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ANCOVA: A Robust Omnibus Test Based On Selected Design Points 
 

 

Rand R. Wilcox 
Dept of Psychology 

University of Southern California 
 
 
Many robust analogs of the classic analysis of covariance method have been proposed. One approach, 
when comparing two independent groups, uses selected design points and then compares the groups at 
each design point using some robust method for comparing measures of location. So, if K design points 
are of interest, K tests are performed. There are rather obvious ways of performing, instead, an omnibus 
test that for all K points, no differences between the groups exist. One of the main results here is that 
several variations of these methods can perform very poorly in simulations. An alternative approach, 
based in part on the usual sample median, is suggested and found to perform reasonably well in simulations. It 
is noted that when using other robust measures of location, the method can be unsatisfactory. 
 
Key words: ANCOVA, bootstrap methods, measures of depth, smoothers 
 
 
 

Introduction 
 
The analysis of covariance (ANCOVA) problem 
is to compare two independent groups based on 
some outcome of interest, Y ,  in a manner that 
takes into account some covariate, X.  A classic 
and well-known approach assumes that the error 
term of the usual linear regression model is 
homoscedastic and has a normal distribution, the 
regression lines associated with each group are 
parallel, and the variances associated with the 
error terms for each group are assumed to be 
identical. More formally, if for the jth group ( j  
= 1, 2 ), then there are n j randomly sampled 
pairs of observations, say (X ij, Y ij), i  = 1, . . . n j,  
the classic assumption is that for the jth group,                               
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                       ij ij oj ijY Xβ β ε= + +                  (1) 

 

where ijε  has variance 2 2 2
1 2,jσ σ σ= , and ijε  is 

independent of ijX . So by implication, for each 

group, the conditional variance of Y ,  given X,  
does not vary with X,  and each group has the 
same slope. 

It is known that violating one or more of 
these assumptions can result in serious practical 
problems. Concerns about the robustness of the 
method date back to at least Atiqullah (1964) 
who concluded that non-normality is a practical 
problem. Another obvious concern is the 
assumption that the regression lines are parallel. 
There are several robust methods for testing this 
assumption (e.g., Wilcox, 2003, 2005), but it 
remains unclear when such tests have enough 
power to detect situations where having non-
parallel lines is a practical concern. Yet another 
concern about equation (1) is the assumption 
that the association between Y and X is linear. 
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Of course, in some situations this is a reasonable 
approximation, but this is not always the case. 
Many alternative methods have been derived 
that eliminate the assumption that the 
association is linear (e.g. Bowman & Young, 
1996; Delgado, 1993; Dette & Neumeyer, 2001; 
Hall, Huber, & Speckman, 1997; Kulasekera, 
1995; Kulasekera & Wang, 1997; Munk & 
Dette, 1998; Neumeyer & Dette, 2003; Young & 
Bowman, 1995; Wilcox, 2003). However, some 
of these methods require homoscedasticity and 
for most there are few if any simulation results 
that support their use with small to moderate 
sample sizes. 

A simple and very flexible approach to 
ANCOVA is described in Wilcox (2003, section 
14.8). It allows the regression lines to be non-
linear, it allows heteroscedasticity, it performs 
well in simulations, and in the event standard 
assumptions are met, all indications are that it has 
nearly the same amount of power as the classic 
ANCOVA method (e.g., Wilcox, 2005, p. 526). 
Roughly, the method is based on multiple 
comparisons. Examination of the method 
suggests a simple and rather obvious approach to 
performing an omnibus test instead. But results 
reported here make it clear that several 
variations of this approach perform very poorly 
in simulations. (Details are given later in the 
article). The main result in this article is that an 
alternative approach, based in part on the usual 
sample median and the depth of the null vector 
in a bootstrap cloud, nearly eliminates this 
problem. The main exception is a situation 
where, simultaneously, the conditional 
distribution of Y is discrete, skewed, and the 
possible values for Y are relatively small in 
number.  
 
