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A modification to testing pairwise comparisons that may provide better control of Type | errors in the
presence of non-normality is to use a prdiminary test for symmetry which determines whether data
should be trimmed symmetrically or asymmetrically. Several pairwise MCPs were investigated,
employing a test of symmetry with a number of heteroscedastic test statistics that used trimmed means
and Winsorized variances. Results showed improved Type | error control than competing robust statistics.
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Introduction

Pairwise multiple comparison procedures
(MCPs) are adversdy affected by nonnormality,
particularly when variances are heterogeneous
and group sizes are unequal (Keselman, Lix, &
Kowalchuk, 1998). Specifically, Type | errors
are liberal, resulting in spurious reections of
null hypotheses. The deleterious effects of
nonnormality on rates of Typel error are, for the
most part, attributable to asymmetry of
distributions, that is, to skewness (Westfall &
Young, 1993). These results are predictable on
theoretical grounds. Cressie and Whitford
(1986) showed that Student’s two-sample t test
is not asymptotically correct when the group
distributions have unequal third cumulants and
sample sizes are unequal; therefore, Typel error
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inflation is expected. In the one-way
independent groups problem, Keselman, Lix, et
a. (1998) found Type | error rates for popular
pairwise MCPs approached .21 (o =.05) when
data were obtained from skewed distributions
where group variances and sample sizes were
unequal and negatively paired with one another.
One potential solution to this Type |
error inflation is to replace the usual least
sguares estimators with estimates which are less
influenced by the effects of nonnormality.
Indeed, many investigators have shown that
better results can be obtained by using statistics
designed for heterogeneity combined with robust
estimators of central tendency and variability
(see Kesdlman, Kowalchuk, & Lix, 1998; Lix &
Keselman, 1998; Wilcox, Kesdman, &
Kowalchuk, 1998; Yuen, 1974). For example,
Keselman, Lix et al. (1998) found that the
methods due to Ryan (1960), Welsch (1977),
Peritz (1970), Shaffer (1979; 1986), Hayter
(1986), and Hochberg (1988) provided much
better Typel error control, typically having rates
less than .075 when based on a heteroscedastic
statistic with trimmed means and Winsorized
variances. Though rates improved, these
methods were, nonetheless, till occasionally
affected when distributions were nonnormal,
variances were heterogeneous, and group sizes
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were unequal. That is, rates occasionally
exceeded .075.

An approach that may provide improved
Type | eror control for tests of trimmed mean
equality (pairwise) is to use a preliminary test
for symmetry which determines whether data
should be trimmed symmetrically or
asymmetrically. Keselman, Wilcox, Othman,
and Fradette (2002) found that by using atest for
symmetry in conjunction with a test for equality
of trimmed means, Type | error rates were well
controlled when data were extremdy
heterogeneous and nonnormal in a one-way
independent groups design. The test of
symmetry investigated was first proposed by
Hogg, Fisher, and Randles (1975) and later
modified by Babu, Padmanabhan and Puri
(1999). Specifically, two indices are computed,
one that determines tail thickness and the other
symmetry of the underlying distribution. The
calculations determine whether a test of mean
equality is based on symmetrically or
asymmetrically trimmed means (see Othman,
Keselman, Wilcox, Fradette, & Padmanabhan,
2002, for details of the test of symmetry).

Keselman, Lix, & a. (1998)
symmetrically trimmed 20% of the data per
group and used an approximate degrees of
freedom Welch (1938) test datistic for the
pairwise  comparisons.  Although, 20%
symmetric trimming is recommended (Wilcox,
1995), theory would imply that asymmetric
trimming would be more appropriate when data
are skewed (Kesdman et al., 2002; Othman et
a., 2002). The rationale behind asymmetric
trimming is to remove more of the offending
data (i.e., data that does not represent the bulk of
the observations, that is, the 'typical’ score) from
the tail containing more of the outlying values.
Keselman et al. (2002) found other percentages
of trimming, ether symmetrically or
asymmetrically, resulted in better Type | error
control than uniformly adopting 20% symmetric
trimming. For example, 15% symmetric
trimming or 15% asymmetric trimming resulted
in fewer non-robust values compared to always
adopting 20% symmetric trimming.

In addition, Keselman et a. (2002)
found that transformations (i.e., Johnson, 1978;
Hall, 1992) of the Welch-James heteroscedastic
statistic improved Type | error control. The

Johnson and Hall transformations are intended
to remove the bias due to skewness. This is
consistent with Guo and Luh (2000) and Luh
and Guo (1999) who found that transformations
of the Welch-James dtatistic improved its
performance when trimmed means were used
and distributions were skewed and heavy-tailed.
Aswell, Keselman ¢ al. (2002) found improved
Type | eror control when the transformed
heteroscedastic statistics were preceded by a test
of symmetry under extreme conditions of
nonnormality and variance heterogeneity in a
one-way independent groups design. Thus, the
purpose of this article was to investigate whether
these procedures would be beneficial in the
pairwise multiple comparison problem.

Test of Symmetry

Othman et al. (2002) provided the
details for the test of symmetry, a test based on
the work of Hogg et al. (1975) and Babu et al.
(1999). Essentially, two indices are computed,
one index (Q,) determines tail-weight (light or
heavy) while the other index (Q,) determines the
symmetry of an underlying distribution. The
value of the Q, index classifies a distribution as
normal-tailed, heavy-tailed, or very heavy-tailed
which then determines the number of sample
points to be used in the computation of the Q,
index. If the distribution is determined to be (a)
normal-tailed, then all sample points are used,
(b) heavy-tailed, then the top and bottom 10% of
sample points are trimmed, or (c) very heavy-
tailed, then the top and bottom 20% of sample
points are trimmed. That is, the value of the Q,
index determines the symmetry/asymmetry of a
distribution (i.e., left skewed, symmetric or right
skewed) which then determines the type of
trimming (Symmetric vs asymmetric). Keselman
et a. (2002) provided a SAS/IML (1989)
program to compute the test of symmetry.

Raobust Estimation

Robust estimates of central tendency
and variability were applied to heteroscedastic
statistics. Specifically, trimmed means and
Winsorized variances were used in order to test
the hypothesis of the equality of population
trimmed means in the parwise multiple
comparison problem. Let
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represent the ordered observations associated
with the jth (j=1,...,J) group, where n; is the
sample sizein the jth group. Let

g, = m, |

where vy represents the proportion  of
observations to be trimmed in each tail of the
distribution and [X] is the greatest integer < x.
The effective sample size for the jth group
becomesh, =n, —2g; . The jth sample trimmed

meanis

. 19
My == Z Y(i)j' (1)

hj i=g;+1

The sample Winsorized mean is necessary in
order to compute the Winsorized variance. The
jth sample Winsorized mean is

1

ﬂwj :_Z Xij (2)
n, =
where
Y(Qj+1)j If Yij SY(Q]”—)]
X =1Y; if Yo, <Y <Y g
Y(nj_gj)j If Y'J ZY(nj_gj)j.

The sample Winsorized variance is required in
order to get a valid estimate of the standard error
of a trimmed mean. The sample Winsorized
variancefor the jth group is

12 )
W= —1Z(X"’ ~Ay)

and the estimated standard error of the trimmed
meanis

\/(”j _1)5'@/[hj (hy _1)] :

Under asymmetric trimming, and
assuming that the distribution is positively
(right) skewed so that observations in the upper
tail of the distribution are trimmed, the effective
sample  size  for the jth group

becomesh, =n, —g;. The jth sample trimmed
mean is

nj—g;

N 1
M :K Zl: Yiyi (3)
i =

and the jth sample Winsorized mean is

1

ﬂwj = _Z Xij ) (4)
n, =
where
YIJ If ij <Y(nj_gj)j
X, = _
CEPRYRLLEN - PRY

The sample Winsorized variance is computed
based on the previous equation with the new

definition of 2z, and the estimated standard

eror of the trimmed mean is aso computed
based on the previous equation with the new

definitions of h, and &, .

Definitions of the Heteroscedastic Statistics
Johanson's (1980) Welch-James (WJ)-
type heteroscedastic statistic (see Lix &
Keselman, 1995) with robust estimators has
been found to obtain better Type | error control
than the WJ datistic with least squares
estimators in independent groups designs under
nonnormality and variance heterogeneity (see
Guh & Luh, 2000; Keselman, Kowalchuk, et al.,
1998; Kesdman, Lix, e a., 1998; Lix &
Keselman, 1998; Luh & Guo, 1999; Wilcox et
a. 1998). Guo and Luh (2000) found that two
transformations of the WJ statistic combined
with the use of trimmed means and Winsorized
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variances resulted in better Type | error control
than the WJ statistic with trimmed means and
without a transformation for various skewed and
heavy-tailed distributions. Specifically,
Johnson's  (1978) or  Hal's (1992)
transformations of the WJ statistic are intended
to remove skewness. Hence, the transformations
contend with skewness, trimmed means contend
with heavy tails, and a heteroscedastic statistic
contends with variance heterogeneity (Luh &
Guo, 1999).

