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Quantifying Bimodality Part I: An Easily Implemented Method Using SPSS

B. W. Frankland Bruno D. Zumbo
Department of Psychology Measurement, Evaluation, & Research Methodology

Dalhousie University University of British Columbia

Scientists in a variety of fields are faced with the question of whether or not a particular sample of data are best 
described as unimodal or bimodal. We provide a simple and convenient method for assessing bimodality. The use of the 
non-linear algorithms in SPSS for modeling complex mixture distributions is demonstrated on a unimodal normal 
distribution (with 2 free parameters) and on bimodal mixture of two normal distributions (with 5 free parameters).

Keywords: Mixture modeling, Bimodality

Introduction

Research in the social, natural and health sciences (e.g., 
epidemiology, health care, education, psychology, sociol­
ogy) are often faced with the question of whether or not a 
particular sample is best described as unimodal or bimo­
dal (e.g., Do & McLachlan, 1984; Hoffmann & Miller, 
1998; Knoll, Garver, Ramberg, Kingsbury, Croissant & 
McDermott, B., 1998; Johnson &Yantis, 1995;Reischies, 
Schaub & Schlattmann, 1996; Roeder, 1994; Sussman, 
1999; Volbrecht, Nerger & Harlow, 1997). Issues of bimo­
dality surface in fields as diverse as astrophysics (Roeder,
1990) and medicine (Ottong & Garver, 1997). Fundamen­
tally, this is the question of whether the set of data was 
extracted from one population or two populations (note 
that one can ask this question for data that is between sub­
jects or within a single subject). The generic terms unimodal 
and bimodal are too vague for analysis, so to make the 
question more specific (and therefore testable), one can 
ask, do the data represent a single unimodal normal popu­
lation? or do the data better represent a bimodal mixture 
of two normal distributions?

The current work is focused on the development 
of a fairly simple, but general, procedure for testing such 
alternatives. It should be noted that, although the techniques 
developed herein are focused on putative mixtures of nor­
mal distributions, they can be applied, in principle, to the
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comparison of any set of theoretical distributions. The 
choice of the normal distribution as the starting point was 
not arbitrary: If the data is unimodal, then it is likely that 
the normal distribution is at least a good approximation1 
and if the data is bimodal representing two populations, 
then it is likely that the normal distribution is a good ap­
proximation for each population. Regardless of the choice 
of distribution, the main point is to present a methodology 
that permits any researcher to quickly and easily discover 
the most appropriate parent population for a given data 
set.

In broad strokes, mixture modeling concerns 
modeling a statistical distribution by a mixture (or weighted 
sum) of other distributions. This modeling strategy comes 
under a variety of names in various disciplines: unsuper­
vised concept learning (in artificial intelligence), intrinsic 
classification (in philosophy), or, classification, cluster­
ing, and numerical taxonomy.

It is admitted, a priori, that the solution offered 
herein is not an analytical solution to the question of bimo­
dality. The point was to develop an accessible, flexible and, 
most importantly, accurate method that could be used to 
test any number of hypotheses. To achieve accessibility, 
the commercially available statistical package SPSS was 
used: It could be added that any statistical package should 
be capable of a comparable level of analysis. Flexibility 
demanded that the procedure place few restrictions on the 
nature of the hypothetical parent population. Too often, 
methods for exploring multimodal population distributions 
require constraints that are outside the interests of the re­
search at hand.

For example, it is often assumed that the parent 
population must be normal distributions or mixtures of such 
(e.g., Yellott, 1971); such an assumption may not be rea­
sonable in all cases. Although the current work is focused 
on mixtures of normal distributions, the techniques can be 
applied to any distribution. At the other end of the spec­
trum, to avoid any assumptions of nature of the parent dis­
tributions, some researchers (e.g., Yantis, Meyer & Smith;
1991) assumed that it possible to obtain, by empirical
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means, pure unimodal distributions (separate experiments 
are run to obtain data that is “purely” unimodal) from which 
the mixture distribution can be constructed. Even if/when 
possible, the requirement is unwieldy for many experimen­
tal designs, particularly for quasi-experimental designs. 
Flexibility has the added benefit of permitting the analysis 
to be tailored to the experimental design, rather than vice 
versa2.

