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REGULAR ARTICLES 
The Effect On Type I Error And Power Of Various Methods Of Resolving Ties 

For Six Distribution-Free Tests Of Location 
 

Bruce R. Fay 
Wayne County Regional Educational Service Agency, Michigan 

 
 
The impact on Type I error robustness and power for nine different methods of resolving ties was 
assessed for six distribution-free statistics with four empirical data sets using Monte Carlo techniques. 
These statistics share an underlying assumption of population continuity such that samples are assumed to 
have no equal data values (no zero difference–scores, no tied ranks). The best results across all tests and 
combinations of simulation parameters were obtained by randomly resolving ties, although there were 
exceptions. The method of dropping ties and reducing the sample size performed poorly. 
 
Key words: Distribution-free, ties, location-shift, Monte Carlo, Rosenbaum’s test, Tukey’s quick test, 
Kolmogorov-Smirnov test, Wilcoxon rank-sum test, Kruskal-Wallis test, Terpstra-Jonckheere test. 
 
 

Introduction 
 

Distribution-free tests are important in the 
context of social and behavioral science research 
because they have less stringent assumptions 
than parametric statistics. Micceri (1986, 1989) 
showed that many variables studied in the social 
and behavioral sciences clearly do not meet 
distributional assumptions of parametric tests, 
such as normality or homoscedasticity. 
 In terms of hypotheses of a pure shift in 
location parameter combined with a violation of 
the normality assumption, nonparametric 
statistics are much more powerful than their 
parametric counterparts. In many layouts, these 
advantages are evident with very small samples 
and improve dramatically as sample sizes 
increase (Blair & Higgins, 1980, van den Brink 
&   van   den  Brink,  1989,  Sawilowsky,  1990,  
 
 
Dr. Fay is an Assessment Consultant in Wayne 
County, Michigan where he works with the state 
and local education agencies in the areas of 
school improvement, accountability, 
accreditation, and assessment. His research 
interests include the study of the properties of 
statistics through computer-intensive Monte 
Carlo methods using Fortran. 
 
 

Sawilowsky & Blair, 1992, Kelley, Sawilowsky, 
& Blair, 1994, MacDonald, 1999). 

Many distribution-free statistics lose 
efficiency when there is a violation of their 
underlying assumption of population continuity. 
In practice, this means the samples are assumed 
to have no equal data values (no zero 
difference–scores, no tied ranks), either within 
groups or between groups. Data in the social and 
behavioral sciences almost never meet this 
assumption either because of the inherently 
discrete nature of the data (Micceri, 1986, 1989) 
or because of a lack of precision in measurement 
(Cliff, 1996a, 1996b). 

Sparks (1967) conducted one of the few 
empirical studies to have specifically examined 
violation of continuity. He investigated 
Student’s t-test (Student, 1908) and the 
Wilcoxon Rank-sum (Mann-Whitney U) test 
(Wilcoxon, 1945, Mann & Whitney, 1947) using 
discrete approximations to the normal, 
rectangular, and exponential distributions. 
Results were similar for both Student’s t-test and 
the Wilcoxon-Mann-Whitney test when ties 
were randomly resolved. The Wilcoxon-Mann-
Whitney test, however, produced very 
conservative results when ties were resolved 
using mid-ranks.  

The practical consequence of violating 
the assumption of population continuity is that 
samples will contain equal data values resulting 
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in zero difference–scores or tied ranks. A useful 
distinction can be made, however, between 
consequential (critical, meaningful) and 
inconsequential (non-critical) ties. Ties can 
occur in such a way that regardless of how they 
are resolved they have no effect on the 
calculation of the test statistic or the resulting 
inference. Such ties are clearly inconsequential. 
Ties that occur only within a group, when 
looking for between group effects, are often of 
this type. By definition, inconsequential ties may 
be resolved by any simple procedure that 
maintains the integrity of the ranks, such as 
arbitrary assignment in sequence of the set of 
ranks for which the group of scores is tied. Other 
ties occur in such a way that different 
resolutions result in different values of the 
statistic that may, in turn, result in different 
inferential decisions. Such ties are clearly 
consequential. 
 
Purpose of the Study 

Even though the less stringent 
underlying assumptions of distribution-free tests 
are rarely met in practice, the effects of violation 
of assumptions on robustness of Type I error 
rates and power have not been studied 
extensively. Given the potentially deleterious 
effects of ties on these tests, and the necessity of 
dealing with them in some way, a careful 
investigation of the impact of different methods 
of resolution is warranted. This is especially true 
given the subtle nature of robustness (Bradley, 
1978, Wilcox, 1998). Therefore, nine methods 
were used, as applicable, to resolve 
consequential ties prior to the computation of six 
statistics. 

Fahoome (1999, 2002) studied the Type 
I error properties of large-sample approximation 
formulas for twenty nonparametric and/or 
distribution-free statistics, including the six 
presented here, using the theoretical standard 
Normal distribution and four of the Micceri 
(1986) data sets. Ties, however, were either 
ignored or resolved in one specific way on a 
test-by-test basis. These same data sets served as 
pseudo-population models for the present study. 
 
Tests 

The following distribution-free tests 
were investigated: 

1. Kolmogorov-Smirnov Test of General 
Differences for Two Independent Samples 
(Kolmogorov, 1933). 

 
2. Rosenbaum’s Test of Location for 

Two Independent Samples (Rosenbaum, 1953, 
1954, 1965). 

 
3. Tukey’s Quick Test of Location for 

Two Independent Samples (Tukey, 1959). 
 
4. Wilcoxon-Mann-Whitney Test for 

Two Independent Samples (Wilcoxon, 1945, 
Mann & Whitney, 1947, Kruskal, 1957). 

 
5. Kruskal-Wallis Test for k 

Independent Samples (k = 3 to 6) (Kruskal, 
1952, Kruskal & Wallis, 1952). 

 
6. Terpstra-Jonckheere Test of an 

Ordered Alternative Hypothesis for k 
Independent Samples (k = 3 to 6) (Terpstra, 
1952, Jonckheere, 1954). 
 
Resolution of Ties 

The nine methods for dealing with 
consequential ties (zero difference–scores or tied 
ranks) were: 

 
1. (M-1) Resolve consequential ties in 

the manner least favorable to rejection of the 
null hypothesis and in the manner most 
favorable to rejection of the null hypothesis, 
calculate the statistic for each of these 
resolutions, and then calculate the mid-range 
(mean) value of these two statistics and use it to 
conduct the test. 

 
2. (M-2) Count ties as 1/2 (Rosenbaum’s 

Test and Tukey’s Quick Test only). 
 
