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Nonparametric Bayesian Multiple Comparisons for Dependence Parameter 
in Bivariate Exponential Populations 

 
                      M. Masoom Ali                                J. S. Cho                              Munni Begum 
                Dept. of Math. Sciences            Dept. of Inform. Statistics         Dept. of Math. Sciences 
                   Ball State University                 Kyungsung University              Ball State University 
 
 
 
A nonparametric Bayesian multiple comparisons problem (MCP) for dependence parameters in I bivariate 
exponential populations is studied. A simple method for pairwise comparisons of these parameters is also 
suggested. The methodology by Gopalan and Berry (1998) is extended using Dirichlet process priors, 
applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation 
of the posterior probabilities of all possible hypotheses are carried out through a Markov Chain Monte 
Carlo, Gibbs sampling, due to the intractability of analytic evaluation. The process of MCP for the 
dependent parameters of bivariate exponential populations is illustrated with a numerical example. 
 
Key words: Bivariate exponential population; Dirichlet process prior; Gibbs sampler; mixture of Dirichlet 
processes; multiple comparison; nonparametric Bayes. 
 
 

Introduction 
 
In reliability studies of mechanical components, 
dependence between two components occurs 
quite often.  A system, which functions as long 
as at least one of the two identical components 
functions, has a functional correlation between 
the system components. Initially, let the two 
components be independently on test with life 
distributions that are exponential with parameter 
λ, denoted as exp(λ). Failure of one changes the 
life distribution of the other to exp(λθ), θ >0. 
When θ =1, the two components function   
independently. For θ>1, the workload of the 
remaining component is increased, thereby 
decreasing    the     mean     life.    Here     θ     is 
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called the dependence parameter. Weier (1981) 
provided the Bayes estimators of the parameters 
and reliability using a conjugate prior for such 
problems. 
 The multiple comparison problem 
(MCP) for I bivariate exponential populations 
with dependence parameters θ =(θ1,……,θI) can 
be viewed as making inferences concerning 
relationships among the θ's based on 
observations. This is tantamount to testing the 
following hypothesis, 
 

H0 : θ1 = ……..= θI  vs.  H1 : not  H0. 
                                                      
For bivariate exponential populations, the 
frequentist approach of multiple comparison is 
not very straightforward. This is partly due to 
the difficulty in handling the distributional 
aspects and associated computations. The 
multiple comparison problem using   
nonparametric priors in a Bayesian inferential 
setup was studied by Gopalan and Berry (1998) 
providing specific applications to the Binomial 
and Normal populations. Following similar 
approach, the MCP for a set of geometric and 
negative binomial populations (Masoom, Cho, 
& Begum, 2005) was studied. In this article, the 
MCP for the dependence parameters of a set of 
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bivariate exponential populations along the same 
line was studied. 
 In a Bayesian approach, the posterior 
probabilities of respective hypotheses in MCP 
can be calculated with moderate effort. The prior 
information on the unknown parameters has to 
be quantified as a distribution. However, the 
selection of the prior distribution could be 
tricky. One of the criticisms Bayesian inferential 
methods often face is the subjectivity in prior 
specification. In real data analysis prior 
specification could be based on scientific 
knowledge about the parameters. Non-
informative prior specification is optimal in 
cases when there is little known about the 
background information. It is very important that 
prior distributions be as objective as possible 
while doing Bayesian inference. A typical 
objective prior distribution is the Dirichlet 
process prior (DPP) that leads to nonparametric 
Bayesian inference. 
 The DPP is a prior distribution on the 
family of distributions that is dense in the space 
of distribution functions. The family of DPPs 
was introduced by Ferguson (1973) and was 
extended to mixtures of DPP by Antoniak 
(1974) in order to treat problems including the 
estimation of a mixing distribution, bio-assay, 
empirical Bayes problems and discrimination 
problems. Escobar (1988) started the application 
of Markov chain Monte Carlo (MCMC) 
methods in nonparametric Bayesian modeling. 
Novel computational techniques and 
developments of  MCMC schemes, including 
key contributions by Doss (1994), Bush and 
MacEachern (1996), Escobar and West (1997), 
MacEachern and Müller (1998), West, Müller 
and Escobar (1994) made it possible to study 
nonparametric Bayesian methods widely. 
 The focus was on the Bayesian approach 
to the multiple comparisons problem for I 
bivariate exponential populations based on the 
nonparametric Dirichlet process priors in this 
article. The MCMC techniques, in particular 
Gibbs sampling, is adopted here to evaluate the 
posterior probabilities of the hypotheses.  
 