Although an attempt has been made to make these 
routines accessible, the desire for accuracy precluded the 
simpler solutions such as analyses based on increased kur- 
tosis (e.g., Hoffman & Miller, 1998), increased variance 
(Eriksen & Eriksen, 1972) or a shift in the mean (e.g., 
Eriksen & Yeh, 1985). Such solutions tend to be inadequate 
because they cannot distinguish a mixture from a non-nor­
mal, but unimodal and symmetric, distribution (e.g., the t- 
distribution or the Cauchy). To complicate the issue, a 
mixture distribution may appear to be unimodal and sym­
metric (see Yantis et al. for more extensive discussion of 
alternative approaches). Interestingly, an advantage of the 
SPSS routines is that they provide a wealth of statistics 
pertaining to the fit of the solution.
Method

A set of empirically determined data is compared 
to two hypothetical population distributions: the first popu­
lation is a unimodal normal distribution and the second 
population is a bimodal mixture of two normal distribu­
tions. Several steps are required to fit each population to 
the empirical data. First, the empirical data must be binned 
to create a histogram. Second, this binned data must be 
compared, using the non-linear regression algorithm of 
SPSS, to each hypothetical population. Finally, the fits for 
the two populations must be compared. For reasons of space 
and clarity, the development of a rigorous likelihood-ratio 
test of the best choice will be presented in a forthcoming 
paper. In the usual case, a researcher will have a single, or 
limited number of data sets. Hence, procedures are dem­
onstrated within that context.

The crucial, though often ignored, step involves 
binning the data to create a probability histogram that ac­
curately represents the data distribution. Critically, the most 
appropriate bin size (aka: bin widths) must be chosen, be­
cause an inappropriate choice will actually result in the 
loss of information. When working with a single or limited 
number of data sets, this can most easily be done “by eye/ 
hand”. Various statistical or spreadsheet packages will also 
provide one with binned data but it must be remembered 
that these packages are generally tailored more to the goal 
of a pleasing presentation (e.g., limiting the number of bins 
to 20) than to accurate representation. A commonly ac­
cepted guideline is that no bin should have less than 5 
counts3. In addition, when choosing bin sizes by hand, one 
can vary the bin widths, using narrow bins in the centre of 
the distribution and wide bins at the edges of the

distribution which might result in a more accurate repre­
sentation while maintaining a reasonable minimum bin 
count. Regardless of how one achieves it, for subsequent 
analyses, the SPSS data file is expected to contain the fol­
lowing variables:

binnum bin number (not actually used, but
useful for humans) 

bincnt count per bin
xl bin lower limit in the original

scores
xc bin centre in the original scores
xu bin upper limit in the original

scores
totalcnt total counts (total number of data

points)

It must be noted that before fitting, the count 
within each bin will be converted to a probability because 
fitting is based upon the numerical integration of the nor­
mal distribution. Hence, one needs the total number of 
counts (number of data points) as well as the counts per 
bin. The variable total counts {totalcnt) will be the same 
for all bins, and could be entered using a compute state­
ment. One could simply enter probabilities per bin in place 
of count per bin and total count. Pragmatically, however, 
since one must maintain many significant digits, it is often 
easier to enter two integers {bincnt and totalcnt) than one 
long real number (e.g.,/?ro&) — and one is less likely com­
mit a data entry error with simple integers.

To fit the data to the population, the fitting algo­
rithm converts the theoretical population distribution into 
a histogram with bin sizes that are matched to the bin sizes 
of the data (i.e., the real data determines the bins sizes for 
the theoretical population). Then, the procedure adjusts 
the population parameters so that the counts per bin in the 
binned theoretical histogram matches (as best as possible) 
the counts per bin in the binned data histogram. Fitting is 
accomplished by the non-linear regression routines pro­
vided by SPSS.

Generally, a non-linear regression algorithm has 
four basic components: (1) the data to be fitted, (2) the 
function to be fitted, (3) the free parameters of the func­
tion to be fitted, and (4) the error or loss function of the 
function to be fitted. In this work, the data to be fitted is 
the proportion per bin in the data histogram (Y., where i is 
the bin number). The function to be fitted is the proportion 
of the hypothetical population distribution that should fall 
within each bin, i (recall that bin sizes are determined from 
the data histogram). These proportions were determined 
from the theoretical unimodal normal distribution or from 
the theoretical bimodal mixture of two normal distribu­
tions. In the case of the unimodal normal distribution, the 
free parameters to be fitted are, the mean (p.) and standard
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deviation (F, or variance, F2):

