂= −⎜ ⎟∂⎝ ⎠

 

1 1
2

1

( ) [(1 ( ) ) ( ) ]

( 1)

n
i i i i

i i i

P EC P ED P ECα α αα α θ
θ θ

+ +

=

⎧ ⎫− += −⎨ ⎬+⎩ ⎭
∑

∑
=

++

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡

+
+−

+
−

n

i
c

i

ii

i

c
i

i

i c

cB1
2

1

)1(

)1(

)1,( αθ
θα

α
θ

 

,
)()1)(1,(1

)1(22

2

∑
=

++ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++
+

n

i i
c

ii

c
i

EDPcB i

i

α
αθα

θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂
∂−=

ba

L
E

ln2

12σ  



STATISTICAL MODEL AND ESTIMATION OF THE OPTIMUM PRICE 558 

=∑
=

+

⎭
⎬
⎫

⎩
⎨
⎧n

i i

ii ECPp

1

1 )(

θ
α α  

∑
=

+

⎭
⎬
⎫

⎩
⎨
⎧

+
+−

−
n

i i

iiii ECPEDPp

1
2

1

)1(

])())(1[(

θ
θα αα

 

∑
=

++

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡

+
+−

+
−

n

i
c

i

ii

i

i
c

i

i

i c

cB

p

1
2

1

)1(

)1(

)1,( αθ
θα

α
θ

 

,
)()1)(1,(1

)1(22

2

∑
=

++ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++
+

n

i i
c

ii

i
c

i

EDPcB

p
i

i

α
αθα

θ

 

2

22 2

ln L
E

b
σ ⎛ ⎞∂= −⎜ ⎟∂⎝ ⎠

 

 

∑
=

+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
n

i i

ii ECPp

1

1
2 )(

θ
α α  

∑
=

−
+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+−

−
n

i ii

iii

p

ECPEDP

1
22

1

)1(

])())(1[(

θ
θα αα

 

∑
=

++

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡

+
+−

+
−

n

i
c

i

ii

i

i
c

i

i

i c

cB

p

1
2

21

)1(

)1(

)1,( αθ
θα

α
θ

 

,
)()1)(1,(1

)1(22

22

∑
=

++
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
+

n

i i
c

ii

i
c

i

EDPcB

p
i

i

α
αθα

θ

 
 and 
 

.
1)1(!

))...(1(
)(

1

1

0
1

x

i

i

i

c

x
i

x

x
ECP

i

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
++= +

−

=
+ ∑ θ

θ
θ

αα
αα

 
These equations are obtained by using equation 
(3) in the previous section and 
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A randomly selected hotel from the 

chain is considered and the estimate for the 
optimum price and the optimum revenue for the 
hotel is given. Also, the expected marginal 
revenue at a given price p is estimated. Again, it 
is assumed that c is the capacity of the hotel and 

similar notations are used. Let  ),(** bapp =  
be the solution to 
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Applying the chain rule again,  
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where ap ∂∂ /*  and bp ∂∂ /*  are given by (7) 

and (8). Recall that at a given price p, the 

expected marginal revenue 

)](/[)(/2 1 ECPbEDcPbapEMR +++= αα α  

is a function of a and b. Another application of 

the chain rule yields 
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where t stands for the transpose. Finally, let 
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be the MLE of 1−Σ . Let *,p̂  2σ̂  , ,ˆ *RE  ,ˆ 2δ  

RME ˆ , and τ̂  be the MLEs of ,, 2* σp  ER*, 

,2δ  EMR, and τ,  respectively. Since ,, 2* σp  

ER*, ,2δ  EMR, and τ are functions of a and b. 
Their MLEs are obtained by replacing a and b 

by â  and b̂  in their functions, respectively. 
For 0<γ<1, let Z be the standard normal 

distribution and 2/γz  be such that 

.2/)Pr( 2/ γγ =≥ zZ  The following theorem 

gives the confidence interval estimations for a, 

b, p*, ER*, and EMR.  
 