In the present  study, both
transformations of the WJ statistic for removing
skewness were investigated along with the
nontransformed WJ statistic. Let

iy, i1, 65 andh be the trimmed mean,
Winsorized mean, Winsorized variance, and
trimmed sample size, respectively, for group j.
The third central Winsorized moment of the jth
group is

1&31 - Zl(xu I&WJ )3
j=
Let
L, (M-,  n
2\l 2 _
S CE TR
% _3
qj_ hJ 1V\4]_q_ja Ut_éwja

Luh and Guo (1999) defined Johnson’'s (1978)
transformed trimmed mean statistic as

T(Johnson)j = (/&tj - /&t )

Uy a
2. T oaa
66,,h, 306,

W

(5)

Wj

+ (ﬂtj _I&t)z'

From Guo and Luh (2000), Hall's (1992)
transformed trimmed mean statistic can be
defined as:

AN |
Tirany :(ﬂtj _M)+—65'2.h
W)
a. ,. . a,, N
(A v (3-8
(6)

Keselman, Wilcox, and Lix (2003)
indicated that sample trimmed means, sample
Winsorized variances, and trimmed sample sizes
can be used to compute the WJ statistic. That is,

WO =3 (4 -4)’ ?)

which, when divided by c, is distributed as an F
variable with degrees of freedom equal to J—1
and

where

Thus, the transformed WJ statistics may be
defined as

J 2
WD =3 w, (T<Johnson)j ) (8)
=

and

J
HWI = > w, (T<Han)j )2 : (9)
j=1

When Johnson’s transformed WJ statistic (JWJ)
and Hall's transformed WJ statistic (HWJ) are
divided by c, they are also distributed as F
variates with no change in degrees of freedom.
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The WJ, IWJ, and HWJ statistics were used not
only for the omnibus test, if one was required,
but for the pairwise tests for each of the MCPs
investigated.

Multiple Comparison M ethods

The MCPs investigated, adopt stepwise
testing for controlling the overall (familywise)
rate of Type | eror. Specifically, the MCPs
examined were the (@) Ryan (1960)-Welsch
(1977) multiple range procedure, (b) Peritz
(1970) procedure, (c¢) Shaffer (1986)
sequentially rejective Bonferroni procedure, (d)
Shaffer (1986) sequentially rejective Bonferroni
procedure that begins with an omnibus test, (€)
Hochberg (1988) step-up sequentially acceptive
Bonferroni  procedure, (f) multiple range
procedure that begins with an omnibus test (see
Shaffer 1979; 1986), and (g) Hayter (1986) two-
stage modified least significant difference (LSD)
procedure. These MCPs were previously
investigated by Keselman, Lix, et al. (1998).

The Ryan (1960) and Welsch (1977)
multiple range procedure begins by examining
the J range, and steps down to examine
successively smaller ranges only when a larger
range test is declared significant. The
designation g is used to dencte this MCP.
According to Ryan and Welsch, the overall rate
of Type | eror is controlled at a (when
assumptions are satisfied) for a set of p (p =
2,..., J) means if each test is assessed for
significance at alevel equal to

a, :1—(1—0:)% [2<p<Jd-2],

o, =0, =a.

The Peritz (1970) procedure follows the
same step-down logic of the usual range
procedure, but assesses significance with
Newman (1939), Keuls (1952), and/or Ryan-
Welsch critical values. This MCP is designated
PER. Shaffer's (1986) sequentially reective
Bonferroni procedure uses probability (p) values
in assessing the pairwise hypotheses taking into
account the number of hypotheses rejected at
earlier stages in the sequence of testing in
arriving at decisions regarding significance. The
abbreviation for this MCP is SRB.

Shaffer's (1986) sequentially regective
Bonferroni procedure begins with an omnibus
test (i.e, WJ, IWJ, HWJ), and if rejected,
assesses  significance of  the  pairwise
comparisons by taking into account the number
of true pairwise hypotheses remaining given
previous rejections. Because three omnibus
statistics are being investigated, there are three
SRB MCPs and they are designated as WJSRB,
JWJSRB, and HWJSRB.

Hochberg's (1988) step-up sequentially
acceptive Bonferroni  procedure uses the p
values associated with the pairwise tests to
arrive at accept-regject decisions; these are
determined sequentially and hypotheses can be
rgected by implication. Hochberg’'s MCP s
designated as HOCH. Another set of MCPs were
based on the modified range procedure due to
Shaffer (1979; 1986), which starts with an
omnibus test and only upon rejection, moves on
to test range hypotheses with Ryan-Welsch
critical values, modifying the Jrange critical
value to one based on J1 means. The
abbreviations of these three (stage 1 omnibus)
Shaffer MCPs are WJ/gq, JWJq, and HWJq.
Lastly, Hayter’'s (1986) modified LSD begins
with an omnibus test, which if rejected leads to
the Stage 2 tests of the pairwise comparisons
using a Studentized range critical value for J1
means. The three MCPs based on Hayter's
method are designated: WJYHAY, JWJHAY,
and HWJHAY. Detailed descriptions of all the
pairwise MCPs can be found in the original
references.

Methodol ogy

Seven pairwise MCPs were compared in terms
of Type | eror control under conditions of
nonnormality and variance heterogeneity in one-
way independent groups designs. Variables that
were examined by Keselman, Lix, et al. (1998)
were chosen for investigation. Eight variables
were manipulated in the present study: (@)
number of groups (3 and 6), (b) sample size
(equal or not equal), (c) degree/pattern of
variance heterogeneity [moderate and large/all
(mostly) unequal and all but one equal], (d)
pairing of groups sizes and variances, (€) type of
nonnormal population distribution, (f) method of
computing a test of symmetry, (g) percentage of
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trimming, and (h) type of heteroscedastic
statistic.

One-way independent groups designs
containing three and six groups to evaluate the
effect of number of pairwise comparisons on
Type | error were chosen for investigation. That
is, for the former case, only three pairwise
comparisons were tested, whereas, in the latter
case, 15 pairwise comparisons were tested.

The sample sizes in each of the groups
were either equal or unequal. When equal, C =
0, and when unegual, C = .163 and .327, where
C denotes a coefficient of group size variation
defined as

[Z(nj —ﬁ)zle%/ﬁ, where i

j

is the average group size. When equal, group
Sizes were set at 20 in boththeJ=3 and J= 6
designs. When unegual, and for the J = 3 design,
the two cases of group size inequality were 16,
20, 24 (C = .163) and 12, 20, 28 (C = .327),
while for the J = 6 design, the group sizes were
16, 16, 20, 20, 24, 24 (C =.163) and 12, 12, 20,
20, 28, 28 (C =.327).

Two patterns of variance heterogeneity
were examined: (@) all (most) variances unequal
(Pattern 1) and (b) all variances equal but one
(Pattern 2). When J = 3, Pattern 1 was 1, 9, 16
and Pattern 2 was 1, 1, 16. The patternsfor J=6
were, respectively, 1, 1,4, 9,9, 16, and 1, 1, 1,
1,1, 16.

Seven cases of group sizes and
variances pairings were investigated. Group
sizes were both equal and unequal and paired
with equal and unequal variances. Specifically,

the combinations were: (a) equal n;; equal O'jz,
(b/b’) equal n;; unequal O'jz, (c/c’) unequal n;;
unequal O'j2 (positively paired), (d/d’) unequal

n,; unequal o? (negatively paired). The b/c/d
notation represents the Pattern 1 variance
conditions, whereas the b'/c'/d" notation
represents the Pattern 2 variance conditions.
Considering the group size and variance
inequalities, there were a total of eeven
combinations.

To examine distributional shape, four
nonnormal distributions with varying degrees of
skewness (y;) and kurtosis (y,) were chosen for
investigation. A chi-square (y°) distribution
and three g- and h-distributions (Hoaglin, 1985)
were selected. Specifically, the four nonnormal
distributions were: (a) Zé) distribution (y; =
1.63, y> = 4.00); (b) g =.5and h =0 distribution
(yr = 175, v, =89); (¢0g=1and h =0
distribution (y; = 6.2, v, = 114); and (d) g = .25
and h = .25 distribution (y; and y, undefined).
The three g- and h- distributions are hereafter
notatedas(g=.5,h=0),(g=1,h=0),and (g=
25, h = .25), respectively. These nonnormal
distributions were selected because educational
and psychological research data are typically
skewed and/or heavy-tailed (Micceri, 1989;
Wilcox, 1990).

To generate pseudorandom variates
having a chi-square ( ¥*) distribution with 3
degrees of freedom, three standard normal
variates were squared and summed. The variates

were transformed toyy variates having

mean /; (population trimmed mean) and o

(see Hastings & Peacock, 1975, p. 46-51, for
further details). To generate data from a g- and
h-distribution, standard unit normal variables (Z)
were converted to the random variable

- exp(gZij )_1exp[h§ij j’ (10)

ij g

according to the values of g and h selected for
investigation. 4, was subtracted from each

observation. To obtain a distribution with
standard deviationo; , each transformed X;; (j =

1, ..., J) was then multiplied by a value of o;.

The standard deviation of a g- and h-distribution
is not equal to one, and thus the values for the
variances/standard deviations reflect the ratio of
the variances/standard deviations between the
groups (see Wilcox, 1994). Each population
distribution was empirically generated and the
indices of tail weight and symmetry were
computed in order to determine whether the
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population trimmed mean used for centering
should be based on symmetric or asymmetric
(e.g., right tailed) trimming for the percentage of
trimming cases investigated.