3. (M-3) Alternately resolve each set of 

tied-for ranks. 
 

 4. (M-4) Randomly resolve each set of 
tied-for ranks. 
 
 5. (M-5) Delayed increment 
(Kolmogorov-Smirnov Test of General 
Differences only). 
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 6. (M-6) Assign the mid-rank of a set of 
tied ranks to each score without further 
correction. 
 
 7. (M-7) Weighted average of all 
possible resolutions (Rosenbaum’s Test only). 
 
 8. (M-8) Drop matching tied-for ranks 
and reduce N accordingly. 
 
 9. (M-9) Drop all tied-for ranks (if 
possible) and reduce N accordingly. 
 

Methods 3, 4, 6, and 9 were described 
by Bradley (1968) as well as Gibbons and 
Chakraborti (1992). Methods 1, 2, 5, and 7 were 
described by Neave and Worthington (1988). 
Method 1 is related to a method described by 
Bradley (1968). Method 9 is widely mentioned 
in textbooks. Method 8 was not encountered in 
the literature but was added to the study as a 
variation of Method 9 that preserved equal 
sample sizes when dropping tied values. 

Bradley (1968) also described methods 
involving calculation of statistics for all possible 
resolutions of consequential ties, the results 
being used to establish probability bounds for 
the test or to calculate a mean probability. 
Although theoretically attractive, these methods 
are often impractical, requiring the calculation of 
very large numbers of statistics and/or the 
availability of the probabilities (see, however, 
Fay, 2002, for a discussion of methods for 
generating critical values and associated 
probabilities for some of these tests). For many 
tests, the calculation of an average statistic, 
based on all possible resolutions of ties, turns 
out to be equivalent to resolving each set of tied-
for ranks using the mid-rank (Neave & 
Worthington, 1988). Bradley (1968) warned, 
however, that under some circumstances the use 
of mid-ranks might give a statistic something 
closer to its minimum or maximum value rather 
a median or mean value. This might account for 
the results in Sparks (1967). 

Many of the methods involve schemes 
for eliminating ties, either by: (a) breaking them, 
that is, by somehow assigning the available 
ranks to the tied observations, or (b) dropping 
them. Other methods, such as mid-ranks, result 
in modified samples that still contain duplicate 

(and perhaps non-integer) ranks, even though 
this cannot happen when all assumptions of the 
test are met. Averaging the statistics from the 
least and most likely to reject resolutions can 
also result in non-integer values of statistics that 
are normally integer-valued. Such statistics were 
still referred to a standard table of critical values, 
for example, Neave (1981), as the performance 
when used in this manner was a major point of 
this study. The test/method combinations 
investigated are shown in Table 1. 

 
Data Sets 

A theoretical distribution and four 
empirical data sets were used as sources of 
samples. The theoretical standard Normal 
distribution (µ = 0, σ = 1) did not produce 
samples with significant numbers of duplicate 
data values and thus served as a baseline for the 
performance of these tests under conditions 
meeting their underlying continuity assumption. 
The four empirical data sets, due to Micceri 
(1986), were (a) Extreme Asymmetric (EA), (b) 
Extreme Bi-modal (EB), (c) Multi-modal 
Lumpy (ML), and (d) Smooth Symmetric (SS). 

The four Micceri (1986) data sets are 
inherently discrete and decidedly non-normal 
(see Appendix, Figures A1 through A4). They 
were also discussed in Micceri (1989), 
Sawilowsky, Blair and Micceri (1990), 
Sawilowsky and Blair (1992), and Fahoome 
(1999, 2002). With regard to the extreme 
bimodal data set, Fahoome (1999) concluded: 
 

[B]ecause of the small number (6) of 
data points, there were an extremely 
large number of ties, even for relatively 
small sample sizes. This data is Likert-
type data. The performance by most 
tests was extremely poor. Most of the 
tests had inflated Type I error rates, 
some as high as 0.99999. A few had 
very low Type I error rates. (p. 462) 
 

In spite of this finding, the extreme bimodal data 
set was retained for this study because of the 
widespread existence of such data. Properties of 
these data sets are given in Table 2. 
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Table 1. Tests and Applicable Methods of Resolving Ties 
_________________________________________________________  
 
                               Test 
             ____________________________________________ 
 
Method       K-Sa    Rb      TQc      W-M-Wd  K-We    T-Jf      
_________________________________________________________ 

M-1g         X       X       X       X       X       X 

M-2h         na      X       X       na      na      na 

M-3i         X       X       X       X       X       X 

M-4j         X       X       X       X       X       X 

M-5k         X       na      na      na      na      na 

M-6l         na      na      na      X       X       X 

M-7m         na      X       na      na      na      na 

M-8n         X       X       X       X       X       X 

M-9o         X       X       X       X       X       X 
_________________________________________________________  

Note: Cells marked ‘na’ indicate that the method does not apply to the test. 
aK-S = Kolmogorov-Smirnov Test, bR = Rosenbaum’s Test, cTQ = Tukey’s Quick Test, 
dW-M-W = Wilcoxon-Mann-Whitney Test, eK-W = Kruskal-Wallis Test,  
fT-J = Terpstra-Jonckheere Test, gM-1 = Average of least and most likely to reject, 
hM-2 = Count ties as ½, iM-3 = Alternating, jM-4 = Random, kM-5 = Delayed Increment, 
lM-6 = Mid-ranks, mM-7 = Weighted average, nM-8 = Drop matching, oM-9 = Drop all. 
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Methodology 
 
The simulations were programmed in Fortran 
90/95. A main program was built for each of the 
six tests to conduct both the Type I error and 
power studies by controlling the combinations of 
simulation parameters and making calls to the 
appropriate modules. For each unique 
combination of distribution, sample size, number 
of groups (for k-sample tests only), and effect 
size (for power studies only), 1 million samples 
were drawn. For each sample one- and two-
sided tests where conducted at both nominal 
alpha .01 and .05 for each applicable method of 
resolving ties (Table 1). Counts were maintained 
of significant and non-significant results, as well 
as un-testable trials, until the end of the 
simulation cycle when they were converted to 
proportions and written to output files. 
 Separate programs were written for each 
of the six tests to conduct the simulations for the 
drop ties and reduce N methods of resolving ties 
as  these  methods  often  led  to tests on unequal  
 
 

 
 
sample sizes for which the test statistic could 
either not be computed or for which critical 
values  were  unavailable. This   necessitated   a 
modified approach to the simulations in which 
un-testable samples were discarded and 
additional samples were drawn until: (a) 10,000 
testable samples were obtained, or (b) the 
program reached its 10,000,000th cycle, 
whichever came first. 
 All sample sizes from 3 to 30 [3(1)30] 
were examined, limited only by the availability 
of critical values. Because the method of 
dropping ties and reducing N often resulted in 
unequal sample sizes, this method was only 
studied for tests where tables of critical values 
for unequal sample sizes were available (Neave, 
1981, Neave & Worthington, 1988) or could be 
generated (Fay, 2002). Power studies were 
conducted for equal initial per-group sample 
sizes of 3(3)30 if Type I error results were 
satisfactory and critical values were available. 

