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Confidence intervals must be robust in having nominal and actual probability coverage in close
agreement. This article examined two ways of computing an effect size in a two-group problem: (a) the
classic approach which divides the mean difference by a single standard deviation and (b) a variant of a
method which replaces least squares values with robust trimmed means and a Winsorized variance.
Confidence intervals were determined with theoretical and bootstrap critical values. Only the method that
used robust estimators and a bootstrap critical value provided generally accurate probability coverage
under conditions of nonnormality and variance heterogeneity in balanced as well as unbalanced designs.
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Introduction

Estimating effect size (ES) and setting intervals
for such estimates has become a requirement in
many scientific journals as a result of the
American Psychological Association's (APA)
Task Force on Statistical Inference (Wilkinson
& APA Task Force on Statistical Inference,
1999). Indeed, according to Thompson (2003,
personal communication) at least 23 journals
require authors to follow the recommendation
put forth by the task force.

James Algina (algina@ufl.edu) is Professor of
Educational Psychology. His research interests
arein applied statistics and psychometrics. H. J.
Keselman (kesel @ms.umanitoba.ca) is Professor
of Psychology. His research interests are in
applied statisticss. Randall D. Penfield
(penfield@miami.edu) is Assistant Professor of
Education. His research interests are in
educational measurement and psychometrics.

Not surprisingly, there has been a
renewed interest in ES estimates and
accompanying confidence intervals (Cls). See,
for example, Algina and Keselman (2003), Bird
(2002), Cumming and Finch (2001), and Steiger
and Fouladi (1997).

Glass (1976) used a control group
standard deviation (in a two-group problem) to
standardize the difference between the group
means. However, other values have been used to
standardize the mean difference. For example,
Hedges (1981) used the sguare root of the
pooled variance, which is referred to as the
pooled standard deviation. If the variance
equality assumption is not met, then the standard
deviation for either one of the groups could be
used as the standardizer. In the context of
comparing an experimental and control
treatment, Glass, McGaw, and Smith (1981)
recommended using the standard deviation for
the control group, but pointed out that the
experimental group standard deviation could be
used. Glass et al. (1981) presented an example
demonstrating that the value of the ES estimate
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can vary depending on which group’s standard
deviation is used as the standardizer. As well,
they point out that both ES estimates would be
correct. As Glass e al. (1981) noted, “These
facts are not contradictory; they are two distinct
features of a finding which cannot be expressed
by one number” (p 107).

Thus, Olgnik and Algina (2000) noted
that when the equality of variance assumption is
violated, the researcher will have to select one
standard deviation that expresses the contrast
(i.e, the effect) on the scale the researcher
imagines is most important, or will have to
report the mean difference standardized by
several standard deviations and discuss the
implications of these ESs. Before turning to
methods that can be used when variances appear
to be heterogeneous, it is important to point out
that heterogeneity of variance can occur due to
some additional factor in the data that is not
modeled in the analysis. It is better to model
such factors than to uncritically use methods that
are appropriate for heterogeneous variances.

When the population variances are
assumed to be equal for the two levels of the
factor, the population ES (PES) is

5P00|ed — M, ;:ul

wherey; is the population mean for level j and

o isthe population standard deviation, which is
assumed to be equal for the two levels of the
factor. The PES can be estimated by

Y, -Y,

—27Nh
ooled
SPooled

A

where Y, (j=12) is a treatment level group
mean, n; (n+n,=N) is the sample size for

the jth group, and S, is the pooled standard
deviation.

According to Steiger and Fouladi
(1997), a ClI for the PES, which is exact under
the assumptions for the independent samples t
test, can be derived by using the noncentral t
distribution with N — 2 degrees of freedom.
First, a Cl for the noncentrality parameter

A= nn, (,uz_,ulj: nn, S
n+n{ o n+n, o

is obtained. Then, by multiplying the limits of
theinterval for 4 by theinverse of

nn,
n+n

a Cl for Opye IS Obtained. The lower limit of
the ClI for A is the noncentrality parameter for

the noncentral t distribution in which the
calculated t statistic

t= nn, {Yz _Ylj
N+, | Soge

is the 1-¢/2 quantile For example, if
t=2.131 and N —2=15, the lower limit of the
95% CI for Ais zero, because 2.131 is the .975
quantile of thet distribution with a noncentrality
parameter equal to zero. The upper limit of the
100(1-/2)% inteval for 1 is the
noncentrality parameter for the noncentral t
distribution in which the calculated t statistic is
the o7/2 quantile of the distribution (See Steiger
& Fouladi, 1997).

