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The Efficiency Of OLS In The Presence Of 
Auto-Correlated Disturbances In Regression Models 

 
                                      Samir Safi                                          Alexander White 

        Department of Mathematics and Statistics   Department of Mathematics and Statistics 
   James Madison University*    Texas State University 

 
 
The ordinary least squares (OLS) estimates in the regression model are efficient when the disturbances 
have mean zero, constant variance, and are uncorrelated. In problems concerning time series, it is often 
the case that the disturbances are correlated. Using computer simulations, the robustness of various 
estimators are considered, including estimated generalized least squares. It was found that if the 
disturbance structure is autoregressive and the dependent variable is nonstochastic and linear or quadratic, 
the OLS performs nearly as well as its competitors. For other forms of the dependent variable, rules of 
thumb are presented to guide practitioners in the choice of estimators. 
 
Key words: Autocorrelation, autoregressive, ordinary least squares, generalized least squares, efficiency 
 
 

Introduction 
 
Let the relationship between an observable 
random variable y and k explanatory variables 

k21 X , ,X ,X … in a T-finite system be specified 
in the following linear regression model: 
 

                u+β X=y            (1) 
 
where y is a ( )1T ×  vector of observations on a 

response variable, X is a ( )kT ×  design matrix, 

β  is a ( )1k ×  vector of unknown regression 

parameters, and u is a ( )1T ×  random vector of 
disturbances. For convenience, it is assumed that 
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X is full column rank Tk <  and its first column 
is 1's. The ordinary least squares (OLS) 
estimator of β  in the regression model (1) is 

            

             ( ) yXXXˆ 1 ′′=β −
           (2) 

 
In problems concerning time series, it is 

often the case that the disturbances are, in fact, 
correlated. Practitioners are then faced with a 
decision, use OLS anyway, or try to fit a more 
complicated disturbance structure. The problem 
is difficult because the properties of the 
estimators depend highly on the structure of the 
independent variables in the model. For more 
complicated disturbance structures, many of the 
properties are not well understood. If the 
disturbance term has mean zero, i.e. E(u) = 0, 
but is in fact, autocorrelated, i.e. 

( ) ∑σ= 2
uuCov , where∑  is a TT ×  positive 

definite matrix and the variance 2
uσ  is either 

known or unknown positive and finite scalar, 
then the OLS parameter estimates will continue 

to be unbiased, i.e. ( ) β=β̂E . But it has a 
different covariance matrix; 

 

     ( ) ( ) ( ) .XXXXXXˆCov 112
u

−−
∑

′∑′′σ=β  (3) 
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The most serious implication of 
autocorrelated disturbances is not the resulting 
inefficiency of OLS, but the misleading 
inference when standard tests are used. The 
autocorrelated nature of disturbances is 
accounted for in the generalized least squares 
(GLS) estimator given by: 

 

      ( ) yXXX
~ 111 −−−

∑′∑′=β           (4)                     
         

which is unbiased, i.e. ( ) β=β~E , with 
covariance matrix 
 

                  ( ) ( ) .XX
~

Cov
112

u

−−
∑′σ=β             (5)                                  

 
The superiority of GLS over OLS is due to the 
fact that GLS has a smaller variance. According 
to the Generalized Gauss Markov Theorem, the 
GLS estimator provides the Best Linear 
Unbiased Estimator (BLUE) of β . But the GLS 
estimator requires prior knowledge of the matrix 

correlation structure, Σ . The OLS estimator β̂  
is simpler from a computational point of view 
and does not require a prior knowledge of Σ . 

