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Power of the t Test for Normal and Mixed Normal Distributions 
 
Marilyn S. Thompson      Samuel B. Green     Yi-hsin Chen     Shawn Stockford       Wen-juo Lo 

Division of Psychology in Education 
Arizona State University 

 
Previous research suggests that the power of the independent-samples t test decreases when population 
distributions are mixed normal rather than normal, and that robust methods have superior power under 
these conditions. However, under some conditions, the power for the independent-samples t test can be 
greater when the population distributions for the independent groups are mixed normal rather than 
normal. The implications of these results are discussed. 
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Introduction 
 

The accepted belief in modern statistical practice 
is that the assumption of normality for 
parametric tests, such as the independent-
samples t test and the analysis-of-variance F test, 
seldom, if ever, holds in practice. In psychology 
and education, Micceri (1989) offered empirical 
support for this conclusion. He examined over 
400 large-sample data sets that included 
achievement and psychometric measures and 
found that they had a variety of shapes (e.g., 
skewed) and generally could not be described as 
normal. 
 For a number of years, violation of the 
normality assumption was not seen as a serious 
problem in that a number of studies showed that 
nonnormality, in and of itself, had a minimal 
effect on Type I error rate unless sample size is 
quite small (e.g., Boneau, 1960; Glass, 
Peckham, & Sanders, 1972; Ramsey, 1980; 
Rogan & Keselman, 1977).  
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 More recently, researchers have 
demonstrated that violation of the normality 
assumption may, however, have a deleterious 
effect on the power of parametric tests (e.g., 
MacDonald, 1999; Lix & Keselman, 1998; 
Wilcox, 1995). Based on these findings and 
others concerning violation of the homogeneity 
of variance assumption, Keselman, Wilcox, and 
Lix (2003) suggested that the application of 
standard parametric methods should be greatly 
restricted, and robust methods requiring minimal 
distributional assumptions should be used in 
their place. More specifically, they argued that 
robust methods, such as those using trimmed 
means and bootstrapping, are superior in terms 
of Type I and II error rates across a wide number 
of conditions encountered in practice.  
 The mixed normal distribution has been 
used extensively to illustrate the detrimental 
effect of nonnormality and specifically outliers 
on parametric tests and, most frequently, on the 
independent-samples t test (e.g., MacDonald, 
1999; Wilcox, 1997, 2001). Based on these 
presentations, the independent-samples t test 
shows a dramatic decrease in power when the 
population distributions for the two independent 
groups are mixed normal rather than normal. A 
small-scale simulation may be used to illustrate 
the decrease in power found in these studies. 
 Consider the power of the independent-
samples t test with 12 observations in each 
group under normal and mixed normal 
conditions. For the normal condition, data are 
generated from normal distributions with means 
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of 0 and 3 for first and second groups, 
respectively. The population variances are held 
constant across groups at 1. Based on 4000 
replications, the empirically determined power is 
1.00. 
 For the mixed normal condition, normal 
data are generated for each group from primary 
and secondary subpopulations with probabilities 
of .80 and .20, respectively. The means of the 
normal distributions for the primary and 
secondary subpopulations are identical to those 
under the normal condition: means of 0 for the 
first group and means of 3 for the second group. 
As in the normal condition, the variances for the 
primary distributions are set to 1 in both groups; 
however, the variances for the secondary 
distributions are set to 400 in both groups to 
simulate outliers. Based on 4000 replications, 
the empirical power is .21 under the mixed 
normal condition, much lower than the 1.00 
found under the normal condition. 
 The explanation for these results and 
ones like them is that the standard error of the 
difference in means is much larger for the mixed 
normal distribution than for the normal 
distribution (e.g., Wilcox, 2001). For this 
example, the within-group variances increased 
from 1.00 for the normal condition to 80.80 for 
the mixed normal condition [i.e., combined 
across the primary and secondary distributions: 
.80 (1) + .20 (400) = 80.80], as a function of 
introducing the secondary distribution with a 
much larger variance (i.e., 400). Because the 
within-group variances increased for the mixed 
normal condition, the standard error of the 
difference in means increased, and the power 
decreased. 
 In the current Monte Carlo study, 
unexpected results were found when 
investigating the comparative power of the 
independent-samples t test under normal and 
mixed normal conditions. Conditions were 
included that were similar to those in previous 
research: the variances for the normal 
distributions were set equal to the variances of 
the primary distributions of the mixed normal 
distributions. In these conditions, the combined 
variances for the mixed normal distributions 
were greater due to the larger variances of the 
secondary distributions. However, different from 
previous studies, control conditions were 