The PES based on the standard
deviation for the jth group is

S My, — 1

j
0

and can be estimated by

Y,-Y,
S

]

0, =

where S, is the square root of the usua

unbiased sample variance. With this ES, the
noncentral t-based interval for & is no longer
correct. However, under the assumptions that the
data in each group are normally distributed and
al data are distributed independently, a
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noncentral t-based approximate Cl for 6; can be

derived. Thus, the Cl does not assume equal
variances, but the interval is based on normal
distribution theory. This normality assumption is
likely to be problematic because Y, -V, and S,

are not distributed independently when the
distribution is skewed for the jth treatment. For
example, if the distribution is positively skewed
for the first treatment, the sampling correlation
between Y, —Y, and S will be negative.
Therefore, large values for Y, —Y, will
tend to be associated with small values for S

and o, will tend to be positively biased.
Moreover, the distribution theory used in
deriving the CI will no longer apply. As a result
the CI may not have the correct probability
coverage. In fact, in an investigation of Cls for
ESs in dependent samples designs, Algina,
Keselman, and Penfield (2005a) showed that
nonnormality has a negative impact on coverage
probability for a noncentral t based approximate
Cl for 5J. .

Purposes of this article
Therefore, one purpose of the research
was to investigate coverage probability for the

noncentral t-based CI for 6, when data are
sampled in an independent samples design from
a nonnormal distribution. Considering the
prediction that the noncentral t-based CI for ¢,
is likely to be negatively impacted by
nonnormality, a second purpose of the article
was to investigate alternatives to the interval.
One reasonable alternative is to use the
percentile bootstrap to construct a Cl ford, . A
second alternative is to replace the least squares
estimates in SJ. with robust estimates. This
approach was recommended by Algina et al.
(20059) in the context of Cls for ¢, in repeated
measures designs and by Algina, Keselman, and
Penfield (2005b) in the context of Cls for ¢ in
independent samples and is consistent with the

observation in Wilcox and Keselman (2003) that
the common population definition and sample

estimate of ES (i.e., Jpyyeq andSPooled or 6, and

o, for the two-group problem), based on least

sguares estimators, are not robust to distribution
shape. That is, skewed distributions and
distributions containing outliers can cause the
PES value and its estimate to be grossly
misleading  (Wilcox, 2003, Sec 8.11).

Accordingly, in place of 5., the following is
used

|

i

) -y
5, =.642| 12— u 1
-oa] 5| W

where Y; is the 20% trimmed mean for the jth
group (j=12) and §j is the 20% Winsorized

variance for group j. Twenty percent refers to
the percentage trimmed from each tail. The
constant .642 is the population value for the
Winsorized standard deviation for a standard
normal distribution for 20% trimming. (See
Wilcox, 2003, for a justification of 20%
trimming and computational definitions of the
trimmed mean and Winsorized variance). For a

normal distribution, both SRj and Sj convergeto

6, as the sample sizes increase. Probability

coverage for a noncentral t-based Cl and for a
percentile bootstrap CI for 5Ri was investigated

(defined later in equation (2)).