 
 
Theorem 3 
 If there exist two constants 1D  and 2D  

not dependent on n such that ,1Dpi <  

,01 >+ bDa  and 2Dci ≤  for i=1,2,...,n, then 

the following statements are correct (refer to the 
appendix for the proofs): 
 
(1) An asymptotic 100(1-γ)% confidence 

interval for a is ,ˆˆ '
112/ σγza ±  

 
(2) An asymptotic 100(1-γ)% confidence 

interval for b is '
222/ ˆˆ σγzb ± , 

 
(3) An asymptotic 100(1-γ)% confidence 

interval for  *p  is σγ ˆ*ˆ 2/zp ± , 
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(4) An asymptotic 100(1-γ)% confidence 

interval for *ER  is δγ
ˆˆ

2/
* zRE ± , 

 
(5) An asymptotic 100(1-γ)% confidence 
interval for EMR at a given price p is 

.ˆˆ
2/ τγzRME ±  

In the more realistic situation when none of 
parameter α, a and b are known, a stepwise 
procedure to find the maximum likelihood 
estimators of α, a and b is proposed. The 
traditional approach of maximizing a likelihood 
function is simply by setting the derivative of 
the likelihood function with respect to each 
parameter to 0 simultaneously and then solving 
the system of equations. This approach becomes 
very complicated in this case because the 
derivative of the likelihood function with respect 
to the index parameter α is rather complicated.  

It is proposed that the maximum 

likelihood estimators ( )ba ˆ,ˆ,α̂  should be 
obtained by first using the method described 
above to get the maximum likelihood estimators 

( )αâ  and ( )αb̂  for specified α values, and then 

combining with a search procedure to obtainα̂ , 
the value of α that 

maximizes ( ) ( )( )ααα baLaL ˆ,ˆ,)(max = . The 

simplex search method of Nelder and Mead 
(1965) has proved successful in many problems, 
particularly when there are not too many 
parameters present. Other search procedures 
such as those of Powell (1964) and Fletcher and 
Reeves (1964) are also widely used. After the 

maximum likelihood estimators ( )ba ˆ,ˆ,α̂  are 
obtained, Theorem 3 can still be used to obtain 
the asymptotic confidence intervals for model 
parameters when α is replaced byα̂ . These 
asymptotic confidence intervals are still valid 
based on the fact that α̂  is a strongly consistent 
estimator to α. 

 
 
 
 
 
 

Notice that all confidence intervals given by 
Theorem 3 are asymptotic confidence intervals 
whose coverage probability approaches 100(1-
γ)% when the sample size n approaches infinity. 
In order to assess how these confidence intervals 
perform with a limited sample size, a simulation 
study was carried out to compare the empirical 
coverage to the nominal coverage probability for 
a selected set of sample size n. The following 
values were chosen α=2, c=50, a=100, b=-1. For 
each selected sample size for X, one third of the 
sample comes from each unit price of p=40, 65, 
90. For a given unit price p, the one third of the 
sample for X are simulated by using the 
distribution of X as given in Section 2.  
 In order to generate these samples, 
random samples on the integer set {1, 2,...,51} 
based on the 51 probabilities of X from X=0 to 
X=50 as given in Section 2 are first generated 
using the random number generating function 
RANTBL from Statistical Analysis System 
(1999). One is then subtracted from the samples 
to give the random samples for X. Table 1 
presents the empirical coverage probability of 
the true parameter values. Each empirical 
coverage probability reported by Table 1 is 
computed from a simulation of 500 independent 
confidence intervals based on 500 independent 

samples of X for parameters a, b, ,, ** ERp  and 

EMR at p=60. The optimum price *p  as the 
solution to (6) is computed using the Newton-
Raphson method. All confidence intervals are 
computed based on Theorem 3 when the index 
parameter α is replaced by the maximum 
likelihood estimator α. The maximum likelihood 

estimators ( )ba ˆ,ˆ,α̂  are obtained by the stepwise 
procedure described above using the simplex 
search method of Nelder and Mead (1965) when 

( ) ( )( )ααα baLaL ˆ,ˆ,)(max =  is maximized. All 

the nominal confidence levels in Table 1 are 
95% (γ=5%). 
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Conclusion 

This article has proposed a two-stage statistical 
model to model the demand variability from a 
chain of price setting firms. The demand 
variability from within a firm is modeled by a 
Poisson distribution, and the demand variability 
from across the firms is modeled by a Gamma 
distribution. It was shown that the optimum 
price under a capacity constraint decreases after 
the capacity increases to a certain level. On the 
other hand, the optimum expected revenue 
increases when the capacity increases. The 
article also provides a stepwise procedure to find 
the maximum likelihood estimates of model 
parameters. The proposed method does not 
require taking the derivative of the likelihood 
function  with  respect to  the index parameter α.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
 