Three approaches to computing the test
of symmetry were examined by calculating the
indices (Q; and Q) within each group and then:
(a) using a weighted mean of the indices across
al groups to determine the type of trimming for
every group (average estimate; see Othman et al.
2002); (b) using the value for each particular
group to determine the type of trimming for that
group (individual estimate), and (c) using a
weighted mean of the indices across two groups
to determine the type of trimming for the groups
involved in each particular comparison (pairwise
estimate). The test of symmetry based on
pairwise estimates could not be applied to an
omnibus test, so only the MCPs that do not
require an omnibus test were considered for this
approach. In addition, the pairing of groups had
to be predetermined in order to compute the
weighted mean of the indices across the two
groups in each pairwise comparison and this
prevented the use of the approach with the range
MCPs. Thus, the third approach was applied to
only the SRB and HOCH procedures. The three
approaches to symmetric/asymmetric trimming
were compared to always adopting symmetric
trimming. The Q; and Q, indices determine
whether symmetrically/asymmetrically trimmed
means for each group were used in the pairwise
MCPs. For those MCPs that require an omnibus
test, the same approach to trimming (i.e,
average estimate, individual estimate or
symmetric trimming) was adopted for the
omnibus and the pairwise tests.

The following combinations  of
symmetric  and asymmetric  trimming
percentages were investigated: (a) either 10%
symmetric or 20% asymmetric trimming
(10/20), (b) ether 15% symmetric or 30%
asymmetric trimming (15/30), (c) either 20%
symmetric or 40% asymmetric trimming
(20/40), (d) either 10% symmetric or 10%
asymmetric trimming (10/10), (e) either 15%
symmetric or 15% asymmetric trimming
(15/15), and (f) either 20% symmetric or 20%
asymmetric  trimming (20/20). As wadll,
symmetrically trimming 10%, 15%, and 20% of
the data was investigated. Hence, the various

combinations of trimming percentages were
chosen to evaluate whether there would be an
optimal proportion of trimming.

Three heteroscedastic statistics were
examined: (a) Welch-James statistic (WJ), (b)
Johnson's (1978) transformation of WJ (JWJ),
and (¢) Hal's (1992) transformation of WJ
(HWJ) (see Guo & Luh, 2000; Keselman et al.
2002; Luh & Guo, 1999). The seven pairwise
MCPs were computed with each of the
heteroscedastic statistics, resulting in a total of
21 pairwise MCPs.

Type | error rates were based on five
thousand replications using a .05 level of
significance for the complete null hypothesis.

Results

Bradley's (1978) liberal criterion of robustness
to assess Type | error rates was chosen. That is,
if an empirical estimate of Typel error (&) was

contained within the interval of .50 < 5( < 1.50,
then the procedure was considered robust. For a
significance level of .05, the interval is .025 <
0 < .075. If the Type | error was not contained
in this interval, then a procedure was considered
nonrobust for that particular condition. In the
tables, bold entries correspond to these latter
values.

Because of the large humber of MCPs
investigated and the form of assumption
violations examined, only the mean Type | error
rates (percentages), averaging across the eleven
combinations of group sizes, and variances were
tabled. Plus and minus symbols next to the
tabled error rates are used to identify whether
the minimum to maximum range of Type | error
rates across the eleven combinations contained a
conservative (-) value, a liberal (+) value, or
both conservative and liberal () values. A
conservative value is defined as an error rate
below Bradley’s lower limit (2.50%) and a
liberal value is defined as an error rate above
Bradley’s upper limit (7.50%). Because of space
considerations and the similar pattern of results
for the chi-square and (g = .5, h = 0)
distributions, only the latter are tabled.
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J=3

Tables 1 through 3 contain the summary
percentages for the(g=.5,h=0), (g=1, h=0),
and (g = .25, h = .25) distributions, respectively.
When the number of groups is equal to threg, a
few of the MCPs investigated are identical.
Specifically, the Hayter (1986) two-stage and
Shaffer (1986) sequentially rejective Bonferroni
procedure that begins with an omnibus test are
identical (denoted as WJ/*, IWJ/*, and HWJ/*
in Tables 1 through 3). Additionally, the Ryan
(1960)-Wdsch (1977) and Peritz (1970)
procedures are identical (denoted as q / PER in
Tables 1 through 3).

g=.5and h = 0 Distribution

When data were obtained from this
particular nonnormal distribution, all MCPs
were robust when preceded by the symmetry test
with 10/10 symmetric/asymmetric trimming
where the indices of tail weight and symmetry
were averaged over al groups and under the
10%, 15%, and 20% symmetric trimming cases
(see Table 1). The chi-square distribution had a
similar pattern of results, however all MCPs
were also robust under the 15/15 and 20/20
symmetric/asymmetric  trimming where the
indices were averaged over al groups. MCPs
preceded by the test of symmetry generally had
mean Type | error rates closer to the nominal 5%
level compared to the strategy of aways
adopting symmetric trimming. For the symmetry
test based on averaging (tail-weight and
symmetry) indices across all groups, the mean
eror rates across robust MCPs were 4.83%,
4.80%, and 5.22% for the 10/10, 15/15, and
20/20 trimming cases, respectively and for the
symmetry test based on the indices taken per
group, the mean error rate across robust MCPs
was 5.32% for the 10/10 trimming case. For the
symmetric trimming conditions of 10%, 15%,
and 20%, the mean eror rates across MCPs
were 4.75%, 4.68%, and 4.80%, respectively. In
addition, the general pattern for MCPs preceded
by a test for symmetry was for error rates to
increase as the proportion of trimming increased
(i.e, from 10/20 to 15/30 to 20/40 and from
10/10 to 15/15 to 20/20).

The MCPs based on the WJ statistic
generally had more conservative error rates than
the same MCPs based on the modified WJ

statistics (i.e., IWJ and HWJ), when preceded by
a test of symmetry, a pattern opposite to that
observed for the symmetric trimming cases. For
example, under the 10/10 trimming case
preceded by the test of symmetry based on
indices (tail weight and symmetry) averaged
across all groups, the mean error rates for the
M CPs based on the WJ, JWJ, and HWJ statistics
were equal to 4.70%, 4.87%, and 4.91%,
respectively. However, when adopting 20%
symmetric trimming, the mean error rates across
M CPs based on the WJ, JWJ, and HWJ statistics
were equal to 4.94%, 4.73%, and 4.74%,
respectively. For the chi-square distribution,
regardiess of whether the MCPs were preceded
by a test of symmetry, the MCPs based on the
JWJ and HWJ statistics generally had more
conservative Type | eror rates than the
corresponding M CPs based on the WJ statistic.

The mean eror rates for the SRB and
HOCH procedures based on symmetric
trimming were more conservative than when the
MCPs were preceded by a test of symmetry.
When the test of symmetry was based on
individual group estimates of tail weight and
symmetry, the MCP's mean eror rates were
highest, and decreased when the test was based
on pairwise estimates and further decreased
when the symmetry test was based on average
estimates across groups (a result consistent with
that obtained for the chi-square distribution).
Noteworthy is that the error rates for the SRB
and HOCH MCPs fdl within Bradley's (1978)
limits for the 10/10 trimming percentage
regardiess of the method of computing the test
for symmetry; a result consistent with that
obtained for the chi-square distribution. An
optimal strategy is to use a test of symmetry
with ether parwise estimates or average
estimates across groups with either 10/10 or
15/15 symmetric/asymmetric trimming.

g=1and h =0 Distribution

The use of the test of symmetry resulted
inimproved Type | error control when data were
obtained from the (g = 1, h = 0) nonnormal
distribution (see Table 2). That is, the MCPs
with conservative and/or liberal error rates based
on symmetric trimming became either robust or
closer to Bradley’s (1978) limits when preceded
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Table 1. Summary Percentages of Typel Error for Multiple Comparison Procedures (J= 3; g = .5, h = 0 Distribution)