A Noncentral t-Based Cl for 9,

If the variances are unequal, in a two-
group independent samples design, the
population and sample ES is defined as

51_#2_#1

= p
and

>

N
[y

'S

’

respectively. (The standard deviation for the
second group could also be used. Glass et al.
(1981) pointed out that these ESs provide
different information.)
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It is well known that
ifU~N(u1),V~x*(k), ad U and V are
independently distributed, then

Y
V

k

(k)

where t(k,x) is the noncentral t distribution

with degrees of freedom k and noncentrality
parameter u . Using this result with

U= V2_ 1
o, 0
n n
and
v (-1
- 2
O-l
then

where

1 o}
O, |- +—25

2
n o

If the estimate of A is calculated as

;“t: 2 1 — 51

a\/1+ 3, J1+ =
n g \nns

the noncentral t distribution, with n, —1 degrees
of freedom, can be used to find a Cl on A.
Specifically, the upper limit of a 100(1- )%
interval for A isthe noncentrality parameter for
the noncentral t distribution with n, —1 degrees
of freedom in which A is the /2 quantile of

the distribution; the lower limit is the
noncentrality parameter for the noncentral t

distribution in which A is the (1-¢/2)
quantile. Then, multiplying the lower and upper

2
limit by l+i2, an approximate Cl for 9, is
\n nS

obtained. The interval is approximate because
the limits of the CI for A are multiplied by a
random variable.

To obtain an estimate of the robust ES,

let [.an] indicate that .2n; is rounded down to

the nearest integer, g, =[.2n, |, h =n -2g,,
and then let

and

(ny-1)oy
h -1

~2 _
0

where of\,j is the population Winsorized variance
for treatment j. To obtain a Cl for

5y = .642(—'”” _“HJ 2
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where 4, isthe population trimmed mean. Also
define

. Y. Y o

Jp=—2 0 R —— . (4
<1, S m—l{l Séj
Yh'hg n-in he

The upper limit of a 100(1-«)% interval for

A, is the noncentrality parameter for the
noncentral t distribution, with h —1 degrees of

freedom, in which A, isthe /2 quantile of the
distribution; the lower limit is the noncentrality
parameter for the noncentral t distribution in
which 1, is the (1-/2) quantile An
approximate Cl for &, is obtained by
multiplying the lower and upper limit by

&2
o2 J[m_lj[i %)
h-1 h,S
The interval is approximate for two reasons.
First, when trimmed means and Winsorized
variances are used, there is no guarantee that the
noncentral t distribution is the appropriate
distribution for calculating a Cl for A,. Second,
the interval is approximate because the limits of
the CI for A, are multiplied by a random
variable.
The investigations of these intervals
were carried out in three studies.

Study 1
Methodol ogy

Probability coverage of Cls for 6, and J;
based on the noncentral t distribution were
investigated. It is important to recognize that o,
andd, are different parameters. When applied
to normal distributions, the parameters will be

equal, but otherwise will most likely be unequal.
Thus, there is no attempt to compare the interval

estimates of the 6, and Jy, .

Probability coverage was investigated
for all combinations of the following three
factors: n,=n,=20to 100 in steps of 20, PESs

(6, and 8, ) ranging from 0 to 1.6 in steps of .4,

and population distribution (four cases from the
family of g and h distributions). The nominal
confidence level for al intervals was .95 and
each condition was replicated 5000 times.

The data were generated from the g and
h distribution (Hoaglin, 1985). Specifically, four
g and h distributions were chosen for
investigation: (&) g=h=0, a standard normal
distribution; (b) g=.76 and h=-.098, a
distribution with skew and kurtosis equal to that
for an exponential distribution (=2, 7, =6);
(¢) g=0 and h=.225, along-tailed symmetric
distribution (7, =0and 3, =154.84); and (d)
g=.225 and h=.225, a long-tailed skewed
distribution (3 =4.90 and y, =4673.80). To
generate data from a g and h distribution,
standard unit normal variables Z; were

converted to g and h distributed random
variables via

LIRS

iji g 2

when both g and h were non-zero. When g was

Zero
hz?
Yij =Zij exp T .

Z; scores were generated by using RANNOR in

SAS (SAS, 1999). For simulees in treatment 2,
the Y., scores were transformed to

VPVR(Yiz_ﬂz)"'ﬂz"'o-lXél (5)

where PVR is the ratio of the population
variance for the transformed Y, scores to the
variance of the Y,, scores and was set equal to 4

for al conditions in Study 1. The scores
generated by using equation (5) were used in the
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Cl ford,. Additional levels of PVR were

planned for investigation. Because the results for
PVR=4 indicated poor probability coverage in
some conditions and the focus should be to find
intervals that work well in a wide variety of
conditions, the intervals being estimated were
dismissed.

