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Training Statisticians To Be Alert To The Dangers Of 
Misapplying Statistical Methods 

 
       Vance W. Berger 
Biometry Research Group 
National Cancer Institute 

 
 
Statisticians are faced with a variety of challenges. Their ability to cope successfully with these challenges 
depends, in large part, on the quality of their training. It is not the purpose of this article to present a 
comprehensive training plan that will overhaul the standard curriculum a statistician might follow under 
current training regimens (i.e., in a degree program). Rather, the objective is to point out important areas that 
appear to be under-represented in standard curricula and correspondingly overlooked too often in practice. 
The hope is that these areas might be better integrated into the training of the next generation of statisticians. 
 
Key words: Assumptions; design-based analysis; exact conditional test; limitations; permutation test. 
 
 
 

Introduction 
The ability of statisticians to cope successfully 
with the wide variety of challenges they face 
depends, in large part, on the quality of their 
training. Key components of any training program 
for statisticians include mathematics, probability 
theory, statistical inference, and computing. Such 
classical statistics training would put the 
statistician in a position to offer solutions to a 
variety of problems, and defend these solutions. 
Yet “statistics can be used to form highly technical 
and even technically correct support for statements 
which are in fact not true” (Vardeman & Morris, 
2003, p. 25). Kimball (1957) described a Type III 
error as the right answer to the wrong question; 
earlier Huff (1954) described this phenomenon as 
a semi-attached figure.  It may be overly harsh to 
use so broad a brush to describe each right answer 
to a wrong question as an error. Optimal solutions 
for contrived problems that bear some 
resemblance to the true problems may also serve 
as appropriate, if not ideal, solutions for the true 
problem. On the other hand, an optimal solution to 
the surrogate problem may not be even a 
minimally acceptable solution to the true problem. 
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Few general rules exist to allow a 
statistician to be certain that the ideal solution to 
one problem is actually an appropriate solution to 
another related problem, so often subject matter 
knowledge must be used to evaluate a proposed 
solution to a given problem. 
 
Unreasonable Assumptions 
 Many frequently applied statistical 
methods, including t-tests, linear regression, the 
analysis of variance (ANOVA), the analysis of 
covariance (ANCOVA), multivariate ANOVA 
(MANOVA), and the chi-square test, are based on 
random sampling and/or normality. In practice, 
these methods are often used even when neither of 
these conditions holds. It is also common for 
methods based on compound symmetry of the 
variance/covariance matrix, interval scaling of the 
data, proportional odds or hazards, common 
variances, or additivity to be used when these 
conditions do not hold. Statisticians must be 
concerned with such issues as 1) the evidence for 
or against each of these conditions holding in a 
given application and 2) the performance of 
specific analyses when some or all of these 
conditions fail to hold. Regarding the first issue, 
we note the impossibility of demonstrating that 
certain of these conditions hold in practice. 

For example, although a statement such as 
‘the data are normally distributed’ may appear 
innocuous, this statement simultaneously rules out 
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every distribution that is not Gaussian, including 
any distribution with finite support. Also, given 
the mean and variance, this statement specifies a 
fixed positive probability of a data point falling in 
any interval, no matter how far from the largest or 
smallest observations. As such, this seemingly 
simple statement actually represents an 
uncountable number of sub-statements, many of 
which could not possibly be true. The question is 
not so much whether the statement is true as it is 
how well would a procedure derived with the 
assumption perform without it. This raises the 
question of what exactly is the true question, when 
all the assumptions have been stripped away. 

If a p-value is required for a between-
group comparison, then the true question is ‘How 
likely would it be, if there were no treatment 
effect, to obtain results as extreme as or more 
extreme than those which were found’? The 
answer to this question is a probability, and the 
relevant probability space is defined based on the 
observed outcome and all other outcomes that 
could have occurred given the study design. With 
random sampling from a normal distribution, the 
probability space would be based on repeated 
sampling from a normal distribution. Perhaps a t-
test would be used, because it is the optimal 
solution to the problem of comparing the means of 
normal populations with equal but unknown 
variances. But, how well does the t-test perform as 
an answer for the original question? 