Average Estimate Individual Estimate
10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20
q/ PER (WJ) 545+ 729+ 956+ 407 450 500 1158+ 19.96+ 29.43+ 490 6.58+ 9.10+
WJa/ q(WJ) 6.37+ 850+ 11.03+ 464 506 564 1328+ 2315+ 3342+ 557 751+ 1043+
WJ/* (WJ) 7.48+ 973+ 1242+ 570 6.10+ 6.73+ 1550+ 26.68+ 38.03+ 6.72+ 899+ 12.33+
SRB (WJ) 565+ 7.3+ 950+ 446 473 526 1231+ 2163+ 3196+ 524 695+ 9.61+
HOCH (WJ) 587+ 7.67+ 9.83+ 462 490 543 1268+ 2217+ 3265+ 543 7.19+ 9.91+

g/ PER (IWJ) 572+ 731+ 928+ 425 443 487 1258+ 2157+ 3146+ 505 6.67+ 9.30+
JwWJa/ g (IWJ) 6.55+ 848+ 1069+ 480 509 544 1428+ 2471+ 3519+ 570+ 7.63+ 10.56+
JwWJa/* (W) 7.66+ 971+ 1215+ 583 6.15+ 6.52+ 16.62+ 28.38+ 40.00+ 6.80+ 9.14+ 1251+
SRB (JWJ) 586+ 7.43+ 943+ 466 472 508 1353+ 2341+ 3429+ 536 7.13+ 9.80+
HOCH (IWJ) 6.06+ 7.68+ 9.74+ 482 489 525 13.87+ 2397+ 3503+ 554 7.34+ 10.08+
g/ PER (HWJ) 575+ 7.36+ 937+ 429 446 489 12.62+ 2163+ 3153+ 510 6.71+ 933+
HWJ/ g (HWJ) 6.58+ 852+ 1079+ 483 511 546 1431+ 2477+ 3530+ 575+ 7.67+ 10.58+
HWJ/* (HWJ) 769+ 976+ 1225+ 587 6.17+ 6.54+ 16.66+ 28.44+ 4012+ 6.87+ 9.17+ 1253+
SRB (HWJ) 590+ 749+ 955+ 470 476 510 1358+ 2347+ 3440+ 542 7.17+ 9.83+
HOCH (HWJ) 6.09+ 773+ 986+ 486 492 527 1390+ 2401+ 3512+ 559 7.39+ 10.10+
Pairwise

Estimate
SRB (WJ) 6.39+ 9.03+ 1241+ 446 491 570
HOCH (WJ) 6.59+ 9.24+ 1268+ 4.62 508 586
SRB (IWJ) 6.85+ 9.31+ 1253+ 468 496 562
HOCH (JWJ) 7.00+ 951+ 1279+ 483 510 577
SRB (HWJ) 6.89+ 937+ 1263+ 473 499 564
HOCH(HWJ) 7.03+ 957+ 1288+ 488 513 579
No Preliminary Test (symmetric
trimming)

10 15 20
g/ PER (WJ) 424 426 443
WJ/ q(WJ) 465 465 4.80
WJ/* (WJ) 560 559 584
SRB (WJ) 462 465 475
HOCH (WJ) 474 477 487

q/ PER (JWJ) 423 409 429
WJI/ q (W) 454 447 454
I/ * (W) 552 543 556
SRB (JWJ) 455 446 457
HOCH (JWJ) 471 458  4.69
q/PER(HWJ) 426 411 430
HWJ/q(HWJ) 460 450 455
HWJ/* (HWJ) 559 547 557
SRB (HWJ) 461 449 459
HOCH (HW.J) 477 461 AT1

Notes 10/20 = 10% symmetric/20% asymmetric trimming; 15/30 = 15% symmetric/30% asymmetric trimming; 20/40 = 20%
symmetric/40% asymmetric trimming; 10/10 = 10% symmetric/10% asymmetric trimming; 15/15 = 15% symmetric/15%
asymmetric trimming; 20/20 = 20% symmetric/20% asymmetric trimming; ¢/PER indicates that q and Peritz procedures are
equivalent; /* indicates that the SRB and Hayter procedures are equivalent; HOCH is the Hochberg procedure; 10 = 10%
symmetric trimming; 15 = 15% symmetric trimming; 20 = 20% symmetric trimming; bold entries indicate values that exceeded
Bradley's (1978) lower and upper limits; + indicates a liberal value, - indicates a conservative value, and + indicates both
conservative and liberal valuesin the minimum to maximum range of error rates.
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Table 2. Summary Percentages of Type | Error for Multiple Comparison Procedures (J= 3; g = 1, h= 0 Distribution)

Average Estimate Individual Estimate

10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20
q/ PER (WJ) 446 455 483 433 409 431 677+ 1028+ 14.18+ 425 447 534
WJ/q(WJ) 501 514 542 497 478 484 755+ 1135+ 1564+ 482 514 6.06+
WJa/* (WJ) 6.26+ 6.3+ 6.55+ 646+ 6.12+ 6.06+ 9.11+ 13.36+ 18.05+ 6.16+ 6.46+ 7.46+
SRB (WJ) 506- 504 522 530+ 485> 493 7.42+ 1099+ 1502+ 505 514 5.89%
HOCH (WJ) 517- 518 538 542+ 497- 503 763+ 1132+ 1549+ 515 529 6.06+
q/ PER (IWJ) 442 422 429 474 418 420 7.24+ 1092+ 1485+ 461 461 533
IWI/ g (IWJ) 501 478 478 523 487 476 803+ 1196+ 16.08+ 507 530 6.12+
JWI/* (IWJ) 6.22+ 595+ 6.02+ 6.70+ 6.22+ 594+ 966+ 14.12+ 18.68+ 643 6.62+ 7.48+
SRB (IWJ) 497- 481- 490- 553 489 478 7.94+ 1182+ 1592+ 525 515 58%
HOCH (JwWJ) 511- 492- 504- 567 501 491- 812+ 1216+ 1636+ 539 528 6.06+
q/ PER (HWJ) 443 424 435 483 423 421 726+ 1096+ 1492+ 470 466 534

HWJ/ g (HWJ) 503 482 48 533 490 478 806+ 1203+ 16.17+ 515 534+ 6.14+
HWJ/* (HWJ) 6.24+ 598+ 6.11+ 6.81+ 6.25+ 597+ 969+ 14.15+ 1875+ 6.53+ 6.66+ 7.50+

SRB (HWJ) 499- 484- 497- 564 493 480 7.97+ 1186+ 16.00+ 536 520 590+
HOCH (HWJ) 5.14- 495 511- 578 505 494- 816+ 1220+ 1644+ 551 532 6.09+
Pairwise Estimate

SRB (WJ) 522 539+ 582+ 525+ 4.80- 493

HOCH (WJ) 533 553+ 597+ 535+ 491- 502

SRB (JWJ) 531 531+ 5.62+ 550 484 4.81-

HOCH (JWJ) 543 541+ 574+ 562 495 4.93-

SRB (HWJ) 533 534+ 568+ 561 489 483

HOCH(HWJ) 546 544+ 581+ 574 500 4.96-

No Preliminary Test (symmetric trimming)
10 15 20

q/ PER (WJ) 461 441  4.60-
WJ/ g (WJ) 522 500 500
WJI/* (WJ) 6.64+ 6.31+ 631+
SRB (WJ) 557+ 524- 531
HOCH (WJ) 566+ 5.36- 5.40+
q/ PER (JWJ) 480 441 450
WJI/ g (IwJ) 524 494 489
IWI/* (WD) 6.66+ 6.18+ 6.09+
SRB (JWJ) 559 511 515
HOCH (JWJ) 571+ 523 524
q/ PER (HW.) 491 445 452

HWJ/ g (HWJ) 534 501 4091
HWJ/ * (HWJ) 6.78+ 624+ 6.12+
SRB (HWJ) 568+ 517 5.17-
HOCH (HW.J) 582+ 530 526

Note. See note from Table 1
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Table 3. Summary Percentages of Type |l Error for Multiple Comparison Procedures (J=3; g=.25, h=.25

Distribution)
Average Estimate Individual Estimate

10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20
g/ PER (WJ) 472 611+ 764+ 366 411- 469 6.62+ 1173+ 17.69+ 3.36- 449 6.38+
WJ/q(WJ) 517 683+ 862+ 394 448 509 728+ 1292+ 1932+ 371 495 6.88+
WJ/* (WJ) 6.11+ 7.92+ 993+ 477 540 6.07+ 863+ 1525+ 2251+ 447 590 8.23+
SRB (WJ) 492 629+ 786+ 391 435 488 715+ 13.03+ 19.75+ 359 482 6.83+
HOCH (WJ) 507 645+ 805+ 403 448 503 732+ 1330+ 2012+ 370 495 7.03+
g/ PER (JWJ) 595+ 7.87+ 10.06+ 447 481 547 820+ 1519+ 2275+ 395 529 7.71+
WJI/q(IWJ) 649+ 857+ 1090+ 484 522 595+ 885+ 1647+ 2437+ 423 572 818+
IWI/*(IWJ) 757+ 968+ 1216+ 584 6.22+ 6.99+ 1054+ 1924+ 2816+ 511 6.77+ 9.75+
SRB (JWJ) 6.31+ 8.11+ 1040+ 4.79 510 574+ 9.06+ 1697+ 2565+ 4.15 564 8.40+
HOCH (JwWJ) 6.45+ 829+ 1058+ 492 525 589+ 925+ 17.21+ 2599+ 428 580 8.61+
g/PER(HWJ)) 6.02+ 797+ 1021+ 451 485 553 829+ 1537+ 23.00+ 398 533 7.80+
HWJ/gq(HWJ) 657+ 866+ 1102+ 4.838 526 598+ 896+ 16.65+ 24.60+ 427 576+ 8.26+
HWJ/* (HWJ) 7.67+ 9.80+ 12.28+ 591 6.27+ 7.02+ 10.66+ 19.46+ 2842+ 516 6.82+ 9.84+
SRB (HWJ) 6.38+ 823+ 1057+ 4.85 517 580+ 9.7+ 17.22+ 26.01+ 419 569 851+
HOCH (HWJ) 652+ 841+ 10.74+ 497 532 595+ 936+ 1748+ 2632+ 433 585 870+
Pairwise Estimate
SRB (WJ) 533 724+ 942+ 399 455 520
HOCH (WJ) 544 736+ 957+ 410 466 531
SRB (JWJ) 6.88+ 971+ 1314+ 493 542 6.24+
HOCH (JwWJ) 7.01+ 986+ 1328+ 505 554 6.36+
SRB (HWJ) 6.98+ 986+ 1345+ 499 547 6.31+
HOCH(HWJ) 711+ 1000+ 1358+ 510 560 6.42+
No Preliminary Test (symmetric
trimming)

10 15 20
q/PER(WJ  3.42- 350- 3.72
WJ/q(WJ) 364 382 3.98
WJ/* (WJ) 442 462 4.84
SRB (WJ) 361 372 3.94
HOCH (WJ) 372 381 4.05
q/PER(AWJ) 407 381 3.84
WI/q@WJ) 439 415 4.11
war*(@JdwJ 532 500 4.98
SRB (IWJ) 429 404 4.03
HOCH (JWJ) 443 416 4.14
q/PER(HWJ 410 3.83 3.85
HWJ/q(HWJ)) 444 417 411
HWJ/* (HWJ) 537 5.03 5.00
SRB (HWJ) 434 406 4.05
HOCH (HWJ) 447 418 4.15

Note. See note from Table 1
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by atest of symmetry, particularly for the MCPs
based on the modified WJ statistic (i.e.,, JWJ or
HWJ).