N ( j u , a )  =
a/2

l a 2

KG
(1)

In the case of the bimodal mixture of two normal distributions, there is a mean (:1?:2) and a standard deviation (F15F2) for 
each normal distribution, as well as, the mixture proportion (8; note many authors use B to denote this parameter, which 
can be confused with the constant B=3.14, while others use a , which can be confused with Type 1 Error Rate):

= X *
1 > 2<t,2

& KG
+ 0 - / 0 *

l -(W iK

f i . k g ; (2)

The loss function assesses the deviation between the data 
and the population. Although the cnlr routine allows one 
to define the error (or loss) function, the default of least- 
squares error was used, which is the same as that which is 
used in ordinary least-squares regression (OLS).

The fitting algorithm returns the best-fit param­
eters, given the data and the error function. In SPSS, there 
are two possible non-linear regression routines. The nlr 
(non-linear regression) procedure uses the Levenberg- 
Marguart algorithm for fitting the data to the function, while 
the cnlr (constrained non-linear regression) uses a sequen­
tial quadratic search algorithm that permits constraints to 
be placed on the parameters. The basic Marquart algorithm 
is arguably the most general fitting routine (Bevington & 
Robinson, 1992 p. 164), but the ability of cnlr to place 
bounds on the values provides some additional stability 
(this is more important within Monte Carlo simulations), 
so the results presented here cite only the cnlr approach.

Application to a Single Set of Data
The fitting of two different data sets — one

unimodal and one bimodal — is demonstrated. Both data 
sets consisted of data generated by SPSS. Hereafter, the 
data from the unimodal normal distribution will be labeled 
as unimodal data, while data generated from a mixture of 
two normal distributions will be labeled as bimodal data. 
Similarly, the function defining the unimodal normal dis­
tribution will be labeled as the unimodal function while 
the function defining the mixture or two normal distribu­
tions will be labeled as the bimodal function.

Unimodal Data
A unimodal data set of 500 data points were ob­

tained from a unimodal function (a normal distribution) 
defined as N(:,F) = N(0,1) using the SPSS command NOR­
MAL, which generates standard Normal pseudo-random 
variates. The resulting distribution is shown in Figure 1, 
and with empirical mean 0.001 and standard deviation 
0.967 (median: 0.003). The propess of binning produced a 
range of 79 bins for 500 data points with 12 bins per stan­
dard deviation, but in fact, only 64 bins contained non­
zero counts (see Figure 1): With 500 data points, one can

Listing 1
Fitting Algorithm for the Bimodal Function
compute prop = observed/total.

model program mean=0.0 sd=l .0 c=0.0.
compute xa = abs(xl-xc).
compute xb = abs(xu-xc).
compute hi = (.398942/sd) * exp( -(((xl-mean)**2) / (2*sd**2))).
compute h2 = (.398942/sd) * exp( -(((xc-mean)**2) / (2*sd**2))).
compute h3 = (.398942/sd ) * exp( -(((xu-mean)* *2) / (2*sd**2))).
compute preduni = (.5*(hl+h2)*xa + .5*(h2+h3)*xb) + c.
cnlr prop

/bounds sd gt 0.0001 
/pred = preduni
/save = preduni residuni.
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expect to obtain a few high z-scores, and consequently, bins in the tails that contain no counts. The algorithm only 
considers bins with non-zero counts: More will be said on this point at the end of this paper. The binned mean, 0.001, 
and standard deviation, 0.967 (median: 0.001) were not different, providing a rudimentary check on the binning pro­
cess. Such a check is more important when there are fewer data points.

20-2 
28 -  
2 6 -

Bin Number -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40
-3.0 -2.4 -2.0 -1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6 2.0 2.4 3.0

Figure 1 The unimodal distribution.

The first compute command simple converts the observed 
counts per bin into a proportion within each bin (percent­
ages could also be used and would provide more signifi­
cant digits in the output on some statistics, but percentages 
would require adjustments to the formula for the normal 
distribution).