One of the most widely suggested 
methods for dealing with (consequential) ties is 
to resolve them in all possible ways, obtaining a 
value of the statistic (or its associated 

Table 2. Properties of Selected Micceri (1986,1989) Data Sets 
_____________________________________________________________  
 
                                      Parameter 
                         ____________________________________ 
Data Set                   µa               φb      σc       γ3

d      γ4
e     

_____________________________________________________________ 

Extreme Asymmetric       24.50   27.00   5.79    –1.33   4.11 

Extreme Bi-modal          2.97    4.00   1.69    –0.08   1.30 

Multi-modal Lumpy        21.15   18.00   1.90     0.19   1.80 

Smooth Symmetric         13.19   13.00   4.91     0.01   2.66 
     _____________________________________________________________ 
 
Note: Excerpted from “A more realistic look at robustness and type II error properties of the t test to 
departures from population normality,” by S. S. Sawilowsky & R. C. Blair, 1992, Psychological 
Bulletin, 111(2), 352-360, Table I, p. 353, copyright 1992 by Psychological Bulletin. Adapted with 
permission. 
aµ = mean, bφ = median; cσ = variance, dγ3 = skewness, eγ4 = kurtosis. 
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probability) for each resolution. A mean value of 
the statistic is then obtained and tested, or a 
mean value of the probability established. This 
method was only implemented for Rosenbaum’s 
test as there was a practical method for doing so. 
It was not otherwise used in this study because 
of the practical difficulties involved in 
implementing it for even moderate sample sizes 
when there are numerous ties at several different 
values. Also, comprehensive tables of exact 
probabilities are even more difficult to obtain 
than critical value tables for some of these tests. 
 Bradley (1978) recommended 
conservative bounds for robust Type I error of 
nominal alpha ± 10% and liberal bounds of 
nominal alpha ± 50%. Many distribution-free 
tests, however, cannot achieve nominal alpha at 
small sample sizes. The entries in critical value 
tables are typically best conservative values that 
may fall below Bradley’s recommended 10% 
lower bound. As the main interest in the Type I 
error studies was the ability of each test to resist 
inflation of Type I error rate the conservative 
and liberal criteria were combined such that 
Type I error rates were considered acceptable if 
they fell in the range of .5α to 1.1α or were no 
more conservative than the results obtained 
when sampling from the standard Normal 
distribution. 
 The power of a test was of no interest if 
the Type I error rate was not robust to violations 
of assumptions. A priori, it was expected that 
those combinations of test conditions that 
produced Type I error rates well below nominal 
alpha would also have attenuated power. 
 For the power studies, a one-sided test 
was made in the direction of the simulated 
effect, while significant results in the wrong tail 
constituted Type III errors (MacDonald, 1999). 
Pure shift-effects of known size were simulated 
by shifting one or more of the groups relative to 
a base group. Nominal effect size multipliers of 
0.2, 0.5, 0.8 and 1.2 were planned following 
Cohen (1988) and Sawilowsky and Blair (1992). 
Because of the necessity of generating integral 
shifts with the empirical data sets in order to 
obtain between-group ties, actual effect size 
multipliers for each empirical data set differed 
slightly from these targets, as shown in Table 3. 
The performance of the six tests with  respect  to 
the various methods of resolving ties, when used 

with such data, was of primary interest in this 
study. 

 
Statistical Tests 

All six tests share the assumptions of: 
(a) random and independent sampling of 
continuous populations, with sufficient precision 
of measurement to avoid tied observations 
(Bradley, 1968, Conover, 1999), (b) 
independence of sample observations both 
within and between groups (Hollander & Wolfe, 
1999). All the tests have null hypotheses that 
assume all samples are drawn from identical 
populations. Assumptions about the populations 
under the alternative hypothesis differ for each 
test. The tests can be used successfully with 
discrete populations, but become approximate 
with the tabled critical values generally 
providing best conservative estimates. 

 
Kolmogorov-Smirnov Test 

Background. Neave and Worthington 
(1988) and Conover (1999) identified this as 
Smirnov’s (1939) application of Kolmogorov’s 
(1933) goodness-of-fit test. Everitt (1998) 
described it as “A distribution free method that 
tests for any difference between two population 
probability distributions. The test is based on the 
absolute maximum difference between the 
cumulative distribution functions of the samples 
from each population” (p. 179). The maximum 
distance referred to is the vertical distance 
between the cumulative probability distributions. 

Hypotheses. The null hypothesis for 
the two-sided test is that the two sampled 
populations have identical distributions. The 
two-sided alternative hypothesis is simply that 
the two sampled populations are different in 
some way. In the case of a one-sided test, the 
alternative hypothesis is that one population is 
stochastically greater than the other. Neave 
(1981) suggested that the test only be used in the 
two-sided situation, the Wilcoxon–Mann–
Whitney test being more powerful for the 
directional hypothesis. 
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Procedure and Test Statistic. 
 The following procedure was described 
in Neave and Worthington (1988). Let there be 
N = nA + nB ranked observations, each 
designated as an A or B. For the A observations, 
maintain a count above the letter sequence, 
starting from zero and incremented by nB each 
time an A is encountered. For the B 
observations, maintain a count below the letter 
sequence, starting from zero and incremented by 
nA each time a B is encountered. The final count 
for both A’s and B’s should be

A B
M n n= × . 

Compute the differences, di = Bi – Ai,  by  
subtracting   the  A counts from the B counts for 

 
 

 
 

each letter position. Find the absolute value of 
these differences. For the two-sided test, take D* 
= max|di|. For a one-sided test take 

( )* max
i

D pos d
+
=  or ( )* max

i
D neg d
−
=  

depending on what is expected under H1. 
Conover (1999) defined the test statistic, T, in 
terms of two empirical distribution functions, SA 
and SB, using the supremum. For the two-sided 
test, ( ) ( )sup A B

x

T S x S x= − . For the one-sided 

test that A < B (stochastically), 

( ) ( )[ ]sup
A B

x

T S x S x+ = − . Thus, for the one-

sided test that A > B (stochastically), 

( ) ( )[ ]sup
B A

x

T S x S x− = − . 