Specifically, al the MCPs based on the
10/10 trimming case with the test of symmetry
based on individual group estimates of tail
weight and symmetry had rates of Type | error
within Bradley’s (1978) limits except the Hayter
(1986) two-stage and Shaffer (1986)
sequentially rejective Bonferroni procedure that
begins with an omnibus test utilizing the WJ
statistic (denoted WJ/*) and the HWJ statistic
(denoted HW.J/*) with liberal rates of 8.28% and
7.52%, respectively. Interestingly, this particular
condition had the largest number of MCPs that
fel within Bradley’s lower and upper limits. The
mean error rates across robust MCPs based on
the JWJ and HWJ heteroscedastic statistics for
the 10/10 and 15/15 trimming cases were 5.34%
and 4.76%, respectively for the test of symmetry
based on average estimates across groups and
5.27% and 5.07%, respectively for the test of
symmetry based on individual group estimates.

The MCPs based on the WJ statistic
generally had more conservative error rates than
the same MCPs based on the modified WJ
statistic (i.e., WJ and HWJ) when preceded by a
test of symmetry except under the 10/20, 15/30,
20/40, and 20/20 trimming cases for the test of
symmetry based on average estimates across
groups where the opposite pattern was observed
(i.e, WJ based MCPs had higher mean error
rates). Additionally, Type | eror rates for the
MCPs tended to decrease with an increase in the
percentage of trimming (i.e, from 10/20 to
15/30 to 20/40 and from 10/10 to 15/15 to
20/20), except for the MCPs preceded by a test
of symmetry based on individual group
estimates where the pattern was reversed, that is,
error rates tended to increase as the proportion
of trimming increased.

The mean error rates for the SRB and
HOCH procedures indicate that an optimal
strategy is to use atest of symmetry based either
on indices of tail weight and symmetry averaged
across the pairwise comparisons or averaged
across all groups with 15/15
symmetric/asymmetric trimming (i.e, mean
eror rates closer to the nominal 5% level). A
result consistent with the (g = .5, h = 0)
distribution.

g=.25and h =.25 Distribution

When nonnormal data were obtained
from the (g = .25, h = .25) distribution, the use
of the symmetry test based on the individual
group indices resulted in all MCPs having liberal
Type | error rates, for the 10/20, 15/30, 20/40,
and 20/20 trimming cases (see Table 3).
However, improved Type | error control was
obtained when the test of symmetry was based
on indices averaged across al groups or
averaged across the two groups defining the
pairwise comparison. Interestingly, al MCPs
had rates below Bradley’s (1978) upper limit for
the 10/10 trimming case when preceded by the
preliminary test of symmetry, regardless of the
method of computing the test. In addition, all
MCPs had rates of Type | error below Bradley's
upper limit when always adopting 10%, 15%, or
20% symmetric trimming.

The use of the averaged over all groups
tail weight and symmetry indices resulted in
Type | eror rates closer to the nominal level
compared to aways adopting symmetric
trimming. For example, the 10/10 and 15/15
trimming cases had mean rates of Type | error
across non-liberal MCPS equal to 4.69% and
4.91%, respectively, whereas the 10%, 15%, and
20% symmetric trimming cases had mean error
rates, across MCPs equal to 4.27%, 4.13%, and
4.19%, respectively.

The MCPs based on the JWJ or HWJ
heteroscedastic statistics had rates of Type |
error closer to the nominal level compared to
MCPs based on the WJ statistic. For example,
() with the symmetry test based on average
estimates across groups, the mean rates of Type
| error across all five MCPs when based on the
WJ, JWJ, and HWJ test statistics for the 10/10
trimming condition equaled 4.06%, 4.97%, and
5.02%, respectively, (b) with the symmetry test
based on individual group estimates, the mean
eror rates for the 10/10 trimming condition
equaled 3.77%, 4.34%, and 4.39%, respectively,
and (c) with symmetric trimming, the mean rates
for 20% trimming equaled 4.11%, 4.22%, and
4.23%, respectively.

Mean rates of Type | error for the SRB
and HOCH procedures, when preceded by a test
of symmetry based on tail weight and symmetry
estimates from the two groups forming the
pairwise comparison, were higher than when the
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symmetry test was based on the average estimate
of the indices across al groups for a given
trimming condition, with the highest rates
occurring when individual group indices of tail
weight and symmetry were used. The optimal
level of trimming occurs under the 10/10
symmetric/asymmetric trimming case when the
MPCs were based on the JWJ or HWJ statistics
(i.e., mean error rates closest to the nominal 5%
leve).

J=6

Tables 4 through 6 contain the summary
percentages of Typel error for the MPCs for the
(9=.5h=0),(@=1,h=0),and(g=.25 h=
.25) distributions, respectively. The SRB and
HOCH procedures had identical error rates
across the eleven pairings of groups sizes and
variances, thus they have been combined into
onerow in the tables (denoted as SRB/HOCH).

g=.5and h =0 Distribution

All MCPs had Type | error rates below
Bradley's (1978) upper limit (i.e., 7.50%) when
based on the test of symmetry with indices of
tail weight and symmetry averaged over groups
except Hayter's (1986) two-stage and Shaffer’s
(1986) sequentially rejective  Bonferroni
procedure that begins with an omnibus test (i.e.,
WJIHAY, IWJHAY, HWJHAY, WJSRB,
JWJSRB, HWJSRB) under the 20/40
symmetric/asymmetric trimming case (see Table
4). Unlike when J = 3, some MCPs had error
rates below Bradley’s lower limit (i.e, 2.50%).
Specifically, the effected MCPs were the range
procedures [(PER (WJ), g (WJ), WJq, PER
(WJ), g (WJ), IWJq, PER (HWJ), g (HWJ),
and HWJ/qg)] when they were based on the test
of symmetry using an average estimate of tail
weight and symmetry across all of the groups
and symmetric trimming (a result consistent
with that obtained for the chi-square
distribution).

The mean error rate across MCPs for the
10/20, 15/30, 10/10, 15/15, and 20/20 trimming
cases when preceded by the test of symmetry
based on average estimates of tail weight and
symmetry across all groups was equal to 3.57%,

3.94%, 3.39%, 3.31%, and 3.39%, respectively
and for the 10/10 trimming case, when preceded
by the test of symmetry based on individual
group estimates of tail weight and symmetry, the
mean error rate was equal to 4.17%. Thus, an
optimal strategy and level of trimming is to use
10/10 symmetric/asymmetric trimming with the
test of symmetry based on individual group
estimates (a result consistent with that obtained
for the chi-sguare distribution).

The pattern of error rates differed with
the type of heteroscedastic statistic. Error rates
tended to increase as the proportion of trimming
increased for the 10/20, 15/30 and 20/40
trimming cases and for the 10/10, 15/15, and
20/20 trimming cases. However, MCPs based on
the IWJ and HWJ statistics, had rates that tended
to decrease as the proportion of trimming
increased for the 10/10, 15/15, and 20/20
conditions with the test of symmetry based on
average group estimates (a result consistent with
that obtained for the chi-square distribution).

The MCPs based on the WJ statistic
generally had more conservative rates of error
than the same MCPs based on the modified WJ
statistics (i.e., IWJ and HWJ), when preceded by
a test of symmetry based on individual group
estimates or pairwise estimates of tail weight
and symmetry, a pattern opposite to that
observed for the symmetry test based on average
estimates across groups (except under the 10/10
trimming case) or when aways adopting
symmetric trimming.