All the compute statements between the model 
program and cnlr commands are setting up the fitting al­
gorithm: All of these could be collapsed into one line, but 
it would not be as readable. Essentially, as shown in Fig­
ure 2, the area defined by each bin (i.e., the integration) 
under the normal curve is computed: This area is the prob­
ability or proportion of scores that should fall into that bin. 
There are numerous ways to obtain this area, but in this 
case, it is computed using the trapezoidal rule for numeri­
cal integration: In this case, the proportion is computed 
from the sum of two trapezoid rule integrations, one for 
the area from the bin lower limit to the bin centre and one 
for the bin centre to the bin upper limit (hence, the hi, h2, 
and h3 of the compute statements refer to the heights of 
the curve at the lower limit, centre and upper limit of the 
bin). The use of two trapezoids should simply provide 
greater resolution, particularly if a bin should happen to 
cover a large range (in units of standard deviations). It 
should be noted that, in the end, what really matters is the 
prediction per bin (the variable preduni) — how one gen­
erates the prediction is flexible. In fact, the use of a single 
trapezoid did not alter the results dramatically.

A constant term, c, is included in the model to 
insure that the residuals sum to zero: It has minimal effect

on the parameters returned or the fit. More is said on the 
rationale for its inclusion in a forthcoming paper.

It is the cnlr command that actually runs the analy­
sis, using the previous information, subject to the con­
straints that follow {/bounds, /pred, and /save). Basically, 
cnlr tries to match the actual data (the variable prop) to the 
predictions of the model (the variable preduni) by adjust­
ing the values of mean and sd (and c). It is the subcommand 
/pred that creates and names the predicted variable. The 
adjustment is performed iteratively — small changes are 
made to all variables, the fit is computed, and if the fit 
does not improve “substantially” with the new values, the 
processes stops.

Because the process is iterative, the program needs 
a starting value for all of the parameters that are to be ad­
justed. The model program command identifies the param­
eters to be adjusted and set their initial (starting) values. It 
is important to have good starting values: Poor starting 
values may result in no solution, or worse, in a “second 
best” solution that can masquerade as the correct solution. 
In a similar fashion, the subcommand /bounds allows one 
to set limits on the values of the fitted parameters. This can 
prevent the algorithm from drifting into a local solution, 
producing ridiculous values. In this case, since variances 
can never be less than zero, zero is used as a lower bound.

Finally, the subcommand /save preduni residuni 
saves and names the predicted scores and the residual scores 
onto the original data file. It is the residuals that are the 
key to the algorithm. The algorithm works by trying to 
minimize the residual. In fact, the algorithm minimizes:
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Figure 2 The trapezoid rule for obtaining the area under the curve (numerical integration). The accuracy of the integra­
tion depends on the magnitude of the base and the shape of the curve.

error =Σ(Ydata - Ypredicted)2 = Σ(Yi -  Ŷ)2 = Σ residual2

which is essentially the same error term as is used in any 
OLS regression. The only real difference (in this context) 
between the more common linear regression (the regres­
sion command in SPSS), and non-linear regression (cnlr) 
is that non-linear regression uses an iterative (trial and er­
ror) process.

In the case of the current unimodal data set, the 
algorithm returned a mean of -0.008±0.044, a standard de­
viation of 0.956 ± 0.037 and a constant of 0.000 ± 0.001 
(cited errors are the standard errors of fit, analogous to the 
standard error on a slope in linear regression) These val­
ues, within the defined confidence intervals, are the same 
as the original measures.

In linear regression, one maximizes the fit between 
the predicted and actual score by minimizing the sum of 
the squared residuals. The measure of fit can be defined 
by numerous statistics, with s2error, R2Y.i and P2df being the 
most common. Similar measures can be used here and, in 
fact, the cnlr and nlr algorithms actually provide SSerror

(hence, s2error) and R2Y.i directly.
SSerror can be used on its own as an estimate of the

degree of fit (Equation 3). Ideally, SSerror should be small, 
but beyond that, one cannot say much about the predicted 
value of SSerror: It depends on the underlying distribution, 
and scale of the data.

Another measure of fit is R2Y.i, which is the cor­
relation between the predicted proportion, or count, per 
bin (ii) and actual proportion, or count, per bin (Yi). It is 
completely analogous to R2Y.i in the more common linear 
regression, and it is essentially:

where S S ^  = 1 ^ - Y $

SSlotal = 2(Yl - Y f  (4)

Yt = the mean proportion
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Because R2 is just a correlation, it can be tested for signifi­
cance, using the traditional Type I error rate of a  =0.05. 
However, little faith should be placed in "significance" 
since, in principle, one would not be testing a model that 
did not have some hope of fitting the data: It is the magni­
tude of R2 that matters, particularly, the relative magnitude 
when comparing models. As shown in Figure 3, what is 
actually tested by R2 is the nature of the relationship be­
tween the predicted bin proportion (or count) and the ac­
tual bin proportion (or count). For R2 to apply, this rela­
tionship should be linear. Given that R2 is affected by

outliers, one should carefully check the tails of the distri­
bution (theoretical and/or actual) for such points. In addi­
tion, non-linearities in the plot imply that the model is not 
a good match to the data, regardless of the magnitude of 
the R2. In this case, the plot seems reasonable. Note that 
the standard residuals plots will provide the same infor­
mation.