Table 3. Actual Shifts and Effect Sizes for Nominal Effect Sizes 
_____________________________________________________________   
                                 Nominal Effect Size 
                          ___________________________________ 
Data Set (σa)                                Sb(.2σ)  Mc(.5σ)  Ld(.8σ)  VLe(1.2σ) 
_____________________________________________________________   
 
Extreme Asymmetric (5.79)  
     NSf                 1.158    2.895    4.632   6.948 
     ASg                 1        3        5       7  
     AESh                0.173σ   0.518σ   0.864σ  1.209σ 
Extreme Bi-modal (1.69)  
     NS                  0.338    0.845    1.352   2.028 
     AS                  n/a      1        n/a     2  
     AES                 n/a      0.592σ   n/a     1.183σ 
Multi-modal Lumpy (11.90) 
     NS                  2.380    5.950    9.520  14.280 
     AS                  2        6       10      14  
     AES                 0.168σ   0.504σ   0.840σ  1.176σ 
Smooth Symmetric (4.91) 
     NS                  0.982    2.455    3.982   5.892  
     AS                  1        2        4       6  
     AES                 0.204σ   0.407σ   0.815σ  1.222σ  
Standard Normal (1.00) 
     NS                  0.200    0.500    0.800   1.200  
     AS                  0.200    0.500    0.800   1.200 
     AES                 0.200σ   0.500σ   0.800σ  1.200σ 
_____________________________________________________________  

 
Note: Developed based on Cohen (1988) and Sawilowsky and Blair (1992). 
aσ = Standard deviation, bS = Small, cM = Medium, dL = Large, eVL = Very Large. 
fNS = Nominal Shift, gAS = Actual Shift, hAES = Actual Effect Size (rounded). 
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Rejection Region. 
Critical regions are usually tabulated as 

D critical value∗ ≥ . Note that *
A BD n n D= , 

where D is the statistic derived from a direct 
comparison of the sample cdf’s, is more 
convenient to work with as it takes only integer 
values (Neave & Worthington, 1988). 

 
Rosenbaum’s Test 

Background. 
This test first appeared in its current 

form in Rosenbaum (1954), which was based on 
Rosenbaum (1953). In both articles, Rosenbaum 
cited Wilks (1942) as the original source of the 
formulas for deriving the critical value tables. 
Rosenbaum (1965) reiterated this earlier work. 
The test is classified as a runs test. It is a quick 
and easy test, but is not routinely included in 
textbooks on nonparametric statistics. Neave and 
Worthington (1988) presented it as a test for 
general differences between two sampled 
populations where spread tends to increase with 
an increase in the mean, consistent with 
Rosenbaum (1954). They claimed that under the 
conditions of an increase in spread with an 
increase in the median tests such as the 
Wilcoxon-Mann-Whitney test and Tukey’s 
Quick test have almost no power because of the 
change in spread. Likewise, tests for spread, 
such as the Siegel-Tukey test (Siegel & Tukey, 
1960), have little or no power because of the 
change in location. If more general differences 
were suspected, or needed to be protected 
against, the Kolmogorov-Smirnov test was 
suggested as a better choice. Processes that are 
known to be exponential or Poisson in nature, 
where the standard deviation is related to the 
mean, would be excellent candidates for analysis 
by Rosenbaum’s test. Thus, Rosenbaum’s test 
appears to occupy a somewhat unique place 
among its better-known peers. 

Hypotheses. 
The null hypothesis is that there is no 

difference in the two sampled populations. The 
alternative hypothesis can be two-sided or one-
sided. The two-sided alternative hypothesis is 
simply that the two sampled populations are 
different in some way. In the case of a one-sided 
test,   the   alternative   hypothesis   is   that   one  

 

population is stochastically greater than the 
other. 

Procedure and Test Statistic. 
The following procedure was described 

in Neave and Worthington (1988). For the two-
sided test, determine which sample has the 
overall greatest value and then count the number 
of observations in that sample that are greater 
than the greatest value in the other sample and 
let this be the test statistic R. For the one-sided 
test, determine if the greatest overall value 
comes from the sample whose population is 
hypothesized under H1 to have the greater mean. 
If it does, proceed as for the two-sided test, if 
not, set R = 0. 

Rejection Region. 
Critical regions are of the form R ≥ 

critical value. The table of critical values must 
be entered with n1 as the size of the sample from 
which R is calculated and n2 as the size of the 
other sample (Neave & Worthington, 1988). 

 
Tukey’s Quick Test 

Background. 
This test first appeared in Tukey (1959). 

It is a two-sample test constructed according to 
Duckworth’s (1958) portability specifications. It 
is a quick test because it only requires a few of 
the sample observations to be ordered. It is also 
compact, in the sense that tables of critical 
values are not generally needed for most 
applications, as only a limited number of critical 
values occur in practice. These two 
characteristics combine to make the test 
portable. Like Rosenbaum’s test, Tukey’s Quick 
test is based on extreme runs and is not routinely 
included in applied textbooks. 

Hypotheses. 
The test is primarily a test for 

differences in location of the medians of the two 
sampled populations and is most appropriate 
when there is reason to believe that the sampled 
populations have the same spread, or better, the 
same shape (Neave & Worthington, 1988). The 
null hypothesis is that there is no difference in 
the two sampled populations or no difference in 
the medians of the populations. The alternative 
hypothesis can be two-sided or one-sided. The 
two-sided alternative hypothesis is simply that 
the two sampled populations are different in 
some way, or have different medians. In the case 
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of a one-sided test the alternative hypothesis is 
that one population is stochastically greater than 
the other, or that there is a directional difference 
in the medians. 

Procedure and Test Statistic. 
The following procedure was described 

in Neave and Worthington (1988). It begins by 
arranging the sample observations in a single 
combined array from least to greatest, keeping 
track of original sample membership, say A and 
B, and then ranking them. For a two-sided test, 
if the minimum and maximum observed values 
come from the same sample then the test statistic 
is Ty = 0. If the minimum and maximum 
observed values come from different samples, 
then the test statistic is the sum of the extreme 
runs, that is, if the minimum value comes from 
sample A and the maximum from sample B, 
then count the number of A’s from the 
beginning of the array until the first B is 
reached, say CL, and count the number of B’s 
from the end of the array back until the first A is 
reached, say CU, and set Ty = CL + CU. For a one-
sided test, if the minimum and maximum 
observed values come from the same sample, set 
Ty = 0. If the minimum and maximum observed 
values come from different samples, determine 
if the maximum observation comes from the 
sample that is expected to have the greater 
median. If not, set Ty = 0. If so, calculate Ty just 
as for the two-sided. 