Considered and Discarded Methods 
 It helps to describe the first general 
method that was considered and discarded and 
then suggest a related approach that gives more 
satisfactory results. It is assumed that for the jth 
group, Y and X are related through some 
unknown function, m j.  More formally, it is 
assumed that 

 
( )ij j ij ijY m X ε= +  

 

where ijε  has a median of zero, variance 2
ijσ , 

and is independent of ijX . Let ( )jm x  be the 

population median of Y for the jth group, given 
that the covariate of the jth group is jX x= .  

(Comments on using other location estimators 
are given later in the article). Let 1,..., Kx x  be 

K values of X that are of interest. The method 
in Wilcox (2003, section 14.8) includes as a 
special case the problem of testing 
 

0 1 2: ( ) ( ), 1,..., ,k kH m x m x k K= =  

 
for each k.  That is, K tests are to be performed. 
Let 1 2( ) ( ) ( )k k kx m x m xδ = − .  The goal here is 

to test  
                      
                   0 1: ( )  = ( ) 0KH x xδ δ= ⋅ ⋅ ⋅ =           

(2) 
 
Here, it is assumed that K = 5 and that the 
choices for 1 5,...,x x  are made empirically in a 

manner about to be described. Of course, it is 
not being suggested that other choices for the 
design points or K are inappropriate. For 
example, a researcher might have interest in K 
specific design points, rather than points 
determined as is done here. The idea is to 
provide a data-driven method for checking 
whether the regression lines differ, paying 
particular attention to design points where valid 
inferences about the medians of the Y values can 
be made. 

The choice of the five design points stems in 
part from what is called a running interval 
smoother. To describe the details, attention is 
temporarily focused on a single group of 
subjects. The basic strategy is to find all iX  

values close to x and estimate m(x) with the 
median of the corresponding Y values. The 
method begins by computing the median 
absolute deviation statistic: 

 

1{| |,..., | |},nMAD median X M X M= − −  

 
where M is the usual sample median of the X 
values. Let MADN = MAD/.6745. The only 
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reason for rescaling MAD is that under 
normality, MADN estimates σ . This rescaling 
helps describe the running interval smoother in 
terms of familiar concepts, but ultimately it is 
not important. Then iX  is said to be close to x  

if 
 

| | ,iX x f MADN− ≤ ×  

 
where f  is some constant, called the span. 
Here, following Wilcox (2003), f  = 1 is used. 

Let ( ) /j j km m x K= Σ .  A seemingly natural 

alternative to (2) is to test 
 

                             1 20 :H m m=         (3) 

 
That is, view the problem in the context of a 2 
by K ANOVA and test the hypothesis that 
there is no main effect for the first factor. Many 
robust methods for testing this hypothesis have 
been proposed (Wilcox, 2005), which include 
various bootstrap techniques. But when 
checking the ability of this approach to control 
the probability of a Type I error for the problem 
at hand, poor results were obtained in situations 
described later in the article. Included were non-
bootstrap methods for 20% trimmed means and 
medians (Wilcox, 2003, sections 10.3 & 10.5) 
plus bootstrap variations of these methods 
described in Wilcox (2005). In particular, it 
was found that in some situations, when testing 
at the .05 level, the actual Type I error 
probability was estimated to exceed .2. 
 
Description of the Recommended Method 
 The one method that performed well in 
simulations is based on testing (2) rather than 
(3). The general strategy is to generate 
bootstrap samples, yielding bootstrap estimates 
of ,kδ  and then determine how deeply the null 

vector is nested within this bootstrap cloud. Two 
approaches to measuring the depth of the null 
vector are considered. General theoretical results 
related to this approach are reported in Liu and 
Singh (1997). 
 To elaborate, momentarily assume that 
the x k values have been chosen and let 

ijkY ( 1..., ; 1,..., )jki n k K= =  be the ijY  values 

such that 
                     | | .ij kX x f MADN− ≤ ×             (4) 

 
For fixed k  and j ,  generate a bootstrap sample 
by randomly sampling with replacement jkn  

values from ijkY  yielding * , ( 1,..., )ijk jkY i n= . Let 
*
jkM  be the usual sample median based on the 

*
ijkY  values and let * * *

1 2k k kM Mδ = − . Repeat this 

process B times yielding * , 1,...,bk b Bδ = . So, 

there are B  vectors of bootstrap *
bkδ  values, 

each vector having length K .  Then roughly, the 
null hypothesis is rejected depending on how 
deeply the null vector (0,...,0)  is nested within 
this bootstrap cloud. 