A third traditional test of the fit of a sample to a 
theoretical function is that of the x 2df distribution, which 
uses actual counts (not proportions):

Figure 3 The test provided by R2 compares theoretical bin counts (proportions) to actual bin counts (proportions). Note 
that the relationship is relatively linear, but that the variance is not perfectly constant.

where Cobs = the observed counts in each bin 
Cpred = Me predicted counts in each bin 
d f = #bins -  2 since 2 parameters are estimated
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Essentially, if the sample is a good fit to the function, then 
the value of the χ2df should be small. Traditionally, one 
uses a type 1 error rate of a  =0.05 that assumes that if the 
χ2df is one of those values that falls into the upper 5% of 
the distribution, then the theoretically-derived distribution 
is not a good match to the data.

For the current data, SSerror = 0.0015 and R2Y.Ŷ =
0.848 with an associated F(1,62) = 346.429 (p<.000). Both 
SSerror and R2Y.Ŷ are directly available within the output of 
the cnlr (or nlr). The value of χ2 must be computed sepa­
rately using the actual bin score and the saved predicted 
values. Here, χ262 = 76.118 (p>.100) meaning that the model 
does not deviate significantly from the data.

There is one crucial point that has been mentioned 
previously, is that in this fitting, bins with zero counts (see 
Figure 1) were not included in the analysis. The results 
might be different if the zero-count bins (particularly zero- 
count bins flanked by non-zero-count bins) were included. 
This is an issue that will be returned to in a forthcoming 
paper.

Bimodal Data

A bimodal data set consisting of 500 data points

was generated from a bimodal function (a mixture of two 
normal distributions) defined as B(μ1,σ12,μ2,σ22,λ) = 
B(-1.0,1.0,1.0,1.0,0.5). Note that the population means 
were placed symmetrically around 0.0, that the variances 
were equal and that the mixture proportion was 0.50. Hence, 
by design, the mean of the distribution should be zero (a 
quick, but useful, check). The resulting distribution is 
shown in Figure 4, had a mean of 0.063 and standard de­
viation of 1.44 before binning (median: 0.091) and a mean 
of 0.064 and a standard deviation of 1.44 after binning 
(median: 0.063). The process of binning produced a range 
of 75 bins but only 58 contained non-zero counts (see Fig­
ure 4).

This data was then fit to the bimodal function (the 
mixture of two normal distributions). In this case, there 
are five parameters that are free to vary: two means (μ1,μ2), 
two variances (σ12,σ22), and the mixture proportion (λ) as 
well as a constant. The algorithm is more complicated, but 
it is essentially the same as before. Note that the fitted 
statistics should reproduce the original population, with 
sampling error, as well as, drift due to binning. The fitting 
algorithm is shown in Listing 2.

Listing 2
Fitting Algorithm for the Bimodal Function 
compute prop = observed/total * 100.
model program mean1=-2.0 mean2=l.0 sdl=2.0 sd2=l .0 ratio=0.5 c=0. 
compute xa = abs(xl - xc).
compute xb = abs(xu - xc).
compute hi = (.398942/sdl)*exp(_(((xl-meanl)**2) /(2*sdl**2))).
compute h2 = (.398942/sdl)*exp(_(((xc-meanl)**2) /(2*sdl**2))).
compute h3 = (.398942/sdl)*exp(_(((xu-meanl)**2) /(2*sdl**2))).
compute h4 = (.398942/sd2)*exp(_(((xl-mean2)**2) /(2*sd2**2))).

Figure 4 The bimodal distribution.
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compute h5 = (.398942/sd2)*exp(-(((xc-mean2)**2) /(2*sd2**2))).
compute h6 = (.398942/sd2)*exp(-(((xu-mean2)**2) /(2*sd2**2))).
compute predbi = ratio *(.5*(hl+h2)*xa + .5*(h2+h3)*xb)

+ (l-ratio)*(.5*(h4+h5)*xa + .5*(h5+h6)*xb) + c. 
cnlr prop /pred = predbi

/bounds sd1 gt 0.0001; 
sd2 gt 0.0001;
1.0 ge ratio ge 0.0 

/save = predbi residbi.