Rejection Region. 
Critical regions are of the form Ty ≥ 

critical value and tables are available in Neave 
and Worthington (1988). However, for one-
sided tests with sample sizes that are not too 
small and not too dissimilar, the .05 and .01 
critical values are generally 6 and 9, 
respectively. For a two-sided test under the same 
conditions, the .05 and .01 critical values are 
generally 7 and 10, respectively. These critical 
values are reported to work well for ratios of 
sample sizes from 1 to 1.5. Equal sample sizes 
are not required, although tables of critical 
values should be employed when the ratio of 
larger to smaller sample exceeds 1.5 (Tukey, 
1959). 

 
 
 
 

Wilcoxon-Mann-Whitney Test 
Background. 
Wilcoxon (1945) introduced the rank-

sum version of this test for equal sample sizes in 
the same article as the signed-rank test, while 
Mann and Whitney (1947) independently 
developed the Mann–Whitney U test. The two 
versions are procedurally different but 
mathematically equivalent and are often referred 
to jointly in the literature as the Wilcoxon-
Mann-Whitney test (Sprent & Smeeton, 2001). 
The test is applied to ordinal data. Tables of 
critical values are more commonly available for 
the Mann-Whitney version of the test. In either 
form this is one of the better-known distribution-
free tests, and is the one that corresponds most 
directly to Student’s t-test for two independent 
samples (Student, 1908). It is also a powerful 
test, with an asymptotic relative efficiency that 
never falls below 0.864 with respect to the t-test 
(Lehmann, 1998), although it is often much 
more powerful under conditions that violate the 
assumptions of the t-test, yet respect its own 
assumptions (Blair & Higgins, 1980). 

The Wilcoxon-Mann-Whitney test is 
generally regarded as a test of whether two 
independent samples represent the same 
population versus populations that differ in 
location, either of their medians or with respect 
to the rank ordering of their scores (Sheskin, 
1997). Bergmann, Ludbrook, and Spooren 
(2000) described it as a test of group mean ranks 
or, equivalently, rank sums, for testing two 
different hypotheses: (a) a shift in otherwise 
identical populations, or (b) a difference in mean 
ranks between randomized groups. A detailed 
theoretical treatment of the test was given in 
Lehmann (1998). Kruskal (1957) detailed the 
history of the test from 1941 to 1957. 

Hypotheses. 
The alternative hypothesis under the 

population model assumes that the populations 
have identical probability distributions other 
than a constant shift (Sheskin, 1997), also 
known as a translation, or location–shift, model. 
If F and G are the population distribution 
functions, the location-shift model 

requires ( ) ( ),G x F x x= − ∆ ∀ . The null 

hypothesis is then H0: [ 0∆ = ] (Hollander & 
Wolfe, 1999). The null hypothesis can also be 
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stated as no difference in the medians of the 
populations, or H0: [ 1 2φ φ= ] (Neave & 

Worthington, 1988). With equal sample sizes, 
this is equivalent to the hypothesis that the sum 
of ranks for each group is the same, or 
H0: [ 1 2R R=∑ ∑ ]. For unequal sample sizes this 

generalizes as the mean rank of the groups being 

equal, or H0: [ 1 2R R= ] (Sheskin, 1997). The 
parallel to Student’s t-test is most evident in this 
form. 

The test can be one-sided or two-sided. 
The two-sided alternative hypothesis for shift is
H1: [ 0∆ ≠ ] (Hollander & Wolfe, 1999) and the 
alternative hypothesis for medians is 
H1: [ 1 2φ φ≠ ] (Neave & Worthington, 1988). 
The alternative hypotheses for ranks are 

H1: [ 1 2R R≠∑ ∑ ] or H1: [ 1 2R R≠ ] (Sheskin, 

1997). For a one-sided test, the alternative 
hypotheses for shift are either H1: [ 0∆ < ], or 
H1: [ 0∆ > ] (Hollander & Wolfe, 1999). The 
alternative hypotheses for medians are 
H1: [ 1 2φ φ< ] or H1: [ 1 2φ φ> ] (Neave & 
Worthington, 1988). The alternative hypotheses 
for ranks are H1: [ 1 2R R<∑ ∑ ], 

H1: [ 1 2R R>∑ ∑ ], H1: [ 1 2R R< ] or 

H1: [ 1 2R R> ] (Sheskin, 1997). 
Procedure and Test Statistic. 
Siegel and Castellan (1988) and Neave 

and Worthington (1988) described the Wilcoxon 
version of the test. Given two samples, A and B, 
with N = nA + nB, combine the observations in a 
single array, keeping track of original sample 
membership, and then rank them from 1 to N. 
Compute RA as the sum of the ranks of the 
observations from sample A and RB as the sum 
of the ranks of the observations from sample B. 
The test statistic, W, is the rank sum that would 
be expected to be smaller if H1 were true. 

Rejection Region. 
Tables of critical values are usually 

given for the Mann-Whitney U test (Neave & 
Worthington, 1988, Sheskin, 1997), with critical 
regions of the form Umin ≤ critical value 
representing best conservative values. The test 
can be applied to unequal sample sizes with 
appropriate critical value tables. Because they 
are mathematically equivalent, the results of the 

Wilcoxon procedure can be converted to values 
of U. Neave and Worthington (1988) gave the 
conversion for a two-sided test as: 

[ ]min ,A BU U U= , with ( )
1

1
2

A A A AU R n n= − +  

and ( )
1

1
2

B A B A B B BU n n U R n n= − = − + . For 

a one-sided test, use either UA or UB according 
to which one is expected to have the smaller 
value under H1. Converting to values of U also 
accounts for the effect of unequal sample sizes. 

 
Kruskal-Wallis Test 

Background. 
This test was introduced in Kruskal 

(1952) and Kruskal and Wallis (1952). Vogt 
(1999) described it as, “A nonparametric test of 
statistical significance used when testing more 
than two independent samples. It is an extension 
of the Mann-Whitney U test, and of the 
Wilcoxon [rank-sum test], to three or more 
independent samples. It is a nonparametric one-
way ANOVA for rank order data” (p. 151). 