To answer this question, the correct 
answer to the original question must be defined. If 
there is random allocation but not random 
sampling, then the platinum standard is an exact 
design-based permutation test (Tukey, 1993). The 
frequent assurances that standard statistical 
methods are robust to violations of their 
assumptions tend to be based on studies of 
performance when one assumption at a time is 
violated. In reality, if an analysis requires 
assumptions to be valid, then it is vulnerable to the 
possibility that two of its assumptions may be 
violated simultaneously. In this case, robustness 
may be lost (Hunter & May, 1993). 

In some cases it may not be possible or 
feasible to compute an exact p-value. But if the 
exact p-value is available, as it often is, then the 
numerical difference between it and the 
approximate p-value is a better measure of 
robustness than the usual checks that are made of 

assumptions. Using this metric, Berger (2000) 
presented a real data set (specifically, sotalol for 
reinfarctions) whose assumptions appeared to have 
been met, yet the exact Smirnov test p-values were 
0.0485 (two-sided) and 0.0258 (one-sided), and 
the approximate p-values were 0.9910 and 0.6823, 
respectively. This discrepancy can be attributed to 
the poor approximation of the approximate 
Smirnov reference distribution to the exact one. 
That is, the value of the test statistic remains the 
same whether the exact or approximate test is 
being used, but the p-value it produces fluctuates 
wildly as the reference distribution to which it is 
compared varies. 

This is hardly an isolated example, nor is 
the phenomenon specific to the Smirnov test. 
Little (1989) presented another real data set, 
specifically a 2×2 table with cell counts 
{(170,2);(162,9)}. Each expected cell count is at 
least 5, so the usual check of the chi-square 
assumption would be passed, and the chi-square 
test would tend to be used in practice. Yet at the 
one-sided 0.025 alpha level the chi-square test 
would find significance (p=0.0162). and would not 
even be close to the border, although Fisher’s 
exact test would not reach statistical significance 
(p=0.0299). Three more examples follow. Using 
the exact Wilcoxon test, Williams, et al. (2000) 
demonstrated that compared to routine 
appointments, open access reduces secondary care 
costs for inflammatory bowel disease. 

Barber and Thompson (2000) unwittingly 
demonstrated that for this data set, either the 
normality assumption was sufficiently flawed or 
the difference in means was sufficiently 
accompanied by shifts in shape and/or scale that 
the t-test failed to detect this true difference. 
Likewise, in a study of the effect of neuromuscular 
training, Hewett, et al., (1999) used the chi-square 
test to analyze knee injuries in female athletes. 
Clancy (2000) commented: 

 
Because the observed and expected 
number of knee injuries was less than 
five in at least one cell, an approximate 
method is inappropriate. An appropriate 
method in this instance would have been 
a Fisher’s exact test. Incidentally, use of 
this exact method demonstrated no 
statistical significance …, suggesting 
that the extreme variability present in the 
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small sample resulted in an incorrect 
finding when an approximate method 
was used. This provides all sports 
medicine researchers with a potent 
example of why appropriate statistical 
analysis is extremely important. (p. 615) 
 

Chaudry, et al. (2002) found p-values of 
0.004, 0.016, 0.006, 0.001, and <0.001, using t-
tests, for five measures (interest, importance, 
relevance, validity, believability) of readers’ 
perceptions of papers with and without declaration 
of competing interests. Jacobs (2003) pointed out 
that the t-test was applied inappropriately, and, 
using an exact test, found three of these p-values 
to be non-significant (interest, p=0.054; 
importance, p=0.21; relevance, p=0.054). Clearly, 
assumption-based tests are at times used when 
they should not be. Bross (1990) stated, 

 
[T]he user of a statistical method has the 
responsibility for dealing with the 
scientific question: Are the assumptions 
valid? In particular, when human health 
and safety might be jeopardized ..., a 
statistician has a direct responsibility to 
protect the public health and safety by 
following fail-safe principles in dealing 
with any assumptions. (p. 1216) 
 

Some assumptions are more realistic than others, 
but if they were known to be true, then they would 
not be assumptions. As such, one could argue that 
all things being equal, it is best not to rely on 
assumptions unless there is a good reason to. 