As before, the first compute command simply converts the 
observed counts per bin into a proportion. The compute 
commands between the model program and cnlr commands 
create the model. Again, in principle this could be done in 
one line. The model program command defines the pa­
rameters to be fitted and sets their initial values. The cnlr 
command defines the dependent variable, sets some bounds 
on the parameters and sets the routine to save the predicted 
and residual. The difference between this and the previous 
unimodal case is one of increasing complexity: There are 
no substantive changes.

In the case of the current bimodal data set, the 
values returned by the algorithm were -1.140 ± 0.828 for 
first mean, 1.047 ± 0.411 for the first standard deviation, 
0.967 ± 0.746 for the second mean, 1.049 ± 0.366 for the 
second standard deviation, 0.473 ± 0.406 for the mixing 
proportion, and 0.000 ± 0.001 for the constant (cited er­
rors are the standard errors of fit analogous to the standard 
error on a slope in linear regression). The algorithm re­
turns the original population parameters (within the de­
fined confidence limits).

For the bimodal data, SSerror = 0.0018 and R2Y•Ŷ 
= 0.751 with an associated significance of F(1,53)=168.928 
(p <.000). χ253 = 46.277 (p >.950), which implies that the 
model does not differ significantly from the data. Again, it 
must be emphasized that bins with zero counts (see Figure 
4) were not included in the computations and, as such, re­
sult might be different if they were.

Cross Fits
In practice, one would not know whether the 

unimodal or bimodal function provided the proper fit to 
the data. To address this question, it is necessary to fit the 
data with both functions so that the best choice may be 
obvious. In an ideal world, the unimodal data will fit a 
unimodal function better than a bimodal function, and the 
bimodal data will fit the bimodal function better than the 
unimodal function. Hence, the previous unimodal data was 
fitted to the bimodal function and the previous bimodal 
data was fitted to the unimodal function.

The fitting of the unimodal data to the bimodal 
function produced -0.016 ± 0.091 for first mean, 0.911 ± 
0.149 for the first standard deviation, 4.912 ±22.797 for 
the second mean, 2.771 ± 54.287 for the second standard 
deviation, and 0.927 ± 0.362 for the mixing proportion. 
The constant was near zero, 0.001 ± 0.003. The bimodal 
fit suggests that the data can be modeled by the proper 
parent distribution centered at 0 and a wider distribution 
centered five standard deviations above the mean. The 
wider distribution provides only 7% of the data. Effectively, 
the bimodal function finds a unimodal distribution.

The fitting of the bimodal data to the unimodal 
function produced a mean of -0.009 ± 0.097 and a stan­
dard deviation of 1.620 ± 0.083, with a constant near zero, 
0.001 ± 0.001. These values were within expectation given 
that = A * H , + ( 1 - A ) * la2 = 0.00 and 0 2bimoda, = X 
* O,2 + (1 - X) * o22 + X * (1 - X) * ([I, - |I2)2 = 2.00.
Hence, fitting the bimodal data with a unimodal function 
finds a single distribution centered at zero, which is

Table 1
Fitting the unimodal and bimodal data with the unimodal and bimodal functions.
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reasonable given that the data were symmetric about zero.
In many cases, the actual parameters produced 

are less important than the fits of the data to the alternative 
functions. Table 1 provides SSeiTor, R2y t  and x 2df for the 
unimodal data fitted to both functions and for the bimodal 
data fitted to both functions. In the case of the unimodal 
data, both functions seem to fit equally well. As such, there 
would be no grounds for arguing that the function is bimo­
dal (parsimony). In the case of the bimodal data, the bimo­
dal function provides the better fit.

Conclusion

This work has been a demonstration of the application of 
commonly available statistical software, in this case SPSS, 
to solving the problem of assessing putative mixture dis­
tributions: particularly, decisions concerning a unimodal 
normal distribution or a bimodal mixture of two normal 
distributions. Routines were developed to enable anyone 
to determine the best-fit statistics for fitting data to a 
unimodal normal distribution or a bimodal mixture of two 
normal distribution.