Everitt (1998) described the test as a 
“distribution free method that is the analogue of 
the analysis of variance of a one-way design. It 
tests whether the groups to be compared have 
the same population median” (p. 180). The test 
is applied to ordinal (rank ordered) data 
(Sheskin, 1997). Power comparisons with the F-
test are very favorable. Conover (1999) gave the 
following asymptotic relative efficiencies for the 
Kruskal-Wallis test relative to the F-test: (a) For 
distributions that differ only in their means, 
never less than 0.864, but as high as infinity, (b) 
for Normal populations, 0.955, (c) for uniform 
distributions, 1.0, and (d) for exponential 
distributions, 1.5. 

Hypotheses. 
For k groups, the population distribution 

functions, F1,…,Fk are assumed to have the 

relationship ( ) ( ),j jF x F x jτ= − − ∞ < < ∞  

over all j (j = 1 to k) where F is a continuous 
distribution function with unknown median and 
τj is the unknown treatment effect for the jth 
population (Hollander & Wolfe, 1999). The null 
hypothesis can be stated as no difference in the 
medians of the populations, 
H0: [ 1 2 ... nφ φ φ= = = ] (Neave & Worthington, 
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1988, Siegel & Castellan, 1988), identical 
populations, H0: [All of the k population 
distribution functions are identical] (Conover, 
1999) or identical treatment effects, 
H0: [ 1 2 kτ τ τ= = =� ] (Hollander & Wolfe, 

1999). The alternative hypothesis assumes that 
the populations differ only in location (Sprent & 
Smeeton, 2001) and that at least one of the 
populations, medians or treatment effects is 
different from the others. 

Vargha and Delaney (1998) took 
exception to the use of the Kruskal-Wallis test 
with the foregoing assumptions on the grounds 
that the attendant hypotheses, while 
mathematically correct, were too narrow to be of 
practical value to researchers. They claimed that 
the Kruskal-Wallis test “cannot detect with 
consistently increasing power any alternative 
other than exceptions to stochastic 
homogeneity” (p.170). This, in turn, is 
mathematically equivalent to the “equality of 
expected values of the rank sample means” 
(p.170). They argued that the requirement for 
identical distributions under H0 is too strict, and 
that only variance homogeneity is needed. 
Further, they asserted that the H1 to which the 
test is actually sensitive is “the tendency for 
observations in at least one of the populations to 
be larger (or smaller) than all the remaining 
populations together” (p. 186). 

The test is two-sided with an omnibus 
alternative hypothesis for shift of 
H1: [ 1, , not all equalkτ τ… ] (Hollander & Wolfe, 

1999), H1: [not all of 1 2, , ..., kφ φ φ  are equal] 
(Neave & Worthington, 1988, Siegel & 
Castellan, 1988) or H1: [At least one of the 
populations tends to yield larger observations 
than at least one of the other populations] 
(Conover, 1999). All of these hypotheses can be 
formulated in terms of rank-sums (for the equal 
sample size case) or mean ranks (for the general 
case) as H0: [ 1 2 kR R R= = =∑ ∑ ∑… ] or 

H0: [ 1 2 kR R R= = =… ], with the alternative 
hypothesis of H1: [not H0] (Sheskin, 1997). The 
alternative hypothesis is stated in this way 
because it only requires that some pair of groups 
be different, not that all groups are different, 
consistent with Conover (1999). 

 

Procedure and Test Statistic. 
The general procedure, which does not 

assume equal sample sizes, is to combine the 
samples and rank the observations while keeping 
track of original group membership. For each of 
the k groups, let the number of observations be 
ni ( 1,2, , )i k= …  such that the total number of 

observations is 
1

k

i
i

N n
=

= ∑ . Calculate the rank-

sum for each group as 
1

in

i ij
j

s r
=

= ∑ , where rij is the 

rank assigned to the jth observation in the ith 
group. The sum of the mean squared ranks is 

calculated as
2

1

k
i

i
i

k

s
S

n=
= ∑

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The statistic is then 

calculated as 
( )

( )
12

3 1
1

k
H S N

N N
= − +

+

. This 

is the common computational formulation 
(Sprent & Smeeton, 2001, Neave & 
Worthington, 1988, Feir-Walsh & Toothaker, 
1974, Siegel & Castellan, 1988, Conover, 1999). 

Conover (1999) defined the test statistic 

as 
( )2

2

11

4
k

N N
T S

S

+
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 where Sk and N are 

as defined above and 

( ) ( )2

22 11

1 4
ij

all

ranks

N
S R X N

N

+
= −

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ . He noted 

that S2 simplified to ( )1 12N N +  in the absence 

of ties such that T = H as defined above. H can 
also be defined as 

( )
( )

2

1

12

1

k

ii

i

H n R R
N N

=

= −

+
∑ , where ni is as 

above, iR  is the mean rank of group i, and R  is 
the overall mean rank of the N total observations 
(Neave & Worthington, 1988, Siegel & 
Castellan, 1988). In this form it can be seen most 
clearly that the statistic is a weighted sum of 
squared deviations. Post-hoc procedures using 
pairwise comparisons are available (Conover, 
1999, Sheskin, 1997, Siegel & Castellan, 1988), 
but are not considered further here. 
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Rejection Region. 
Critical regions are of the form 

H critical value≥  (Neave & Worthington, 
1988). Approximate critical values can be 
obtained from a chi-squared distribution with k – 
1 degrees-of-freedom, but see Fahoome (1999, 
2002). The test will work with unequal sample 
sizes since the calculation of the statistic 
involves a weighted sum of squares of 
differences between group mean ranks and the 
overall mean rank, although critical value tables 
tend to be limited (Neave, 1981). 

 
Terpstra-Jonckheere Test 

Background. 
The Terpstra-Jonckheere test was 

developed independently by Terpstra (1952) and 
Jonckheere (1954). Like the Kruskal-Wallis test, 
it is an extension of the Wilcoxon-Mann-
Whitney test on ranks for the one-way design. It 
differs from the Kruskal-Wallis test in that it 
postulates a specific ordering of the groups 
under the alternative hypothesis based on prior 
knowledge, that is, that the situation being tested 
supports an a priori expectation of a specific, 
identifiable order of the population medians 
based on the experimental design, not on the 
observed data (Hollander & Wolfe, 1999, Siegel 
& Castellan, 1988). A general assumption is that 
all of the possible assignments of joint ranks are 
equally possible (Hollander & Wolfe, 1999). 