To facilitate reporting of results for the
Cl for & , the Y,, scores weretransformed to

— o,
PVR(Yiz _;ut2)+:ut2 +??2d (6)

This method of generating the scores in
treatment 2 resultsiné, = J, . The Cl for &, was

also investigated using equation (5) to generate
Y, scores, &, #0, . The genera pattern of

results was the same in the two ses of
conditions.

Results

Estimated coverage probability for the two Cls
are reported in Table 1 for the four g and h
distributions, all sample size values, and all
values of the PES (The Cl for & isbasedon Y,

generated by using equation (6)). The results
show that both Cls had estimated probability
coverage near the nominal confidence level
when the data were normally

distributed (g =h=0), but both could have poor

probability coverage when the data were
nonnormal. As the PES increased, both Cls had
increasingly worse coverage  probability.
Coverage probability appeared to be largely
unaffected by sample size.

Study 2

Both noncentral t-based Cls had good
coverage probability when the data were normal
despite the fact that both Cis are only
approximately correct. However, both could
have poor coverage probability when the data
were nonnormal. Therefore, the use of a
percentile bootstrap Cl to construct an interval
on o, was investigated.

Methodol ogy

Probability coverage of a percentile bootstrap Cl
for al combinations of the following
n=n,=20 to 100 in steps of 20, population
distribution (four cases from the family of g and
h distributions), and 6, ranging from0to 1.6 in
steps of .4 was investigated. In all conditions,
PVR=4. The distributions from Study 1 were
investigated and the data was generated by using
the procedure described for Study 1. Because a
Cl for o,was being investigated, the data for
trestment 2 were generated by using Equation
(5). As in Study 1, 5000 replications were
conducted for each condition combination. 600
bootstrap replications were used. In all
conditions, the nominal confidence level was
.95.

Results

Estimated coverage probability for the bootstrap
Cl for ¢, is reported in Table 2 for all sample
size values and al levels of PES. The results
show that the percentile Cl for &, can have poor
coverage probability and therefore should not be
used. These intervals were particularly poor
when the sample size was small and 6, was

large.

Study 3

The results indicate that each of the
noncentral t-based and percentile bootstrap Cls
for 6, and the noncentral t-based Cl for &, can

have poor coverage probability with nonnormal
data. Therefore, coverage probability for a
percentile bootstrap interval  for  J was

investigated.
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Table 1. Estimated Coverage Probabilities for Noncentral t Distribution-Based Cls for 6, and d,

g=.000, g=.000, g=.760, g=.225,
h=.000 h=.225 h=-.098 h=.225
2 & 2 & 2 & 2 S&
0.00 20 .954 .955 .954 .954 .943 .949 .956 .962
40 .959 .955 .955 .954 .948 951 .957 .957
60 .954 .957 .956 .955 .947 .950 .954 .958
80 .953 .954 .952 .948 .949 .953 951 .953
100 .954 951 .955 .952 .948 .948 .952 .949
0.40 20 .948 .950 .955 .955 .924 .932 .940 .954
40 .955 .952 .949 951 .920 .925 .932 .952
60 .957 .953 .943 951 .928 .928 931 943
80 .945 .943 .937 .952 .930 .932 921 .948
100 .948 .946 .937 .953 .920 .926 .918 944
0.80 20 .949 .949 .936 .948 .900 913 .906 .937
40 .948 947 927 .948 .894 .907 .891 927
60 .952 951 919 .949 .895 911 .874 .933
80 .949 .943 915 951 .895 915 .872 931
100 .953 .948 913 .948 .893 .902 .859 .934
1.20 20 .951 .943 914 .940 871 .890 .876 .925
40 .953 .943 .893 941 .867 .892 .843 .925
60 .953 .948 .885 .940 .858 .894 .825 .922
80 .950 .939 877 .938 .859 .887 .809 .920
100 .946 .940 871 .933 .858 .886 799 914
1.60 20 .956 .949 .883 931 .836 .866 .837 915
40 .948 941 .862 .920 .836 .872 .802 911
60 .953 .945 .843 .932 .831 .875 773 .909
80 .948 .939 .836 .933 .823 .860 .764 915
100 947 941 .834 .928 .830 .865 .749 917