For example, under the 10/10 trimming
case with the test of symmetry based on indices
(tall weight and symmetry) for individual
groups, the mean error rates for the MCPs based
on the WJ, JWJ, and HWJ statistics were equal
to 4.07%, 4.20%, and 4.25%, respectively and
when based on average indices across groups,
the mean eror rates were equal to 3.29%,
3.43%, and 3.46%, respectively. On the other
hand, when adopting 20% symmetric trimming
the mean error rates across MCPs based on the
WJ, JWJ, and HWJ statistics were equa to
3.63%, 3.45%, and 3.47%, respectively. This
pattern is consistent with the results obtained for
the chi-square distribution.
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Table 4. Summary Percentages of Typel Error for Multiple Comparison Procedures (J = 6; g =.5, h = 0 Distribution)

Average Estimate

Individual Estimate

10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20
PER (WJ) 3.05- 359- 443 267- 277- 297- 935+ 1772+ 27.66+ 3.29- 483+ 7.00+
q(WJ) 297- 347- 423 258 269- 284 9.06+ 17.20+ 26.59+ 3.18- 470+ 6.64+
WJ/q(WJ) 261- 313- 4.04- 226- 241- 250- 890+ 17.70+ 27.83+ 2.89- 434+ 6.41+
WJ/ SRB (WJ) 433 484 6.00+ 397 406 425 1431+ 2811+ 4463+ 495 7.20+ 11.11+
WJ/ HAY (WJ) 513 569 718+ 467 473 501 16.69+ 3257+ 50.30+ 5.79 841+ 13.06+
SRB/HOCH (WJ) 384 419 507 357 353 379 1209+ 2383+ 3870+ 433 619 942+
PER (IWJ) 2.86- 321- 398 282- 271- 267- 10.74+ 2023+ 30.90+ 350- 4.98+ 7.36+
g (JWJ) 275- 3.08- 378 275 263 256- 1045+ 19.63+ 29.87+ 3.39- 4.83+ 7.02+
JWJI/ q (IWJ) 252- 280- 345 239- 229- 229- 1032+ 20.13+ 3107+ 299- 445+ 6.73+
JWJ/ SRB (IWJ) 422 445 549+ 411 395 399 16.08+ 31.60+ 49.35+ 4.99 7.29+ 11.52+
JWJI/HAY (WJ) 501 530 651+ 476 457 471 1872+ 36.12+ 5493+ 583 856+ 1353+
SRB/HOCH (JWJ) 370 391 4838 374 346 354 1387+ 2727+ 4370+ 448 6.37 9.83+
PER (HWJ) 291- 327- 4.09- 285 273 270- 10.80+ 20.32+ 31.03+ 3.55- 503+ 7.40+
g (HWJ) 278 314- 391- 277- 266- 258 1051+ 19.70+ 30.01+ 343- 485+ 7.04+
HWJ/ q (HWJ) 256- 285 358 241- 233- 231- 1038+ 20.21+ 31.22+ 3.03- 448+ 6.78+
HWJ/SRB (HWJ) 428 455 568+ 415 399 403 16.18+ 31.76+ 4957+ 504 7.35+ 1158+
HWJ/HAY (HWJ) 5.06 540 6.71+ 480 461 476 18.82+ 36.24+ 55.13+ 5.89 8.61+ 13.59+
SRB/HOCH (HWJ) 375 400 503 379 349 358 13.97+ 2742+ 43.96+ 454 642 9.8%+
Pairwise Estimate
SRB/HOCH (WJ) 458 621+ 898+ 346 372 435
SRB/HOCH (JWJ) 4.97 6.33+ 916+ 377 375 423
SRB/HOCH (HWJ) 5.01 642+ 929+ 381 378 425
No Preliminary Test (symmetric
trimming)

10 15 20
PER (WJ) 2.69- 281- 2.89-
q(WJ) 2.60- 271- 2.69-
WJ/q(WJ) 2.36- 238- 243-
WJ/ SRB (WJ) 414 423 453
WJ/ HAY (WJ) 481 486 521
SRB/HOCH (WJ) 366 377 401
PER (JWJ) 2.85- 277- 281
g (JWJ) 2.76- 267- 2.58-
IWJI/ q (IWJ) 235 228- 2.27-
JWJ/ SRB (IWJ) 411 406 425
JWJI/HAY (WJ) 472 467 497
SRB/HOCH (JWJ) 3.78 362 381
PER (HWJ) 290- 279- 2.82-
g (HWJ) 280- 270- 2.60-
HWJ/ g (HWJ) 238 230- 2.28-
HWJ/SRB (HWJ) 419 408 4.27
HWJ/HAY (HWJ) 477 470 5.00
SRB/HOCH (HWJ) 3.81 367 3.85

Notes 10/20 = 10% symmetric/20% asymmetric trimming; 15/30 = 15% symmetric/30% asymmetric trimming; 20/40 = 20%
symmetric/40% asymmetric trimming; 10/10 = 10% symmetric/10% asymmetric trimming; 15/15 = 15% symmetric/15%
asymmetric trimming; 20/20 = 20% symmetric/20% asymmetric trimming; PER is the Peritz procedure; HAY is the Hayter
procedure; SRB/HOCH indicates that SRB and Hochberg procedures had equivalent rates; 10 = 10% symmetric trimming; 15 =
15% symmetric trimming; 20 = 20% symmetric trimming; bold entries indicate values that exceeded Bradley's (1978) lower and
upper limits, + indicates a liberal value, - indicates a conservative value, and + indicates both conservative and liberal valuesin
the minimum to maximum range of error rates.
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Table 5. Summary Percentages of Type | Error for Multiple Comparison Procedures (J = 6; g =1, h=0 Distribution)

Aver age Estimate

Individual Estimate

10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20
PER (WJ) 243- 243- 253 239- 227- 243- 505 8.49+ 12.78+ 2.35- 2.74- 345
g (WJ) 233~ 232- 238 232- 223 232- 488 8.16+ 1213+ 2.29- 2.67- 3.30-
WJ/ q(WJ) 2.17- 206- 217- 218 211- 217- 458 7.91+ 12.02+ 2.14- 255 3.15
WJ/ SRB (WJ) 446- 399 428 477+ 4.36- 445 7.85+ 1251+ 18.40+ 452+ 472 5.88+
WJ/ HAY (WJ) 511+ 471 507 544+ 501 508t 916+ 1466+ 2150+ 5.21+ 559 6.92+
SRB/HOCH (WJ) 3.90- 353- 3.68 414+ 3.84- 388 6.76+ 1057+ 15.68+ 3.87- 4.07- 4.96
PER (IWJ) 236- 189- 1.88 293 250- 234- 584+ 952+ 1399+ 281- 3.00- 3.50-
g (IWJ) 2.25- 182- 176- 285 244- 223 562+ 919+ 1332+ 2.73- 293 3.30-
JwWJa/ g (IWJ) 2.10- 166- 156- 251- 226- 208 531+ 899+ 1318+ 240- 267- 3.19-
JWJ/ SRB (IWJ) 428 356- 3.65 508+ 437- 4.24- 880+ 1392+ 19.98+ 4.76 4.77 578+
JWJ/ HAY (IWJ) 493- 4.13- 424 586+ 507 491- 1020+ 16.19+ 2290+ 554 564 6.90+
SRB/HOCH (JWJ) 3.79- 3.10- 3.22- 472+ 384 377- 7.82+ 1202+ 1740+ 4.32- 4.11- 498
PER (HWJ) 237- 193- 194 3.00- 252- 235 589+ 958+ 1410+ 287- 3.03- 3.52-
g (HWJ) 227- 185 1.82- 292- 247- 225 568+ 927+ 1343+ 2.80- 296 3.32-
HWJ/ q (HWJ) 2.11- 168 1.63- 258 229- 209- 536+ 9.04+ 1328+ 247- 270- 3.22-
HWJ/SRB (HWJ) 4.30- 359- 3.74- 521+ 4.41- 426- 8.87+ 1403+ 20.11+ 488 482 581+
HWJ/HAY (HWJ) 4.96- 4.17- 4.36- 6.01+ 512 493- 10.27+ 1629+ 23.07+ 568+ 570 6.94+
SRB/HOCH (HWJ) 3.80- 3.13- 3.31- 4.83+ 388 377- 7.87+ 1209+ 1751+ 441- 4.16- 5.00
Pairwise Estimate
SRB/HOCH (WJ) 3.99- 388 430- 395+ 3.65- 3.83-
SRB/HOCH (JWJ) 4.10- 3.60- 3.99- 455+ 373 3.78-
SRB/HOCH (HWJ) 4.12- 3.64- 4.07- 4.66x 3.77- 3.79-

No Preliminary Test (symmetric trimming)

10 15 20
PER (WJ) 252~ 244 249
q (W) 243 237- 234
WJ/ q (WJ) 228 218 2.17-
WJ/ SRB (WJ) 484+ 453- 4.68-
WJ/ HAY (WJ) 551+ 514+ 542+
SRB/HOCH (WJ)  4.23+ 3.95 4.12-
PER (JWJ) 3.00- 261- 254
q (WJ) 290- 252- 237
WJI/ q (AWJ) 252- 225  2.10-
JWJ/SRB(MWJ) 501+ 4.37- 4.48-
JWJ/HAY (JWJ) 578+ 508 522+
SRB/HOCH (JWJ)  4.65+ 3.99- 4.03-
PER (HWJ) 3.07- 265 256
q (HWJ) 296- 256- 237-
HWJ/ g (HWJ) 260- 228 2.12-
HWJ/SRB (HWJ) 513+ 4.45- 453
HWJ/HAY (HW)) 592+ 515 525+
SRB/HOCH (HWJ) 4.78+ 4.05- 4.07-