Hypotheses. 
For k groups, the population distribution 

functions, F1,…,Fk are assumed to have the 

relationship ( ) ( ) ,
j j

F x F x xτ= − − ∞ < < ∞  

over all j, (j = 1 to k), where F is a continuous 
distribution function with unknown median and 
τj is the unknown treatment effect for the jth 
population (Hollander & Wolfe, 1999). The null 
hypothesis can be stated in terms of medians as 
H0: [ 1 2 ... kφ φ φ= = = ] (Neave & Worthington, 
1988, Siegel & Castellan, 1988), identical 
populations as H0: [ ( ) ( ) ( )1 2

, 
k

F x F x F x x= = = ∀� ] 

(Sprent & Smeeton, 2001), or treatment effects 
as H0: [ 1 2 kτ τ τ= = =� ] (Hollander & Wolfe, 
1999). If the k groups are numbered to 
correspond to the expected order, the alternative 
hypothesis is one-sided and given by 

H1: [ 1 2 k
τ τ τ≤ ≤ ≤� , with at least one strict 

inequality] (Hollander & Wolfe, 1999), 
H1: [ ( ) ( ) ( )1 2 k

F x F x F x≤ ≤ ≤� , at least one 

inequality strict for some x ] (Sprent & Smeeton, 
2001), or H1: [ 1 2 ... kφ φ φ≤ ≤ ≤ , at least one 
of the inequalities is strict ] (Neave & 
Worthington, 1988, Siegel & Castellan, 1988). 

Procedure and Test Statistic. 
The procedure calculates the Mann-

Whitney U statistic for all pairs of samples and 
then combines the results. If the Wilcoxon rank-
sum procedure is used the resulting statistics 
must be converted to Mann-Whitney U statistics 
before being combined. For the alternative 
hypothesis, as stated above, the test statistic was 
given by Neave and Worthington (1988) as  

 

( )21 31 1 32 1

1

1 1

... ... ...
k ij k k

k k

ij

j i j

J U U U U U U

U

−

−

= = +

= + + + + + + + +

=∑∑
  ,  

 
where Uij represents the Mann-Whitney U 
statistic for each pair of samples, computed in 
the order dictated by H1 to give the least value of 
each Uij. This is consistent with Siegel and 
Castellan (1988) and others. To the extent that 
H1 tends to be true, each of the Uij will tend to 
be small and thus their sum will tend to be small. 

For k groups there will be k(k - 1)/2 
values of U. Hollander and Wolfe (1999) gave 
the Mann-Whitney procedure for calculating the 
values of U directly, including an adjustment for 
ties (equivalent to using mid-ranks in the 
Wilcoxon version of the procedure) as 

 

( )*

1 1

, , 1
u v

n n

uv iu jv

i j

U X X u v kφ
= =

= ≤ < ≤∑∑ , 

 
where  
 

( )*

1 if 

1
,  if 

2

0 if 

a b

a b a b

a b

φ

<

= =

>

⎧
⎪⎪
⎨
⎪
⎪⎩

        . 

 
This is consistent with Siegel and Castellan  
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(1988). The test is approximate when ties are 
present. 

Rejection Region. 
Critical regions are of the form 

J critical value≤ . The test supports unequal 
samples sizes and more extensive critical value 
tables are available as Table R in Neave and 
Worthington (1988). As the sample size 
increases, the null distribution of J becomes 
asymptotically normal. Formulas exist for 
obtaining approximate critical values (Neave & 
Worthington, 1988, Siegel & Castellan, 1988), 
but see Fahoome (1999, 2002). 
 

 
 

 
 

Results 
Type I Error Results 

Question 1: For samples drawn from the 
same population, is the Type I error rate 
maintained between .5α and 1.1α for each 
combination of test, method, number of groups, 
directionality, sample size, and distribution? 

Combinations of tests, methods and 
Micceri (1986) data sets that demonstrated 
acceptable Type I Error rates are shown in Table  
4. Results for the theoretical standard Normal 
distribution are not shown, as it did not produce 
ties. Note, however, that the performance of 
these tests with the theoretical Normal 
distribution was not always acceptable due to the  
 

Table 4. Test / Method Combinations with Acceptable Type I Error Results 
________________________________________________________  
 
                               Test 
           _____________________________________________ 
 
Method     K-Sa    Rb      TQc      W-M-Wd  K-We    T-Jf  
________________________________________________________  

M-1g       EA,--   EA,--   --,--   EA,EB   --,--   EA,EB  
           ML,SS   ML,SS   ML,--   ML,SS   ML,(SS) ML,SS  
M-2h       na      EA,--   --,--   na      na      na  
                   ML,SS   ML,-- 
M-3i       EA,--   --,--   --,--   --,EB   --,EB   EA,EB  
           ML,SS   ML,SS   ML,--   ML,SS   ML,SS   ML,SS  
M-4j       EA,EB   EA,EB   EA,--   EA,EB   EA,EB   EA,EB  
           ML,SS   ML,SS   ML,--   ML,SS   ML,SS   ML,SS    
M-5k       --,--   na      na      na       na     na  
           ML,-- 
M-6l       na      na      na      EA,EB   EA,EB   EA,EB  
                                   ML,SS   ML,SS   ML,SS 
M-7m       na      --,--   na      na      na      na  
                   ML,SS 
________________________________________________________  

Note. EA = Extreme Asymmetric Data Set, EB = Extreme Bi-modal Data Set, ML = Multi-modal 
Lumpy Data Set, SS = Smooth Symmetric Data Set. 
aK-S = Kolmogorov-Smirnov Test, bR = Rosenbaum’s Test, cTQ = Tukey’s Quick Test,  
dW-M-W = Wilcoxon-Mann-Whitney Test, eK-W = Kruskal-Wallis Test,  
fT-J = Terpstra-Jonckheere Test.  
gM-1 = Average of least and most likely to reject, hM-2 = Count ties as ½, iM-3 = Alternating, 
jM-4 = Random, kM-5 = Delayed Increment, lM-6 = Mid-ranks, mM-7 = Weighted average. 
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discrete  nature of the  statistics  and  the  use  of 
best conservative critical values whose 
probabilities were sometimes less than 0.5α. 
Following Bradley (1978), Type I error 
performance was judged to be acceptable if it 
was not inflated beyond 1.1α and was not more 
conservative than the corresponding 
performance with the theoretical Normal 
distribution. As shown in Table 4, the random 
method provided acceptable Type I error rates 
for the largest combination of tests and 
distributions. Most of the other methods 
provided acceptable results for specific 
combinations of test and data set with the 
exception of Methods 8 and 9 (not shown). 
 Method   9,   the    drop    all    ties    and  
reduce   N   method,   is     one   of     the     most   
widely recommended, especially in textbooks, 
for situations where there are not too many ties.  

 
But how many is too many?  Methods 8 and 9 
are absent from Table 4 because the Type I error 
results were unacceptable across all 
combinations of tests and simulation parameters. 
 