Note PVR=4.
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Table 2. Estimated Coverage Probabilities for the Bootstrap Percentile Cl for 6,

J, n=n, g =.000, g=.000, g=.760, g=.225,
h=.000 h=.225 h=-.098 h=.225
0.0 20 .936 .929 .920 .921
40 .942 .937 .939 .935
60 .939 .935 .935 .938
80 .948 .946 .935 .940
100 .945 .939 .940 .941
0.4 20 934 922 .926 915
40 .939 .929 .930 .928
60 .942 .935 .937 .932
80 .950 .941 .940 .933
100 .948 .936 .947 931
0.8 20 .931 .904 915 .900
40 934 921 .928 904
60 .943 .921 .933 .916
80 .945 .933 .940 .907
100 .944 .929 .938 .916
1.2 20 .929 .882 .905 .862
40 .937 901 922 .874
60 943 .905 .925 .884
80 .938 .918 .930 .880
100 .949 913 .934 .892
1.6 20 .926 .861 .883 .824
40 .940 .881 911 .838
60 .945 .889 .908 .850
80 943 .895 .927 .850
100 .942 .893 .927 .848
Note: PVR=4
Methodol ogy investigated. Because a Cl for & was being

Probability coverage was investigated for all
combinations of: sample size n; = 20, 40, and 60
in combination with n,=n and n, =n, +20;
population distribution (four cases from the
family of g and h distributions), various PESs,
6y =-00, .40, .80, 120 and 1.60, and

PVR=.25, 5 1, 4, and 8. As in Study 2,
g=h=0, g=.76 and h=-.098, g=0 and
h=.225, and ¢g=.225 and h=.225 were

investigated, the data for treatment 2 were
generated by using Equation (6). In al
conditions the nominal confidence level was .95.
As in the previous study, 5,000 replications and
600 bootstrap replications were used.

Results
Table 3 contains estimated coverage

probabilities for the percentile bootstrap ClI for
al conditions with PVR =8. Estimated coverage
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Table 3. Estimated Coverage Probabilities for the Percentile Bootstrap Cl for &

g=.000, g=.000, g=.760, g=.225,

n,n Or h=.000 h=.225 h=-.098 h=.225
20, 20 .00 943 945 945 .950
40 .950 956 954 951
.80 948 955 952 954
1.20 961 964 957 .966
1.60 .960 .966 962 .960
20, 40 .00 .949 957 .949 952
40 951 954 .956 .958
.80 953 959 951 961
1.20 967 964 .958 .965
1.60 .959 .969 957 963
60, 60 .00 .949 947 947 948
40 953 944 943 952
.80 .949 .950 948 957
1.20 952 951 952 949
1.60 947 .959 954 .958
60 80 .00 945 952 944 .950
40 952 .949 946 951
.80 .949 .959 951 .959
1.20 955 954 953 .956
1.60 955 961 954 953
100,100 .00 .950 948 949 947
40 947 948 953 951
.80 .950 946 .949 957
1.20 951 953 951 952
1.60 953 .956 953 .956
100,120 .00 948 955 947 948
40 939 951 948 948
.80 955 .949 .950 948
1.20 951 947 955 955
1.60 956 .960 .959 959

Note. PVR=8.
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probabilities for other values of PVR were not
noticeably different from those in Table 3. Over
the 120 conditions reported in Table 3, empirical
coverage ranged from .939 to .969, with an
average coverage value of .953. The results
suggest coverage probability increased as Jy

increased, but was largely unaffected by the
sampled distribution and whether the sample
Sizes were equal.