Note. See note from Table 4
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Table 6. Summary Percentages of Type | Error for Multiple Comparison Procedures (J = 6; g =.25, h=.25 Distribution)

Average Estimate Individual Estimate
10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20
PER (WJ) 257- 325- 399- 217- 243 262- 484 10.70+ 1747+ 216- 3.12- 455
q(WJ) 248- 313- 379- 208- 233 247- 466 10.33+ 16.82+ 2.07- 3.00- 4.30
wWJa/ q(WJ) 2.16- 285 360 1.74- 196 217- 425 9.86+ 16.52+ 1.69- 252- 3.87
WJ/ SRB (WJ) 357 446 555+ 304 337 381 7.4+ 16.38+ 2748+ 3.00- 442 6.81+

WJ/ HAY (WJ) 421 529 667+ 358 397 454 825+ 1837+ 3036+ 345 513 7.91+
SRB/HOCH (WJ) 304 383 471 2.66- 295 331- 640+ 1460+ 2466+ 267- 393 611

PER (JWJ) 3.74- 479+ 6.06+ 3.00- 3.16- 3.29- 7.08+ 16.04+ 2579+ 2.63- 3.96- 6.44+
g (IWJ) 363- 4.65+ 581+ 290- 3.05 311- 6.88+ 1571+ 2515+ 254- 383 6.12+
JWJI/ q (W) 3.16- 4.24- 556+ 244- 257- 272- 630+ 1498+ 2486+ 211- 3.28- 552+

JWJ/ SRB (IWJ) 510 6.36+ 7.95+ 425 432 458 1040+ 2427+ 3941+ 369 566 9.44+
WJI/HAY (WJ) 585 7.26+ 9.05+ 489 49 535 1163+ 26.25+ 4198+ 420 6.40+ 10.61+
SRB/HOCH (JWJ) 456 565+ 7.14+ 385 381 412 958+ 2247+ 36.87+ 336 519 8.81+
PER (HWJ) 380- 492+ 6.24+ 3.04- 321- 333 725+ 1646+ 26.33+ 268 4.02- 6.58+
g (HWJ) 3.69- 476+ 599+ 293 310 317- 7.04+ 16.08+ 2570+ 2.59- 390- 6.25+
HWJ/ q (HWJ) 3.24- 433- 574+ 249- 263- 279- 642+ 1535+ 2538+ 213- 3.34- 564+
HWJ/SRB (HWJ) 523 651+ 817+ 434 439 466 10.65+ 24.80+ 40.10+ 3.73 574 9.62+
HWJ/HAY (HWJ) 570+ 7.3% 9.26+ 498 503 546 1186+ 26.74+ 4266+ 424 650+ 10.81+
SRB/HOCH (HWJ) 4.66 580+ 7.35+ 392 389 419 982+ 2313+ 3770+ 342 531 9.06+
Pairwise Estimate
SRB/HOCH (WJ) 3.86 550+ 742+ 284 330 384
SRB/HOCH (JWJ) 6.14+ 945+ 1392+ 414 456 536
SRB/HOCH (HWJ) 6.31+ 9.82+ 1451+ 422 469 551+
No Preliminary Test (symmetric trimming)

10 15 20

PER (WJ) 206- 218 2.24-
q (WJ) 1.97- 210- 210
WJ/ g (WJ) 1.65- 1.74- 181
WJ/ SRB (WJ) 290 306 335

WJ/ HAY (WJ) 341 362 3.99
SRB/HOCH (WJ) 253 2.70- 2.95-

PER (JWJ) 267- 253 239
q (WJ) 258 244 221-
WJI/ q (WJ) 219- 203 1091-

JWJ/SRB(MWJ) 387 360 352
MWJI/HAY WD) 444 417 415
SRB/HOCH (JWJ) 346 317 3.15
PER (HWJ) 270- 256- 2.40-
q (HWJ) 261- 246 2.23-
HWJ/ g (HWJ) 222- 205 1.92-
HWJ/SRB (HWJ) 392 363 354
HWJ/HAY (HWJ) 450 421 418
SRB/HOCH (HWJ) 350 321 3.17

Note. See note from Table 4
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The SRB and HOCH methods had mean
error rates closest to the nominal level when
preceded by the test of symmetry based on
average group estimates for the 20/40 trimming
case or parwise estimates for the 10/20
trimming case. Specifically, the mean error rates
for the procedures based on the WJ, JWJ, and
HWJ statistics were 5.07%, 4.88%, and 5.03%,
respectively when using the average group
estimates of tail weight and symmetry and
4.58%, 4.97%, and 5.01%, respectively for the
pairwise estimate indices. It is worth noting that
under the 20/40 trimming case, the SRB/HOCH
procedures were the only MCP to have robust
error rates when preceded by atest of symmetry.

g=1and h =0 Distribution

All MCPs had rates of Type | error
beow Bradley’s (1978) upper limit when
preceded by atest of symmetry based on indices
averaged across all groups for the 15/30, 20/40,
and 15/15 trimming conditions and when the test
of symmetry was based on individual group
indices for the 15/15 trimming condition (see
Table 5). Few trimming conditions resulted in
MCPs with error rates within Bradley’s limits.
The condition with the most robust MCPs
occurred with a test of symmetry based on tail
weight and symmetry estimates from the
individual groups with 15/15
symmetric/asymmetric  trimming. For  this
particular trimming condition, the mean error
rates were closer to the nominal 5% level for
M CPs preceded with the symmetry test based on
the individual group estimates (average rate
equal to 3.82%) compared to MCPs preceded
with the test of symmetry based on average
estimates across all groups (average rate equal to
3.39%). Furthermore, MCPs based on the JWJ
and HWJ statistics generally had error rates
closer to the nominal level compared to MCPs
based on the WJ statistic. For example, under
the 15/15 trimming case with the test of
symmetry based on tail weight and symmetry
estimates from individual groups, the mean error
rates across the MCPs based on WJ, JWJ, and
HWJ statistics were equal to 3.72%, 3.85%, and
3.90%, respectively.

Noteworthy is that the form of the
heteroscedastic statistic had an influence on
Type | error rates regardless of whether a test of

symmetry was used. For example, under the
15% symmetric trimming condition, the liberal
error rate for the Hayter (1986) procedure based
on the WJ statistic became nonliberal when
based on the IWJ or HWJ statistic. This follows
the general pattern that error rates tended to be
smaller (more conservative) for MCPs based on
the JWJ or HWJ statistics compared to when the
MCPs were based on the WJ statistic. However,
under the 10/10 and 15/15 symmetric/
asymmetric trimming cases when preceded by
the test of symmetry, the opposite pattern was
obersed, that is, the MCPs based on the WJ
statistic were more conservative than the same
MCPs based on the modified WJ statistics (i.e.,
JWJ and HWJ), a result consistent with the (g =
.5, h = 0) distribution under the 10/10 trimming
case. In addition, Type | error rates for the
MCPs tended to decrease with an increase in the
proportion of trimming cases (i.e., from 10/20 to
15/30 to 20/40 and from 10/10 to 15/15 to
20/20), except for the MCPs preceded by a test
of symmetry based on individual group
estimates where the pattern was reversed, that is,
error rates tended to increase as the proportion
of trimming increased (i.e., a pattern consistent
with the results for J= 3).

Type | eror rates for the SRB and
HOCH procedures indicated that a test of
symmetry based on the individual group indices
provided mean error rates closer to the nominal
5% level compared to aways adopting
symmetric trimming or trimming
symmetrically/asymmetrically based on the
pairwise or across al groups average indices.
For example, the mean eror rates for
SRB/HOCH, based on the WJ, JWJ, and HWJ
statistics, were 4.96%, 4.98%, and 5.00%,
respectively, under the 20/20 trimming case
when using individual group indices of tail
weight and symmetry, and were 4.12%, 4.03%,
and 4.07%, respectively, for the 20% symmetric
trimming case.

g=.25and h = .25 Distribution

All MCPs had rates of Type | error
below Bradley's (1978) upper limit for the
10/10, 15/15, and 20/20 trimming cases when
preceded by the test of symmetry with average
estimates across groups and the 10/10 trimming
case when preceded by the test of symmetry
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with individual group estimates (see Table 6).
Under the 10%, 15%, and 20% symmetric
trimming cases, all MCPs had non-liberal error
rates. The MCPs based on the range statistic
tended to have conservative error rates, whereas
under these trimming cases, the MCPs with rates
within Bradley’'s limits were the WJSRB,
WJIHAY, JWJSRB, JWJHAY, SRB/HOCH
(IWJ), HWJISRB, HWJHAY, and SRB/HOCH
(HWJ).

The mean eror rates, however, were
more conservative under the symmetric
trimming cases compared to the rates obtained
for the MCPs when a symmetric/asymmetric
strategy based on indices of tail weight and
symmetry was adopted. Specifically, the mean
eror rates across non-liberal MCPs for the
10/10, 15/15, and 20/20 trimming cases when
preceded by the test of symmetry with average
group estimates were equal to 3.24%, 3.40%,
and 3.65%, respectively and the mean rate for
the 10/10 and 15/15 trimming case when
preceded by thetest of symmetry with individual
group estimates were equal to 2.91% and 4.15%,
respectively. Whereas, under the 10%, 15%, and
20% symmetric trimming cases, the mean error
rates across MCPs were equal to 2.95%, 2.86%,
and 2.85%, respectively.