The problem of choosing the kx  values 

is approached as follows. Let ( )jN x  be the 

number of points in the jth group that are 
considered close to x  based on (4). For 
notational convenience, assume that for fixed j ,  
the ijX  values are in ascending order. That is, 

1 j njJX X≤ ⋅⋅ ⋅ ≤ . The regression lines are said 

to be comparable at x  if simultaneously 
( ) 12jN x ≥  for both j  = 1 and 2. The value 12 

is chosen simply to reflect a sample of points 
large enough so as to expect reasonable control 
over the probability of a Type I error, but 
obviously some other (larger) value could be 
used if desired.  

Suppose 1x  is taken to be the smallest 

1iX  value for which the regression lines are 

comparable. That is, search the first group for 
the smallest 1iX  such that 1 1( ) 12iN X ≥ . If 

2 ( ) 12ilN X ≥ , the two regression lines are 

considered comparable at 1iX  and 1 1ix X=  is 

set. If 2 ( ) 12ilN x < , consider the next largest 

1iX  value and continue until it is 

simultaneously true that 1 1( ) 12iN X ≥  and 

2( 1) 12N Xi ≥ . 5K =  is used, but again some 

other value is certainly reasonable. Let 5x  be 
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the largest 1iX  value in the first group for 

which the regression lines are comparable. That 
is, 5x  is the largest 1iX  value such that 

1 5( ) 12N x ≥  and 2 5( ) 12N x ≥ . Let 5i  be the 

corresponding value of i .  The other three 
design points are chosen as follows. Let 

3 1 5( ) / 2i i i= + , 2 1 3 / 2i i i= + , and 

4 3 5( ) / 2i i i= + . Round 2i , 3i , and 4i  down to 

the nearest integer and set 
22 1ix X= , 

33 1ix X= , 

and 
44 1ix X= . 

There are various ways of measuring 
how deeply a point is nested within a 
multivariate cloud of data (e.g., Liu & Singh, 
1997, Wilcox, 2005). The simplest is based on 
Mahalanobis distances and is the first of the 
two methods considered here. However, the 
most obvious estimate of the covariance matrix 
associated with the bootstrap vectors is not 
used. Rather, it is estimated with 

 

* *

1

1
( )( )

1

B

km bk k bm m
b

s
B

δ δ δ δ
=

= − −
− ∑

. 

 

That is, for fixed k,  rather than use * /bk BδΣ  as 

the estimate of the center of the bootstrap 
cloud, use kδ  instead. Put another way, there is 

no need to estimate the center of the bootstrap 
cloud, it is already known and given by the vector 

1( ,..., )Kδ δ . Indeed, if it is estimated with 
* /bk BδΣ , control over the probability of a 

Type I error deteriorates, consistent with a 
variety of other methods surveyed by Wilcox 
(2005). Let ( )kmS s=  be the corresponding 

covariance matrix, in which case the distance of 
the bth bootstrap vector from the center is given 
by  
 

* * 1 * *
1 1 1 1( ,..., ) ( ,..., )b b bK K b bK Kd Sδ δ δ δ δ δ δ δ−= − − − − ′ . 

 
Let  
 

1
1 1( 0,..., 0) ( 0,..., 0)K KD Sδ δ δ δ−= − − − − ′ , 

 

which is the distance of the null vector from the 
center of the bootstrap cloud. The (generalized) 
p-value is 
 

�

* 1
( )bp I D d

B
= Σ ≤ , 

 

where     ( ) 1bI D d≤ =     if    bD d≤     and 

( ) 0bI D d≤ =  if bD d> . This will be 

called method M. 
 The second method considered here for 
measuring the depth of a point in the bootstrap 
cloud is a projection-type method given in 
Wilcox (2005, section 6.2.5); it represents a 
slight variation of a method discussed by 
Donoho and Gasko (1992) and has been found 
to perform well in connection with other methods 
described in Wilcox (2005). The computational 
details are relegated to an appendix. This will be 
called method P. 
 