The method presented has several advantages. 
The most important advantage is that the method is not 
limited to normal distributions or mixtures of two normal 
distributions. There is unlimited flexibility in the choice of 
fitting functions. In fact, the fitting function does not have 
be continuous (however, non-linear regression is best done 
with continuous functions). As noted previously, one only 
needs to be able to create a predicted bin count that can be 
compared to the actual bin count. The predicted bin count 
can be based on any function. The likelihood test to be 
presented later also has this advantage.

The second advantage is that one can modify the 
algorithm to obtain greater accuracy. Non-linear regres­
sion using a least-squares error term assumes that the error 
is a constant for all values of the independent variable. If 
bins have variable counts (or proportions), the error per 
bin is not constant. This could be a factor in the fit if the 
range of counts is large. SPSS non-linear regression al­
lows one to specify the error term. As such, one could switch 
to weighted least-squares (non-linear) regression if greater 
accuracy is demanded. This change would also help to al­
leviate the problem of bins with low counts. It has not been 
presented in this work because it adds an additional layer 
of complication thereby obscuring the main points.

The third advantage is related to the first two. In 
particular situations, some parameters can be fixed. For 
example, the two variances may set to be equal, or either 
variance could be set to a constant (e.g., 1.0) or the mix­
ture proportion may be fixed (e.g., 0.5). This would effec­
tively improve the fit for the remaining parameters (as­
suming that the alterations were appropriate to the theo­
retical distribution) because it would increase the df per

parameter. Such an approach might be more useful when 
there are only a few data points (or bins). In a similar fash­
ion, the regression model has the flexibility to include a 
constant, or to not include a constant. If there is no 
constant, the model assumes that the regression line goes 
through the point (X,^) = (0,0). If the model does not in­
clude a constant when it should, then the resulting fit will 
be biased (i.e., the sum of the residuals will not be zero). 
In this work, it is arguable that the model does not need a 
constant because the (0,0) point can be assumed (i.e., the 
predicted value should be zero, when the bin is empty). 
The caveat is that this is not strictly true when dealing with 
binned data. That is, bins with counts of zero may corre­
spond to a non-zero theoretical probability. In fact, given a 
normal parent population, no bin should ever have a zero 
theoretical probability. Hence, an actual bin count of zero 
will correspond to some non-zero theoretical bin count (this 
will be small, but non-zero). As such the inclusion of a 
constant is prudent. In general, we expect that only x 2 will 
be dramatically affected by the removal of the constant(x2 
can be very large when there is no constant, implying that 
the model would be biased without the constant).

In summary, the routine works; however, it must 
be cautioned that this algorithm is only considered an in­
terim solution to the problem — one of many (cf., Eriksen 
& Eriksen, 1972; Eriksen & Yeh, 1985; Hartigan, 1974; 
Jones & McLachlen, 1990; Muller & Sawitzki, 1991; 
Roeder, 1990, 1994; Yantis, Meyer and Smith, 1991; 
Yellott, 1971). Hopefully, a proper fully parametric method 
for assessing bimodality will be developed, one that ex­
tracts all the information contained within each individual 
data point rather than working through the intermediary of 
a histogram. As has been shown, if not done carefully, the 
process of binning can alter the data. On the other hand, 
even if a proper parametric method is developed, it will 
necessarily be tied to particular parent distributions. As 
such, the algorithms developed herein will continue to serve 
some purpose with other parent distributions. We have on­
going research studying the methods presented herein in 
simulations. Forthcoming papers will discuss matters of 
fit indices and bin size.
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End Notes

1 The normal distribution can be considered a rea­
sonable approximation by virtue of the central 
limit theorem. In addition, the limiting cases of 
the binomial, %2, Poisson, t and their derivatives 
are approximately normal.

2 Those who think this is not a serious concern 
should contemplate the standard use of ANOVA: 
Many psychological variables, when used as in­
dependent factors, have been forcefully cast as 
categorical in order to fit the analysis (e.g., clini­
cal categories such as depression, drug levels); it 
is now difficult to present them in their true con­
tinuous form.

3 The determination of “some reasonable number” 
depends on the author: Ten for Bevington and 
Robinson (1992, p. 109), five to ten for Hayes 
(1994, p. 862), and five for Howell (1995, p. 115, 
141). Values from Hayes and from Howell assume 
a x2 distribution within each cell, while those of 
Bevington and Robinson assume a Poisson dis­
tribution within each cell.
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