included in which normal distributions had 
variances set equal to the combined variances in 
the mixed normal conditions. Presumably, the 
power of the independent-samples t test would 
be equivalent for the normal and mixed normal 
conditions if the population variances for the 
two conditions were equal and, thus, the 
standard errors of the difference in means were 
equal. However, the results of this study 
demonstrate the counterintuitive result that the 
power may be greater under the mixed normal 
condition. 
 

Methodology 
 

Data were generated using the normal 
pseudorandom number generator available in the 
IML procedure in SAS 8.2. Fifty-four conditions 
were created by manipulating four factors: the 
form of the population distribution, variances of 
these distributions, sample size, and mean 
differences. 
 Form of distributions. Data were 
generated for two independent groups from 
populations with normal or mixed normal 
distributions. 
 Variance. When the distributions were 
normal, the variances were equal to 1 for both 
groups or 80.8 for both groups. When the 
distributions were mixed normal, the variances 
for both groups were 1 for the normal 
distribution with a probability of .80 and 400 for 
the normal distribution with a probability of .20; 
therefore, the mixed normal distributions had a 
combined variance of 80.8. 
 Sample size. The total sample size (N) 
consisted of 24, 48, or 96 cases, with an equal 
number of cases in each of the two independent 
groups. 
 Mean differences. To evaluate the Type 
I error rates of the test statistics, data were 
generated such that the differences in population 
means were equal to zero. To assess power, data 
were generated so that the population mean for 
one group was zero, and the population mean for 
the second group was one of five values: 0.5, 
1.0, 1.5, 3.0, or 4.5. For mixed normal 
distributions, the means of the primary and 
secondary distributions for any one group were 
always the same. 
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Data Analysis 
 Two-tailed independent-samples t tests 
were conducted using the ttest procedure within 
SAS 8.2 and evaluated at the .05 level. Four-
thousand replications were generated for each of 
the 54 conditions. Empirical alphas were 
computed for the conditions in which the means 
were equivalent. Empirical powers were 
calculated as proportions of rejections of a false 
null hypothesis in the correct direction for 
conditions in which the means differed between 
groups. 
 In addition, empirical Type III error 
rates–proportions of rejections of a false null 
hypothesis in the wrong direction–were 
computed. However, Type III error rates were 
excluded from the discussion because they were 
strongly inversely related to power and were 
uniformly very low; Type III error rates were 
less than .01 for 87% of the conditions and never 
exceeded .02. 
 

Results 
 

Empirical Alphas 
For the six conditions with normal distributions 
and equal population means, the empirical 
alphas were very close to .05, ranging from .046 
to .054. These results were expected in that all 
assumptions of the independent-samples t test 
were met under these conditions. On the other 
hand, the empirical alphas were somewhat 
conservative when the distributions were mixed 
normal, particularly for smaller sample sizes. 
The alphas were .025, .042, and .048 with Ns of 
24, 48, and 96, respectively. Given these results, 
any power advantage observed under mixed 
normal conditions cannot be attributed to 
inflated alphas. 
 