A Simulation Study 
 Simulations were used to assess the 
small-sample properties of the method just 
described. Observations were generated 
according to the models 
 

Y ε=  
 

Y X ε= +  
 
and 
 

2Y X ε= + , 
 

where X  has a standard normal distribution and 
ε  has one of four g-and-h distributions 
(Hoaglin, 1985), which contain the standard 
normal distribution as a special case. If Z  has a 
standard normal distribution, then 
 

2

2

exp( ) 1
exp( / 2),

exp( / 2),

gZ
hZ

gW

Z hZ

−⎧
⎪= ⎨
⎪
⎩

    

if

if

0

0

g

g

>

=
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has a g-and-h distribution, where g  and h  are 
parameters that determine the first four mo-
ments. The four distributions used here were the 
standard normal ( g  = h  = 0.0), a symmetric 
heavy-tailed distribution ( h  = 0.2, g  = 0.0), an 
asymmetric distribution with relatively light 
tails ( h  = 0.0, g  = 0.2), and a symmetric 
distribution with heavy tails ( g  = h  = 0.2). In 
Table 1, the theoretical skewness and kurtosis 
for each distribution is considered. Additional 
properties of the g-and-h distribution are 
summarized by Hoaglin (1985). 

A general concern about methods 
aimed at comparing population medians, based 
on the usual sample median, is that for discrete 
data where tied values can occur, control over 
the probability of a Type I error can be poor. 
This is the case when using the method 
proposed by Bonett and Price (2002) as well as 
a related method in Wilcox (2003, section 
8.7.1). In a paper submitted for publication, the 
author has found that certain bootstrap methods 
correct this problem while others do not. The 
main point here is that considering discrete 
distributions where tied values are likely is 
crucial for the problem at hand. Accordingly, 
additional simulations were run by generating 
ε  from a beta-binomial distribution: 

 
( , )

( )
( 1) ( 1, 1) ( , )

B m x r x s
P X x

m B m x x B r s

− + += =
+ − + +

, 

 
 
 
 

where B is the complete beta function. Here m = 
10, 12 and 20 were considered. With m = 12, for 
example, the possible values for X are the 
integers 0,1,...,12 . The values for r and s were 
taken to be r = s = 4, as well as r = 1 and r = 9. 
For r = s = 4 the distribution is bell-shaped and 
symmetric with mean m/2. In Figure 1, the 
probability function when r = 1, s = 9 and m = 
12 is exhibited. 

In Table 2, the estimated probability of a 
Type I error when testing at the .05 level and 

1 2 40n n= =  is exhibited. The estimates are 

based on 1,000 replications with B = 600. (From 
Robey & Barcikowski, (1992), 1,000 
replications is sufficient from a power point of 
view. More specifically, if the hypothesis that 
the actual Type I error rate is .05 is tested, and if 
power is to be .9 when testing at the .05 level 
and the true α  value differs from .05 by .025, 
then 976 replications are required.) The results 
for Y X ε= +  did not reveal any new insights, 
and so for brevity they are not reported. To get 
some idea of the effect of homoscedasticity, 
additional simulations were run where values in 
the first group were multiplied by 1 4σ = . The 

g-and-h distribution has a median of zero, so the 
null hypothesis remains true. For the beta-
binomial distributions, the data were shifted to 
have a median of zero before multiplying by 

1 4σ = . The top portion of Table 2 are the 

results when there is homoscedasticity 1( 1)σ = . 