MCPs based on the WJ statistic tended
to have more conservative rates than when based
on the IWJ or HWJ statistic. For example, under
the 20/20 trimming case with the test of
symmetry based on average group estimates, the
mean error rates for the MCPs based on the WJ,
JWJ, and HWJ statistics were 3.15%, 3.86%,
and 3.93%, respectively and under the 15/15
trimming case with the test of symmetry based
on individual group estimates, the mean error
rates for non-liberal MCPs based on the WJ,
JWJ, and HWJ statistics were 3.69%, 4.38%,
and 4.46%, respectively. The general pattern
was for error rates to increase as the proportion
of trimming increases when the MCPs were
preceded by a test of symmetry. However, this
pattern only occurred for the MCPs based on a
WJ dtatistic when always adopting symmetric
trimming.

The SRB and HOCH procedures had
higher mean eror rates when based on
symmetric/asymmetric trimming obtained from
pairwise estimates than when based on indices

obtained from all the groups. For example,
liberal rates under the 10/20 trimming case
based on pairwise estimates became robust when
symmetric/asymmetric trimming was based on
indices of tail weight and symmetry averaged
over al groups. The data suggests that an
optimal strategy was 10/20
symmetric/asymmetric trimming based on Q;
and Q, obtained from all groups in the design.
Specifically, the mean error rates for the
SRB/HOCH procedures, based on the JWJ and
HWJ gatistics, were 4.56% and 4.66%,
respectively.

Conclusion

In the present study, the strategy of computing a
test of symmetry in order to determine whether
to trim nonnormal data symmetrically (from
both tails of the empirical distributions) or
asymmetrically (from one tail of the empirical
distributions) was compared to always utilizing
an a priori symmetric trimming strategy, an
approach previously investigated by Keselman,
Lix et al. (1998) and typically recommended in
the empirical literature (e.g., see Wilcox, 2003).
We investigated the utility of testing for
symmetry within the context of pairwise
multiple comparison testing in a one-way
independent groups design.

Three variations of a test of symmetry
were investigated, each utilizing indices of tail
weight and symmetry. Thefirst variation obtains
the indices of tail weight and symmetry by
computing them within each group of a one-way
completely randomized layout and then averages
these values across the groups to obtain a
summary measure of tail weight and symmetry.
A second variation also takes an average of
group indices, but only from the two groups
comprising a particular pairwise comparison.
The third variation, does no averaging across
groups but measures tail weight and symmetry
within each group of the pairwise comparison,
using this information to determine whether data
should be trimmed symmetrically or
asymmetrically within each particular group.

The rationale behind all three
approaches is to obtain an estimate of the typical
score, that is, an estimate that represents the bulk
of the observations, and accordingly outlying
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values are not wanted, found in the tail(s) of the
nonnormal distributions, to adversely affect the
score to be sdected as typical — selecting a score
that is not central to the distribution (e.g., the
usual mean can be very far away from the
central portion of a distribution of scores for
skewed data). Though the rationale is the same
for these three approaches, they respond to the
need to obtain a good representation of the
typical scorein different ways.

The first method uses al of the data,
across groups, to measure symmetry in the data
and applies the results across all groups, that is,
trims in a consistent fashion across all groups.
The second and third approaches measure
symmetry, or the lack there of, by only looking
at the data involved in the pairwise comparison.
The logic here is to ignore the type of
nonsymmetry that may exist in groups that are
not involved in a particular comparison. This
rationale is similar to the approach of using a
nonpooled error term, rather than a pooled error
term, in order to avoid the biasing effects of
variance heterogeneity in tests of mean equality.
The third approach takes this rationale to its
logical completion by finding the typical score
in each group of the pairwise comparison by
assessing symmetry/asymmetry  within  each
individual group, rather than averaging over the
two groups and applying the same form of
trimming to both groups. That is, with this
approach we are comparing the typical score
from one group with the typical score from a
second group, even though these typical scores
were developed through different methods of
trimming.

In addition to the use of a test of
symmetry, the type of heteroscedastic statistic
used in the computation of the MCPs was also
investigated. The WJ statistic was investigated
by Keselman, Lix et al. (1998) and the Johnson
(1978) and Hall (1992) transformed WJ statistics
investigated by Keselman et a. (2002). The
MCPs with transformed WJ statistics [i.e., Hall
(1992) or Johnson (1978)] based on a test of
symmetry provided better Type | error control
when distributions were nonnormal in form and
had heterogeneous variances compared to the
use of the WJ statistic with 20% symmetric
trimming, the approach investigated by

Keselman, Lix et a. (1998) and generaly
recommended in the literature.

Specifically, MCPs showed improved
Type | eror control, that is, nonrobust MCPs
became robust and mean Type | error rates were
closer to the nominal 5% level when data were
first checked for symmetry and the MCPs were
computed based on modified WJ statistics (i.e.,
JWJor HWJ). A test of symmetry based on each
individual group’s indices of tail weight and
symmetry generally provided mean Type | error
rates closer to the nominal level for the MCPs
than when the symmetry test was based on
indices averaged over al groupsin the design or
just the groups in a particular pairwise
comparison, particularly for the more extreme
non-normal distributions. Across all nonnormal
distributions investigated, optimal percentages
of trimming in terms of controlling Type | error
rates within Bradley’s (1978) limits were the
10/10 and 15/15 symmetric/asymmetric
trimming conditions.  Interestingly, these
proportions are less than the recommended 20%
symmetric trimming.

The magnitude of Type | error rates
changed as the pattern and percentage of
trimming changed. Across the nonnormal
distributions investigated, Type | error rates
generally increased for the MCPs as the
proportion of trimming increased over the 10/20,
15/30, and 20/40 trimming cases and for the
10/10, 15/15, and 20/20 trimming cases when
preceded by atest of symmetry. However, under
the following conditions the opposite pattern
occurred when the MCPs were preceded by a
symmetry test where the indices of tail weight
and symmetry were obtained by averaging
across the indices within each group of the
design (a) for the chi-square distribution, Type |
error rates decreased as the proportion of
trimming increased (10/10, 15/15, and 20/20) for
MCPs based on the IWJ and HWJ statistics, (b)
for the (g = .5, h = Q) distribution, Type | error
rates decreased as the proportion of trimming
increased (10/10, 15/15, and 20/20) for MCPs
based on the IWJ and HWJ statistics only for J =
6, and (c) for the (g = 1, h = 0) distribution,
Type | eror rates generally decreased as the
proportion of trimming increased (from 10/20 to
15/30 to 20/40 and from 10/10 to 15/15 to
20/20).
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The Type | eror rates for the MCPs
based on the JWJ or HWJ dtatistics were
generally more conservative than the same
MCPs based on the WJ statistic for the chi-
square distribution. However, as the degree of
nonnormality increased, this pattern reversed
itsdf, firstly for the J = 3 condition and smaller
percent trimming condition (10/10) for J = 6 for
the (g = .5, h = 0) distribution, the smaller
percent trimming conditions (10/10 and 15/15)
for the (g = 1, h = 0) distribution, and across all
trimming cases for the most extreme non-normal
distribution (g = .25, h = .25) investigated. As
the population distribution became more non-
norma (e.g., skewed), the advantage of the
transformed WJ statistics in terms of providing
more robust MCPs was evident. This is not
surprising given that the IWJ and HWJ statistics
were developed to deal with the skewness bias.
The Type | eror rates for MCPs based on the
JWJ ddtistic were dightly smaller (i.e.,, more
conservative) than the rates for the same MCPs
based on the HWJ dstatistic across the non-
normal distributions investigated.

Taking into consideration the trimming
cases that resulted in non-liberal error rates
across most MCPs preceded by a test of
symmetry with the pattern of error rates across
trimming percentages and the generally superior
performance of the MCPs with either the JWJ or
HWJ datistics, the following genera
recommendations are provided for a strategy to
achieve good Type | error control in a one-way
independent groups design: (@) for distributions
with skewness less than 2, adopt the 10%
symmetric or 10% asymmetric trimming
condition based on a test of symmetry where the
indices of tail weight and symmetry are obtained
by averaging over al groups when J = 3
whereas for J = 6, use a test of symmetry based
on individual group indices of tail weight and
symmetry and (b) for distributions with
skewness greater than 2, adopt the 15%
symmetric or 15% asymmetric trimming
condition based on a test of symmetry using
individual group indices of tail weight and
symmetry.

As an ovedal recommendation,
researchers may adopt any one of the MCPs
with ether the JWJ or HWJ statistic with
trimmed means and Winsorized variances

preceded by a test of symmetry in order to deal
with nonnormal data and heterogeneous
variances, conditions likely to be encountered in
applied research. The importance of this finding
is that educational researchers will be assured
that the method will provide good Type | error
control with generally more modest amounts of
trimming compared to the generaly
recommended strategy of uniformly adopting
20% symmetric trimming.
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