Empirical Powers 
 Figure 1 shows the power of the t test as 
a function of the difference in means and sample 
size for three population distributions: mixed 
normal with a variance of 80.8, normal with a 
variance of 80.8, and normal with a variance of 
1.0. As expected, the power was greater for 
conditions with a normal distribution and a 
variance of 1 than for conditions with a mixed 
normal distribution and a variance of 80.8. The 

differential power was substantial across most 
sample sizes and mean differences. 
 The more provocative findings were the 
power comparisons between the mixed normal 
and the normal distributions when both 
distributions had within-group variances of 80.8. 
For these comparisons, the power tended to be 
greater when distributions were mixed normal, 
particularly for the smaller sample sizes (N of 24 
or 48). This power differential became larger as 
the difference in means increased. In contrast, 
the power differential was minimal for the 
largest sample size (N = 96). 
 
Exploration of the Power Differential  
 The results indicate that the power for 
an independent-samples t test is greater when 
samples are drawn from mixed normal 
distributions rather than normal distributions, 
given both distributions have comparable 
variances. To better understand these results, it 
is useful to examine relevant population and 
sampling distributions. 
 In Figure 2, three sets of population 
distributions with means of 0 and 4.5 (and equal 
variances) are presented: mixed normal 
distributions with within-group variances of 
80.8; normal distributions with within-group 
variances of 1.0; and normal distributions with 
within-group variances of 80.8. Examination of 
these population distributions suggests that some 
sample distributions from the mixed normal may 
be more similar to those from the normal with 
variances of 1.0 than those from the normal with 
variances of 80.8, particularly for smaller 
samples. In these samples from mixed normal 
distributions, there should be a greater likelihood 
of rejecting the null hypothesis   than in samples   
drawn from the normal distribution with a 
variance of 80.8. However, sampling 
distributions are next examined to gain a deeper 
insight into the differential power of t test under 
normal and mixed normal conditions. 
 Table 1 shows the sampling 
distributions of the t statistic, the difference in 
means, and the pooled within-group variance for 
30,000 samples drawn from normal and mixed 
normal distributions with a difference in means 
equal to 4.5, within-group variances of 80.8, and 
Ns of 24 (with equal sample sizes). 
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 As shown in the first row, the t 
distribution for the mixed normal condition was 
quite skewed and thick tailed (i.e., skewness = 
2.37 and kurtosis = 11.23) compared to the t 
distribution for the normal condition (i.e., 
skewness = 0.19 and kurtosis = 0.37). Given 
|tcritical(22)| = 2.07, the empirical power of the t 
test was .34 for the mixed normal distribution, 
which was considerably larger than the 
empirical power of .21 for the normal condition. 
 The t statistic is a function of three 
quantities: the difference in means, the pooled 
variance, and sample size–and the latter was 
held constant. As shown  in  the  second  row  of  
 

 

 

 
Table 1, the sampling distributions for the 
difference  in  means  were  symmetric and quite 
similar, except that the sampling distribution for 
the   mixed    normal   was    somewhat   kurtotic 
(kurtosis = .45). As presented in the third row of 
Table 1, the sampling distributions for the 
pooled variance were very different for the two 
types of distributions. Although the means of the 
variances were nearly equal (normal: 80.76; 
mixed normal: 80.65), the variance of the pooled 
variance was 6.56 times larger for the mixed 
normal than for the normal condition. Further, 
the sampling distribution of the pooled variances 
was more skewed and had thicker tails for the 
mixed normal condition compared to the normal 
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Difference in Means 
 

Figure 1. Power of the t test as a function of the difference in means and sample size for three 
population distributions: mixed normal with  σ2 = 80.8, normal with  σ2 = 80.8, and normal with σ2 = 
1.0. From left to right, N = 24; N = 48; and N = 96 (with equal cases across group). 