Preliminaries 
 Let (X, Y) denote the lifetimes of the two 
components that have a bivariate exponential 

model. The joint probability density function of 
(X, Y) can be written as,  
 

( )2( , ) | , ) 2 exp 2 ,

, 0, , 0

f x y x y

x y

λ θ θλ λ λθ

λ θ

= − −
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(1) 
 
with θ as the dependence parameter.  
 It is assumed that (x, y) = {(x1, y1) , (x2, 
y2) , ….., (xI, yI)} be a set of observations 
available on I populations, where (xi, 

yi)={(xi1,yi1),……,(xini,yini)} is an ni ×1 vector of 
conditionally independent observations on 
population i, i =1,2, ……, I ; j =1,2, ……, ni and  

nn
I

i
i =∑

=1

. Then the probability density 

function of  (xij,yij) is, 
 

( ) ( )2, | , 2 exp 2 ,

, 0, , 0.

ij ij i i i i i ij i i ij

ij ij i i

f x y x y

x y

λ θ θ λ λ λθ

λ θ

= × − −

> >

                                                                         (2) 
 
 Now a distribution function G0 (.) and a 
positive scalar precision parameter α together 
determine the Dirichlet process prior G. Here G0 

(.) that defines the location of the DPP is 
sometimes called prior guess or baseline prior. 
The precision parameter α determines the 
concentration of the prior for G around the prior 
guess G0, and therefore measures the strength of 
belief in G0.  The DPP is usually denoted by G ~ 
D (G | G0, α). For large values of α, G is very 
likely to be close to G0, while for small values of 
α, G is likely to put most of its probability mass 
on just a few atoms. 
 It is assumed that the θi's come from G, 
and that G ~ D (G | G0 ,α) as stated above. This 
structure results in a posterior distribution which 
is a mixture of Dirichlet processes (Antoniak 
1974). Now following the Polya urn 
representation of the Dirichlet process 
(Blackwell & MacQueen, 1973), the joint 
posterior distribution can be written as, 
 



NONPARAMETRIC BAYESIAN MULTIPLE COMPARISONS 68 

0

1

( ) ( | )
| , ( , | ) ,

1

i i kI
k i

i i i i
i

G
f

i

α θ δ θ θ
θ θ

α
<

=

+
∝ ×

+ −

∑
∏x y x y  

(3) 
 
where δ (θi | θk) is the distribution putting a point 
mass on θk. For each i =1,….. I, the conditional 
posterior distribution of θi is given by,  
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where Gb(θi | xi, yi) is the baseline posterior 

distribution, ( ) ( )∫∝ ,|, 00 iii dGfq θθα yx  

( )kiik fq θ|, yx∝ , and ∑
≠

+=
ik

kqq01 . Let  

Θ = {θ = (θ1, θ2, ……, θI ) : Ri ∈θ , i=1,2, ……, 

I }  be the I-dimensional parameter space. 
Equality and inequality relationships among θ's 
induce statistical hypotheses that are subsets of 
Θ. Thus, the MCP becomes testing the 
following hypotheses. 
 
H0 : θ0 = {θi: θ1 = θ2 = ……. = θI},  
H1 : θ1 = {θi: θ1 ≠ θ2, θ2 = θ3 = ……= 
θI},……HN : θN = {θi: θ1 ≠ θ2 ≠ θ3 ≠ …… ≠ θK}. 
 

The hypotheses Hr : θr, r = 0,1,2, …….., N, are 

disjoint, and 
0

n

r
r =

=∪ Θθ . 

 The elements of Θ themselves behave as 
described by (3) and so with positive 
probability, they will reduce to some p < I 
distinct values. Let superscript * denote distinct 
values of the parameters. Then, any realization 
of I parameters θi generated from G lies in a set 
of p < I distinct values, denoted by (θ* = θ1

*, θ2
*, 

….., θp
*). The computation of posterior 

probabilities for different hypotheses through 
Gibbs algorithm becomes manageable using the 
notion of configuration as termed by Gopalan 
and Berry (1998). Their definition of 
configuration is restated here: 

Definition (Configuration): The set of indices S 
= {S1,…..,SI} determines a classification of the 
data Θ={θ1,…….,θI} into I* distinct groups or 
clusters; the nj= #{Si=j} observations in group j 
share the common parameter value θj

*. Now, 
define Ij as the set of indices of observations in 
group j; That is, Ij={i: Si =j }. Let (X,Y)(j) = 
{(Xi,Yi): Si = j} be the corresponding group of 

∑
∈

=
j

j
Ii

iI nn  observations. Thus, a one-to-one 

correspondence between hypotheses and 
configurations follows and the required 
computations are reduced by the fact that the 
distinct θi's are typically reduced to fewer than I 
due to the clustering of the θi's inherent in the 
Dirichlet process. Hence, (4) can be rewritten as:  
 

( )

( )
0

* *

| , , , | ,

| ,

i k b i i i

k k i k

k i q G

n q

θ θ θ

δ θ θ

≠ ∝ +

∑

x y x y
 

(5) 
 

with ( )kiik fq ** |, θyx∝ , and .1 *
0 ∑

≠

+=
ik

kk qnq  

In addition to the simplification of notations, the 
cluster structure of the θi also improves the 
efficiency of the algorithm. 
 