In some cases, there are good statistical 
methods that require no assumptions at all. For 
example, design-based between-group permutation 
tests of the null hypothesis of no difference require 
no assumptions in randomized clinical trials 
(Berger, 2000). In other cases, progress can be 
measured by a reduction, but not elimination, of 
assumptions. Weerahandi and Berger (1999), for 
example, derived analyses of growth curves that 
retain the normality assumption but dropped other 
assumptions. The use of assumption-minimizing 
methods, along with the proper respect for 
uncertainty regarding any assumptions that are 
made, might be regarded as part and parcel of 
good statistical practice. 
 

Biased Sampling 
Without a reason to suspect systematic 

bias in the sampling procedure, information about 
the sample would be used, without adjustment, to 
draw inferences about the population. This would 
be optimal in the case of unbiased (perhaps 
random) sampling. Although it is uncommon for a 
clinical trial to employ random sampling from the 
target population, this approach is still used in 
practice, because the sample is still thought to 
represent the target population from which it was 
drawn. Whether or not this is true varies with the 
situation, but there are cases in which the sampling 
is biased in a known way. Many randomized 
clinical trials utilize what is called an open-label 
run-in phase prior to randomization. 

Such a run-in phase is characterized by 
each patient being exposed to the same treatment. 
On the basis of their response during this run-in 
phase, patients are selected for or excluded from 
the subsequent randomization. Generally, good or 
bad responders are excluded as the run-in phase 
used placebo or the active treatment, respectively. 
But, the treatment used in the run-in phase is then 
used again as one of the treatments to which 
patients may be randomized. The effect is over-
representation of either active responders or of 
control non-responders (or, sometimes, both). The 
advantage for the active treatment group can 
greatly exaggerate the estimated magnitude of 
treatment effect (Berger, Rezvani, & Makarewicz, 
2003). An optimal analysis should provide a good 
answer to the question of whether or not treatment 
A is more effective than treatment B in the sample. 
But with run-in selection, this optimal answer 
represents an intentionally distorted answer to the 
question of whether or not treatment A is more 
effective than treatment B in the target population. 
 

Conclusion 
 

It is hoped that the next generation of statistical 
researchers will work towards deriving better 
solutions to the important practical questions that 
need answering. Often, this will involve deriving 
more powerful assumption-minimizing analyses. 
We also hope that the next generation of statistical 
practitioners will appreciate and use these 
maximally robust procedures more 
comprehensively. A good step for aspiring 
statisticians to take now, to help become part of 
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the solution later, would be to take classes in non-
parametric analyses and robust methods, and to 
develop an interest in the nature of experiments 
(including limitations) and the way that data sets 
are generated. It is also useful for one to recognize 
what it is that (s)he does not know. All too often it 
is heard that data are used to prove or conclusively 
demonstrate a hypothesis, when in fact the 
inference from data analysis is inductive, and not 
deductive, so proof is not attainable. If, e.g., 
assumptions were used in an analysis, then the 
appearance of a treatment effect could be 1) a real 
treatment effect; 2) a Type I error; or 3) an artifact 
due to the assumption not being true. A low p-
value allows one to probabilistically rule out the 
second of these explanations, but not the third. 
Even if the analysis did not explicitly rely on any 
assumptions, there is still the implicit assumption 
that an apparent treatment effect cannot be 
attributed exclusively to a bias. Selection bias, 
e.g., can create the appearance of a treatment 
effect where in fact none exists (Berger, 2005). 

Even if every known bias can be ruled out, 
it is still possible that some other bias exists but is 
yet to be discovered. Hence, there may be any 
number of explanations for a given observation 
(such as a data pattern apparently indicative of a 
treatment effect), and introspection may help 
anticipate problems not yet identified, and may 
allow statisticians to perform analyses and design 
studies that not only gain acceptance in the 
present, but also stand the test of time in the future 
(Berger & Matthews, 2005). 
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