 
                                                                                   Score 
 
Figure 2. Group population distributions for three conditions where variances are equal across groups 
and the difference in means is 4.5. From left to right, mixed normal distributions with σ2 = 80.8; 
normal distributions with σ2 = 1.0; and normal distributions withσ2 = 80.8. 
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condition (normal condition: skewness = 0.59 
and kurtosis = 0.52; mixed normal: skewness = 
1.38 and kurtosis = 2.90). Most importantly, a 
much larger proportion of  replications had small 
variances for the mixed normal distribution than 
for the normal distribution. For example, 
approximately 11% of the pooled variances were 
less than 16 for the mixed normal condition, 
while none were less than 16 for the normal 
condition. 
 A greater percentage of small pooled 
variances are obtained with the mixed normal in 
comparison with the normal distribution in that 
the secondary distribution (with the large 
population variance of 400) for the mixed 
normal may have no or minimal effect on the 
pooled variance in some samples. 
 For example, some samples may contain 
no scores from the secondary distribution, and 
others may contain one score from the secondary 
distribution, but not an extreme score. The 
smaller pooled variances produce larger t values 
and, thus, greater power for the mixed normal 
distribution in comparison with the normal 
distribution with the equal population variances. 
 

Conclusion 
 
The results do not contradict the primary 
conclusions of previous research on the mixed 
normal distribution and the independent-samples 
t test. To the extent that the population 
distributions have outliers, the power of the t test 
is diminished. In the context of the mixed 
normal distribution, the power of the 
independent-samples t test decreases 
dramatically as the probability of a secondary 
distribution with a large variance increases from 
.00 to .20. In the presence of extreme scores, 
robust methods such as trimmed means become 
advantageous. 
 The results, however, contradict the 
hypothesis that the power of the test for normal 
and mixed normal conditions would be equal if 
the within-group variances were held constant 
or, comparably, if the effect sizes (difference in 
means divided by the within-group standard 
deviation) were held constant. Under these 
conditions, the power, in fact, was greater for the 
mixed normal distribution in that some samples 
produce relatively small pooled variance as a 

function of having few, if any, outliers drawn 
from the secondary distributions. The superior 
power was achieved despite the conservative 
Type I error rate for the mixed normal. 
 These results support a number of 
conceptual points. First, care should be used in 
discussing the diminished power of the 
independent-samples t test when population 
distributions are mixed normal rather than 
normal. An accurate statement is that the 
independent-samples t test has diminished power 
with a mixed normal distribution in comparison 
with the normal distribution to the extent that the 
secondary normal distribution has a much larger 
variance than the primary distribution and the 
probability of the secondary distribution is 
relatively large. 
 Second, although the independent-
samples t test is the most powerful method for 
comparing two means if the assumptions, 
including normality, are met, variations of this 
statement may not be true. In particular, it is not 
true that the independent-samples t test has 
greater power if the population distributions are 
normal in comparison with other distributions, 
holding all other conditions constant. As 
demonstrated in this study, the independent-
samples t test can have greater power when the 
population distributions are mixed normal rather 
than normal, given the variances of these two 
types of distributions are held constant.  
 Third, these results may be used to 
speculate about trimming strategies for the 
independent-samples t test. Some samples may 
include no outliers, even though the population 
distributions have outliers. For these samples, 
robust methods relying on trimming lower the 
likelihood of rejecting the null hypothesis by 
reducing the effective sample size without 
decreasing the pooled variance. Adaptive 
trimming methods–ones that trim based on the 
outliers present in the sample data–should 
produce greater power in these circumstances 
than those that use a fixed proportion of 
trimming (e.g., trim 20% from both tails of 
sample distributions). Future Monte Carlo 
studies are required to investigate whether 
adaptive trimming methods under these 
conditions maintain proper control of Type I 
error while increasing power. 
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Table 1. Sampling distributions based on independent samples of equal size (N = 24) drawn from two 
population distributions that are both either normal or mixed normal with a difference in population 
means of 4.5 and a common population variance of 80.8 

Population distributions  
Sampling 
distribution 

Normal Mixed normalc 
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Difference in 
meansb 
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aThe vertical reference line indicates the critical value for rejecting the null hypothesis in the correct 
direction: t(22)=2.07. 
bA normal curve is superimposed on the plots of the difference in means. 
cThe abscissas for the distributions based on the mixed normal were not extended to include all 
possible values of statistics if the frequencies for intervals including these values were sufficiently 
small (< .04 % of samples) that they could not be observed on the graphs.  The most extreme values 
not shown were for the pooled variance, with six values being greater than 500. 
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