Power Results 
 The remaining research questions were 
only studied for those combinations of test, 
method,    number    of    groups,   directionality, 
sample size and distribution for which Question 
1 was answered in the affirmative as shown   in 
Table 4. In order to answer the 3rd and 4th 
research questions it was necessary to analyze 
the   power   results   from   a   large  number   of 
simulation runs in a manner that might permit 
determination of the order of preference of 
methods across various combinations of 
simulation parameters for each test. 

 

Table 5. Preferred Methodsk, l, m, n, o, p by Test and Micceri (1986) Data Set 
________________________________________________________  
 
                                 Test 
             ___________________________________________ 
 
Data Set     K-Sa    Rb      TQc     W-M-Wd   K-We    T-Jf 
________________________________________________________  

EAg          M-4,    M-1/    na      M-4     M-4,    M-4 
             M-1     M-2/                    M-6 
                     M-4 
EBh          na      na      na      M-4     M-4/    M-4 
                                             M-6 
MLi          M-4     M-3    M-4      M-3     M-4/    M-4 
                                             M-6, 
                                             M-1 
SSj          M-4     M-3    M-4      M-4,    M-4/    M-4 
                                     M-3     M-6, 
                                             M-1 

     ________________________________________________________ 
 
Note. A/B indicates very similar results, A, B indicates A better than B. 
aK-S = Kolmogorov-Smirnov Test, bR = Rosenbaum’s Test, cTQ = Tukey’s Quick Test. 
dW-M-W = Wilcoxon-Mann-Whitney Test, eK-W = Kruskal-Wallis Test. 
fT-J = Terpstra-Jonckheere Test. 
gEA = Extreme Asymmetric Data Set, hEB = Extreme Bi-modal Data Set, 
iML = Multi-modal Lumpy Data Set, jSS = Smooth Symmetric Data Set. 
kM-1 = Average of least and most likely to reject, lM-2 = Count ties as ½, mM-3 = Alternating,  
nM-4 = Random, oM-5 = Delayed Increment, pM-6 = Mid-ranks. 
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Question 2: For samples drawn from 
populations differing only in location, is there a 
preferred method of resolving tied ranks for each 
combination  of test  and data set, irrespective of  
the number of groups, directionality, and sample 
size? 

As shown in Table 5, the random 
method was the preferred method (13 of 20), or 
tied for first (4 of 20), for the vast majority of 
combinations of test and data set (17 of 20). The 
method of analysis employed for this purpose 
involved ranking the power results across 
methods for each specific combination of test, 
number of groups, nominal alpha level and 
distribution at each combination of nominal 
effect size multiplier and initial sample size. 
Mean ranks were then calculated in three ways: 
(a) by summing across nominal effect size 
multipliers at each initial sample size, (b) by 
summing across initial sample sizes at each 
nominal effect size multiplier, and (c) by 
summing across both nominal effect size 
multipliers and initial sample sizes. 

Question 3: For samples drawn from 
populations differing only in location, is there a 
preferred method of resolving tied ranks for each 
test, irrespective of the number of groups, 
directionality, sample size, and data set? 

This question requires a conclusion to 
be drawn about the relative behavior of the 
methods across data sets. The results of the 

preceding analysis were used to determine the 
number of first   place   finishes   for   each   test   
for each combination of method and distribution 
across nominal alpha and number of groups. If a 
particular method consistently had the most first 
place finishes for a particular test, across data 
sets, then it could in some sense be considered 
the best method for that test/data set 
combination. As shown in Table 6, random 
resolution of ties was clearly superior for four of 
the six tests, and a close second for another. 

Question 4: Is there a best method for 
resolving ties across all tests and data sets in the 
study? 

Given the results presented in Tables 4, 
5, and 6, random resolution of ties performs best 
across the set of tests, data sets and methods 
examined in this study. 
 

Conclusion 
 

This study examined various methods of 
resolving equal data values (tied ranks) in a set 
of distribution-free statistical tests of location or 
general difference for k independent samples 
using Monte Carlo simulations with theoretical 
Normal and discrete, non-normal data. These 
tests were all based on the assumption of 
continuity in the underlying population. As such, 
the presence of ties—which occurred frequently 
with the discrete, non-normal data sets—and the 

Table 6. Best Methodg, h, i, j By Test Across Distributions 
___________________________________________  
 
K-Sa     Rb      TQc    W-M-Wd   K-We    T-Jf 
___________________________________________  

M-4i     M-3h    M-4     M-4     M-4,    M-4, 
                                M-3     M-6j, 
                                        M-1g 

     ___________________________________________ 
 
Note. A, B indicates A better than B. 
aK-S = Kolmogorov-Smirnov Test, bR = Rosenbaum’s Test, cTQ = Tukey’s Quick Test,  
dW-M-W = Wilcoxon-Mann-Whitney Test, eK-W = Kruskal-Wallis Test,  
fT-J = Terpstra-Jonckheere Test. 
gM-1 = Average of least and most likely to reject, hM-3 = Alternating, iM-4 = Random. 
jM-6 = Mid-ranks. 
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efficacy of various methods of resolving them 
were of theoretical and practical interest. 

Of the methods investigated for 
resolving ties, random resolution seemed to 
perform best, in the sense of guarding against 
inflation of Type I error rates while maintaining 
power, for the majority of combinations of 
simulation parameters, but not all. This is of 
interest both theoretically and practically. First, 
although random resolution might be expected 
to produce the best results on theoretical 
grounds, it does not always do so. There are also 
strong objections in practice to resolving ties at 
random as the outcome of any particular test 
then depends on a secondary random event. But 
what are the consequences of the alternatives if 
random resolution is rejected on these grounds? 
How well do the common alternatives, such as 
mid-ranks or dropping tied values, work? 

The often-recommended method of 
dropping tied values and reducing the sample 
size performed very poorly across all 
combinations of simulation parameters. Based 
on the results of this study, this method should 
not be used. All of these tests and methods also 
performed poorly with Likert scale data (i.e., 
Micceri, 1986, Extreme Bi-modal data set). 
They should not be used with discrete 
population data sets that contain relatively few 
distinct values. 
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Appendix 
 Micceri (1986) data sets (see 
Sawilowsky & Blair, 1992): 
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Figure A1. Micceri (1986) extreme asymmetric data set. See Sawilowsky & Blair (1992). 
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Figure A2. Micceri (1986) extreme bi-modal data set. See Sawilowsky & Blair (1992). 
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Figure A3. Micceri (1986) multi-modal lumpy data set. See Sawilowsky & Blair (1992). 
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Figure A4. Micceri (1986) smooth symmetric data set. See Sawilowsky & Blair (1992). 
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