Posterior Sampling In Dirichlet Process 
Mixtures 
 A gamma distribution with parameters 
(α0i, β0i) is considered as baseline prior G0. This 
implies that θ1, θ2,……, θI are i.i.d. from G0. 
Then, a hierarchical set up for the Dirichlet 
process analysis as outlined above becomes,  
 
          iii θ|,yx  ~ ( ),,|, iiiiBVE θλyx         

(6)   
 

Gi |θ ~ ( )iG θ , 

  (7)                    
 

α,| 0GG ~ ( ),,| 0 αGGD  

  (8)                    
 

iiG 000 ,| βα  ~ ( ),, 00 iiGam βα  

 (9)                    
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iii 11 ,| βαλ  ~ ( ),, 11 iiGam βα  

 (10)                                                                     
 
BVE and Gam stand for bivariate exponential 
and gamma distributions, respectively. Now, the 
choice of the precision parameter α in Dirichlet 
process is extremely important for the model. A 
gamma prior for α with a shape parameter a and 
scale parameter b is considered, that is, α ~ 
Gam(a,b). Thus, the Gam(a,b) becomes the 
reference prior if a → 0 and b → 0 and one has 
access to a neat data augmentation device for 
sampling α by Escobar and West (1995). 
 The configuration notation is more 
convenient to use in describing the Gibbs 
sampling algorithm as the full conditionals can 
be written in closed form as under: 
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Gibbs sampling proceeds by simply iterating 
through (11) - (15) in order, sampling at each 
stage based on the current values of all the 
conditioning variables. 
 The configuration induces the equality 
and inequality relationships among the θ’s that 
corresponds to the partitions on the parameter 
space Θ and in turn to the hypotheses of interest. 
In order to estimate the posterior probability of a 
hypothesis Hr from a large number (L) of sample 
draws, one takes 

( ) ( )∑
=

≈
L

l
rSr H

L
HP

l
1

1
,| δY X , 

 
(16)                    

 
where ( )rS H

l
δ  denotes unit point mass for the 

case where l th draw of S, S0 corresponds to Hr. 
The probability of equality for any two θ's can 
be calculated from the posterior distributions on 
hypotheses, P(Hr | X,Y),  r =1,2, ……., N. This 
can be achieved by adding probabilities of those 
hypotheses in which the two θi and θj are equal. 
That is 
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where ( )jiSl

θθδ −  and  ( )jiHr
θθδ =  denote 

unit point mass for the case where Sl and Hr 
indicate ji θθ = . 
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Illustrative Example 
A numerical illustration of the multiple 

comparisons for the dependence parameters in 
bivariate exponential populations is presented in 
this section using simulated data. Four bivariate 
exponential populations each with size ni=20 are 
considered. Then, the numbers of possible 
hypotheses for multiple comparisons are 15. The 
observed summary statistics for these data are 
given in Table 1. 
 It follows from Table 1, that the true 
hypothesis may be Htrue : θ1 = θ2 ≠ θ3 = θ4. For 
the precision parameter α, one considers three 
Gamma priors with parameters (a,b)=(1.0, 1.0), 
(0.1, 0.1) and (0.01, 0.01) in order to have equal 
mean 1 and different variances 1, 10, and 100, 
respectively. This also facilitates that the latter 
prior be fairly non-informative, giving 
reasonable mass to both high and low values of 
α. As well, each θi, i=1,……, 4 were set a priori 
following a gamma distribution with parameters 
α0i = α1i = 2.0  and β0i = β1i = 0.001 to reflect 
vagueness of the prior knowledge. 
 The posterior probabilities for all 
possible hypotheses are approximated by the 
Gibbs sampling algorithm using 20,000 
iterations with 10,000 burn-ins and 5 
replications and are presented in Table 2.  It is to 
 
 
 
 
 

 
 
 
 
 
 
 
 

be noted that the hypothesis θ1 = θ2 ≠ θ3 = θ4 has 
the largest posterior probabilities 0.7883, 0.7274 
and 0.7410 for all priors of the precision 
parameter α. Thus, the data lend greatest support 
to equalities for θ1 = θ2 and θ3 = θ4 being 
different from the others.  
 Table 3 presents the pairwise posterior 
probabilities for the equalities in pairs of θ’s. 
The equalities of (θ1 = θ2) and (θ3 = θ4) have the 
largest posterior probabilities (0.9943, 0.9903, 
0.9729) and (1.0000, 1.0000, 1.0000) for three 
cases of (a, b) respectively. This suggests that 
there is strong evidence in the equality (θ1 = θ2) 
and (θ3 = θ4). 
 The Bayesian approach using 
nonparametric Dirichlet process priors facilitates 
studying the problem of multiple comparisons in 
a number of different distributions. So far, the 
MCP was carried out for a univariate 
distribution. Here, it has been shown that the 
method can be extended to a bivariate 
distribution as well, with moderate effort. As an 
alternative to a formal Bayesian analysis of a 
mixture model that usually leads to intractable 
calculations, the DPP is used to provide a 
nonparametric Bayesian method for obtaining 
posterior probabilities for various hypotheses of 
equality among the dependence  parameters of 
bivariate exponential populations. 
 
 
 
 

 
 
 
 

 
Table 1  The observed summary statistics for each populations 

 
                                               Populations                     1             2            3               4  

1

in

i ijj
X X

=
=∑               1.500    1.560      0.700        0.720 

1

in

i ijj
Y Y

=
=∑                 6.500    6.000      1.300        1.130 

     MLEθ̂                          0.462    0.520      1.077        1.274 
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