 
 

Table 1: Some properties of the g-and-h distribution. 

 
g h 

1k  2k  

0.0 0.0 0.00 3.0 

0.0 0.2 0.00 21.46 

0.2 0.0 1.75 8.9 

0.2 0.2 2.81 155.99 
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Figure 1: The beta-binomial probability function with m = 12 , r  = 1 and s  = 9 

 
 
 

Table 2: Estimated Type I error probabilities 
 

 
 



ANCOVA 
 
20 

First, consider the homoscedastic case 
with continuous g-and-h distributions. Both 
methods P and M perform reasonably well. To 
avoid an estimated Type I error probability 
greater than .07, method P is preferable. Under 
heteroscedasticity, method M can be unsatisfac-
tory, with estimates exceeding .08, while again 
method  P  gives  fairly  satisfactory  results. But 
when tied values occur, method P can be 
disastrous and should not be used. Method M 
now performs well under homoscedasticity 

1( 1)σ = , but under heteroscedasticity, it breaks 

down as well with estimates exceeding .1. 
All simulations were repeated with 

1 2 60n n= = , no new insights were found, so 

the results are not reported. 
 

Conclusion 
 
A positive result is that when tied values occur 
with probability zero, method P performs fairly 
well in terms of Type I errors, even when there 
is heteroscedasticity. However, when tied values 
are likely, it can be unsatisfactory. If tied values 
are likely and there is homoscedasticity, method 
M performs reasonably well, but it can break 
down when there is heteroscedasicity. So a 
possible argument in favor of method M is that 
when the (conditional) distributions of Y do not 
differ, it provides good control over the 
probability of a Type I error. But a negative 
feature is that it is sensitive to more than one 
feature of the data. That is, it does not isolate the 
reason for rejecting, which could be due to 
differences between medians or 
heteroscedasticity. 

Some additional simulations were run with m  
= 2 0,r  = 2 and s  = 9. The ability of method P to 
control the probability of a Type I error 
improved substantially versus the situation 
where r  = 1, but the estimated probability of a 
Type I error for the model Y ε=  was .099. So it 
seems that some tied values can probably be 
tolerated when using method P, but it is difficult 
to know when this is the case. 
 A criticism of the sample median is that 
under normality, or when sampling from a light-
tailed distribution, it is relatively inefficient. By 
trimming less, say 20%, good efficiency is 
obtained under normality and some protection 

against low efficiency due to heavy-tailed 
distributions is obtained. (Note that the usual 
sample median belongs to the class of trimmed 
means with the maximum amount of trimming.) 
However, replacing the usual sample median with 
a 20% trimmed mean, the methods studied here 
are unsatisfactory in terms of estimated Type I 
errors, at least for the situations considered. 
Consideration was given to estimating the 
population median with the Harrell and Davis 
(1982) estimator with the goal of achieving better 
efficiency under normality, but again control 
over the probability of a Type I error was no 
longer satisfactory. 
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Appendix 
 
For notational convenience, projection distance 
is described in terms of a sample of n vectors 
from some multivariate distribution. The 
sample is denoted by , 1,...,iX i n=  . Let  ξ  be 

some multivariate measure of location. Here, ξ  
is taken to be the W-estimator stemming from 
the minimum volume ellipsoid estimator. (For a 

detailed discussion of the minimum volume 
ellipsoid estimator, see Rousseeuw & Leroy, 
1987). The outlier detection method in 
Rousseeuw and van Zomeren (1990) is applied, 
any points flagged as  outliers  are  removed,  
and ξ  is taken to be the mean of the remaining 
vectors. For any i, let 

i iU X ξ= − , 
 

2
1

i i i

p
k ik

B U U

U=

= ′

= Σ
 

  
and for any j let (j=1,…,n) let 
 

1

p

ij ik jk
k

W U U
=

=∑ , 

 
and 

                          1( ,..., )ij
ij i ip

i

W
T U U

B
=              (5) 

  
The distance between ξ  and the projection of 

jX  (when projecting onto the line 

connecting iX and ξ ) is 

 
|| ||ij ijV T= , 

 
where || ||ijT  is the Euclidean norm associated 

with the vector ijT . Let 

 

                               
2 1

ij
ij

V
d

q q
=

−
,                    (6) 

 
where for fixed i , 2q  and 1q  are estimates of 

the upper and lower quartiles, respectively, of 
the ijV  values. (Here, the ideal fourths based on 

the values 1,...i inV V  were used; see, for 

example, Wilcox, 2004.) The projection 
distance associated with jX  say jD , is the 

maximum value of ijd ,  the maximum being 

taken over 1,...,i n= . 
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