Conclusion

Estimating the magnitude of a treatment effect
has become a required mode of analysis for
many scientific journals in the social and
behavioral sciences as a result of
recommendations made by the APA Task Force
regarding statistical inference. Not surprisingly,
issues related to estimating the magnitude of an
effect have become of paramount interest to
applied researchers. One issue is what standard
deviation to use in the denominator of the ES
statistic. That is, since Glass's (1976), which
used the control group’s standard deviation to
standardize the mean difference, other
approaches have been recommended. Hedges
(1981) recommended using the pooled standard
deviation when the variances are homogeneous.
Glass e a. (1981) recognized that if
homogeneity of variances is not a reasonable
assumption, the standard deviation for ether
group could be used as the denominator. This
applies regardiess of whether one of the
treatment groups is a control group.

A second issue is how to use the ES
measures to construct a Cl. It is well known that
when the pooled standard deviation is used in
the denominator, Cls can be constructed by
using the noncentral t distribution and will be
exact when the scores are independently drawn
from normal distributions and with equal
variances. As shown in this article, an alternative
interval based on the noncentral t distribution
can be used when the standard deviation for one
of the groups is used in the denominator, as
would be doneif Glass's (1976) ES were used or
if the recommendation of Glass e al. (1981)
were used when the variances are not
homogeneous. However, the theory underlying
this interval assumes data that are normal in

form, which implies that the numerator and
denominator of the ES are independently
distributed. Independence does not hold when
the data for the group that contributes the
standard deviation are skewed. Accordingly, the
interval could not be recommended without first
examining its operating characteristics under
nonnormality

As Wilcox and Kesdman (2003)
indicated, ES measures can be inaccurate when
the data are drawn from nonnormal distributions
because of the effects of nonnormality on means
and standard deviations. Therefore, Cls

calculated from a robust effect size (4 in

which trimmed means replace means and the
square root of the Winsorized variance replaces
the standard deviation were also investigated.
An additional issue considered was whether one
could obtain accurate probability coverage for
Cls for ES when coverage was based on
theoretically obtained critical values (i.e., based
on the noncentral t distribution) or obtained
through a bootstrapping method. This was an
important  issue  because others  have
demonstrated the benefits of using bootstrapping
methodology (See, e.g., Keselman ¢ al., 2002).
It this article, it was found that: (1) the
classical approach, which divides the mean
difference by a standard deviation from one

group (i.e., Sl)in combination with the interval

based on the noncentral t distribution had poor
probability coverage when data were skewed,
(2) the robust approach, which divides the
difference of the trimmed means by the square
root of the Winsorized variance from one group

(i e, o, ) in combination with the interval based

on the noncentral t distribution also had poor
probability coverage when data were nonnormal,

(3) bootstrap Clsfor 8, can perform poorly, and
(4) the percentile bootstrap interval for 6, was

very little affected by nonnormality, providing a
very good interval for o .

An emphasis must be placed on the
beief that it is important to estimate a robust
parameter, that is, the robust PES, rather than the
usual parameter of ES, when data are
nonnormal. Researchers should be interested in
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estimates of a parameter that is robust to
conditions of skewness and outlying values.
Inferences pertaining to robust parameters may
be more valid than inferences pertaining to the
least squares derived parameters when dealing
with populations that are nonnorma (eg.,
Hample, Ronchetti, Rousseeuw & Stahel, 1986;
Huber, 1981; Staudte & Sheather, 1990). Hogg
(1974, p. 919) maintained that most distributions
are skewed in practice, and Tukey (1960) argued
that most distributions will have heavy tails.
Therefore, according to this perspective, the
justification for (testing hypotheses and) setting
robust intervals for robust parameters is that
(testing the usual hypotheses and) setting
intervals around the usual parameters is a
mistake or at least shortsighted when other
robust methods are available, methods that are
not generally affected by a reatively few data
points in a distribution or some minor
characteristic of the distribution, points and
characteristics that need not affect the quantity
researchers areinterested in.

As wadll, it was found that the natural
sample estimate of the robust parameter, one
based on trimmed means and a Winsorized
variance, provides probability coverage that is
fairly close to the target value of .95, when
upper and lower critical values for the interval
were obtained through a percentile bootstrap
method. Despite the preference for a robust
parameter, others may feed that, given a
hypothesis about the least square means (which
is not recommended with nonnormal data), Jis
the appropriate effect size measure. These
researchers must face the fact that neither the
noncentral t distribution-based CI nor the
percentile bootstrap Cl will necessarily have
coverage probability near the nominal value.