Asymptotic confidence   interval estimates   are 
developed for the optimum price, the optimum 
revenue, and the expected marginal revenue at a 
given price based on the asymptotic normality 
for the maximum likelihood estimates. A limited 
simulation study seems to suggest that a 
relatively large sample size (>100) is required 
for the asymptotic confidence intervals to 
achieve the nominal coverage probability. 
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Appendix 
 
Proof of Theorem 1 

 The optimum price *p  maximizes ER 

and therefore solves ,0/ =dpdER  i.e., 

 
)()( 1 ECPpb ++ ααθα  

dp

ECdP
pEDcP

)(
)( 1+++ α

α θα  

.0
)(

=+
dp

EDdP
pc α  

Thus, using equation (5) in Section 2, it is 

concluded that *p  satisfies the equation: 

.0)()()( 1 =++ + EDcPECPpb αααθα  

In addition, 

dp

ECdP
pbECPb

dp

ERd a )(
)(2 1

12

2
+

+ += αα α  

is negative by the fact that b<0 and equation (4). 

It then follows that *p  is the unique solution to 
(6). It is clear that the first term in (6) has to be 

negative to make (6) hold. Therefore, *p  

satisfies θα+pbα<0, i.e., ).2/(* bap −>  Since 

,1)(lim 1 =+∞→ ECPc α  it follows from (6) that 

0)(lim =+∞→ αθα pbc , i.e.,  

).2/(lim * bapc −=∞→  

 
Proof of Theorem 2 
 (1): For bap /0 −<<  and θ=a+bp, let 

).()()(),( 1 EDcPECPpb
dp

dER
cpf αααθα ++== +
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A direct application of equation (6) gives 
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Replacing c by c+1 in equation (1) of Section 1, 
provides the following, 
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For any 1>s>0, 
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where the convergence is uniform on c. Thus, 
,0)(lim =∞→ cIc  which further implies that 
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Therefore, there exists a constant C depending 
on only a and α such that if c>C then 

.0)1,( * <+cpf  Because 0)1,( ** =+∆+ cppf  

and ,0/)1,( <+ dpcpdf  it follows that  

f(p,c+1)>0 when **0 ppp ∆+<<  and  

f(p,c+1)<0 when ./** bappp −<<∆+  Hence 

,*** ppp ∆+>  i.e., .0* <∆p  0lim * =∆∞→ pc  

follows from the fact that 

).2/(lim * bapc −=∞→  

 (2): For ,/0 bap −<<  let 

)].()([),( 1 EDcPECPpERcpg ααθα +== +  

Then 
           

),()1,( **** cpgcppgER −+∆+=∆  
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0)1,()1,( *** >+−+∆+ cpgcppg  by the 

fact that ** pp ∆+  maximizes g(p,c+1) over p. 

0* >∆ER  follows from the fact that 

1
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Finally, since )( *
1

2** ECPbpER +−= αα  and 

)(lim *
1 ECPc +∞→ α  =1, 0lim * =∆∞→ ERc  

follows from the fact that 

).4/(lim 2* baERc α−=∞→  

 
Proof of Theorem 3 
 The asymptotic normality is first given 

for the maximum likelihood estimator â( tb)ˆ  of 

a( tb)  (t=transpose). Notice that the data come 
from independent but not identically distributed 
distributions. Cox and Hinkley (1974) pointed 
out that the asymptotic normality for the MLEs 
of such distributions requires two conditions: 
one is a central limit theorem to 

( )tbLaL ∂∂∂∂ /ln/ln  with a nonsingular 
asymptotic distribution, the other is a weak law 
of large numbers to insure the convergence in 
probability of 
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to zero. 
 To prove a central limit theorem 

to ( )tbLaL ∂∂∂∂ /ln/ln , one only needs to 
do so for 
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for any choices of 1t  and .2t   For i=1,2,...,n, let 
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careful computation using 
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Notice that in the above equation, two indices α 
and c were used in the notation ic ECP )(,α  to 

indicate the dependence of the probability on 
these two parameters. Since, for given 1t  and 

,2t  2

iTσ  is a positive continuous function of 

),( ciθ  when abDa i ≤≤+< θ10  and 

21 Dc ≤≤ , 2

iTσ  has a positive lower bound and 

a positive upper bound not dependent on i. Thus, 
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2
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=  approaches infinity when n 

approaches infinity. Notice that iT  is bounded. 
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where }{ niT εσχ ≥  is the indicator of { }i nT εσ≥  

(i.e., the Lindeberg condition for iT  holds). This 

proves the central limit theorem for 
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follows from Theorem 6.2 of Billingsley (1986). 
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is distributed as .,
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in distribution. 
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