References

Algina, J. & Kesedman, H. J. (2003).
Approximate confidence intervals for effect
Sizes. Educational and  Psychological
Measurement, 63, 537-553.

Algina, J., Kesdman, H. J,, & Penfield,
R. D. (2005a). Effect sizes and their intervals:
The two-level repeated measures case
Educational and Psychological Measurement,
65, 241-258.

Algina, J., Kesdman, H. J., & Penfield,
R. D. (2005b). An alternative to Cohen's
standardized mean difference effect size: a
robust parameter and confidence interval in the
two independent groups case. Psychological
Methods, 10, 317-328.

Bird, K. D. (2002). Confidence intervals
for effect sizes in analysis of variance
Educational and Psychological Measurement,
62, 197-226.

Cumming G. & Finch S. (2001). A
primer on the understanding, use and
calculation of confidence intervals that are based
on centra and noncentral distributions.
Educational and Psychological Measurement,
61, 532-574

Efron, B. & Tibshirani, R. J. (1993). An
introduction to the bootstrap. New York:
Chapman & Hall.

Glass, G. (1976). Primary, secondary,
and meta-analysis of research. Educational
Researcher, 5, 3-8.

Glass, G., McGaw, B., & Smith, M. L.
(1981). Meta-analysis in social research.
Beverly Hills, CA: Sage.

Hedges, L. V. (1981). Distribution
theory for Glass's estimator of effect size and
redated estimators. Journal of Educational
Satistics, 6, 107-128.

Hoaglin, D. C. (1983). Summarizing
shape numerically: The g-and h distributions. In
D. C. Hoaglin, F. Mosteller, & Tukey, J. W.
(Eds.), Data analysis for tables, trends, and
shapes: Robust and exploratory techniques.
New York: Wiley.

Hogg, R. V. (1974). Adaptive robust
procedures. A partid review and some
suggestions for future applications and theory.
Journal of the American Satistical Association,
69, 909-927.

Huber, P. J (1981). Robust statistics.
New York: Wiley.

Keselman, H. J., Wilcox, R., R,
Othman, A. R., & Fradette, K. (2002).
Trimming, transforming  statistics, and
bootstrapping: Circumventing the biasing effects
of heteroscedasticity and non normality. Journal
of Modern Applied Satistical Methods, 1(2),
288-309.



ALGINA, KESELMAN, & PENFIELD 13

Olgnik, S, & Algina, J. (2000).
Measures of effect size for comparative studies:
Applications, interpretations, and limitations.
Contemporary Educational Psychology, 25,
241-286.

SAS Indtitute Inc. (1999). SASIML
user’s guide, version 8. Cary, NC: Author.

Staudte, R. G., & Sheather, S. J. (1990).
Robust estimation and testing. New York:
Wiley.

Steiger, J. H., & Fouladi, R. T. (1997).
Noncentrality interval estimation and the
evaluation of statistical models. In L. Harlow, S.
Mulaik, & J. H. Steiger (eds.), What if there
were no significance tests? Hillsdale, NJ:
Erlbaum.

Tukey, J. W. (1960). A survey of
sampling from contaminated normal
distributions. In I. Olkin e al. (Eds)
Contributions to probability and statigtics.
Stanford, CA: Stanford University Press.

Wilcox, R. R. (2003). Applying
contemporary statistical techniques. San Diego:
Academic Press.

Wilcox, R. R, & Kesdman, H. J.
(2003). Modern robust data analysis methods:
Measures of central tendency. Psychological
Methods, 8, 254-274.

Wilkinson, L. & the Task force on
Statistical Inference (1999). Statistical methods
in psychology journals. American Psychologist,
54, 594-604.



	Journal of Modern Applied Statistical Methods
	5-1-2006

	Confidence Intervals For An Effect Size When Variances Are Not Equal
	James Algina
	H. J. Keselman
	Randall D. Penfield
	Recommended Citation


	Serlincombo et al .fm