A common approach for modeling 
univariate time series is the autoregressive 
model. The general finite order autoregressive 
process of order p or briefly, AR(p), is 

 
~  ,uuuu ttptp2t21t1t εε+φ++φ+φ= −−− �

.d.i.i ( )2,0N εσ                                                  (6) 

 
There are numerous articles describing 

the efficiency of the OLS coefficient 

estimator β̂ , which ignore the correlation of the 

error, relative to the GLS estimator β~ , which 
takes this correlation into account. One strand is 
concerned with conditions on regressors and 
error correlation structure, which guarantee that 
OLS is asymptotically as efficient as GLS (e.g. 
Chipman, 1979; Krämer, 1980). The efficiency 
of the OLS estimators in a linear regression 
containing an autocorrelated error term depends 
on the structure of the matrix of observations on 
the independent variables (e.g. Anderson, 1948; 
1971; Grenander & Rosenblatt, 1957). 

For a linear regression model with first 
order autocorrelated disturbances, several 
alternative estimators for the regression 
coefficients have been discussed in the literature, 
and their efficiency properties have been 
investigated with respect to the OLS and GLS 
estimators (e.g. Kadiyala, 1968; Maeshiro, 1976; 
1979; Ullah et al., 1983). 

The relative efficiency of GLS to OLS 
in the important cases of autoregressive 
disturbances of order one, AR(1), with 
autoregressive coefficient ρ  and second order, 

AR(2), with autoregressive coefficients ( )21 ,φφ  
for specific choices of the design vector have 
been investigated. 

Building on work on the economics and 
time series literature, the price one must pay for 
using OLS under suboptimal conditions required 
investigation. Different designs are being 
explored, under which relative efficiency of the 
OLS estimator to that of GLS estimator 
approaches to one or zero, determining ranges of 
first-order autoregressive coefficient, ρ , in 
AR(1) disturbance and second order of 
autoregressive coefficients, ( )21 ,φφ  in AR(2) 
for which OLS is efficient and quantifying the 
effect of the design on the efficiency of the OLS 
estimator. Furthermore, a simulation study has 
been conducted to examine the sensitivity of 
estimators to model misspecification. In 
particular, how do estimators perform when an 
AR(2) process is appropriate and the process is 
incorrectly assumed to be an AR(1) or AR(4)? 

 
Performance Comparisons 
 In this section, numerical results are 
presented using the formulas in (3) and (5). 
Focus will be placed on two issues; first, the 
relative efficiency of GLS estimator as 
compared with the OLS estimator when the 
structure of the design vector, X, is 
nonstochastic. For example, linear, quadratic, 
and exponential design vectors with an intercept 
term included in the design vector. Secondly, the 
relative efficiency of the GLS estimator as 
compared with the OLS for a stochastic design 
vector. In the example considered here, a 
standard Normal stochastic design vector of 
length 1000 was generated. The three finite 
sample sizes used are 50, 100, and 200 for 
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selected values of the autoregressive 
coefficients. Both AR(1) and AR(2) error 
processes are considered to discuss the behavior 
of OLS as compared to GLS. 
 
Performance Comparisons for AR (1) Process 
 The relative efficiencies of OLS to GLS 
are discussed when the disturbance term follows 
an AR(1) process, T,,2,1t,uu t1tt …=ε+ρ= − , 

assuming that the autoregressive coefficient, ρ , 
is known priori. The three finite sample sizes 
used are 50, 100, and 200 for the elected values 

of 9.≤ρ , evaluated in steps of .2. 

Table (1) shows the relative efficiencies 
of the variances of GLS to OLS for a regression 
coefficient on linear trend with an intercept term 
included in the design. For estimating an 
intercept term, the relative efficiency of the OLS 
estimator as compared to the GLS estimator 

 

 
 
 

decreases with increasing values of ρ . For small 

and moderate sample sizes, the efficiency of the 
OLS estimator appears to be nearly as efficient 

as the GLS estimator for 7.≤ρ . In addition, for 

large size sample data, the OLS estimator 
performs nearly as efficiently as the GLS 
estimator for the additional values of 9.±=ρ . 
Further, the efficiency for estimating the slope 
mimics the efficiency of the intercept, except for 
large sample size; the efficiency of the OLS 
estimator appears to be nearly as efficient as the 
GLS estimator for 9.±≠ρ . 

The efficiency of GLS estimator to the 
OLS  estimator  for  the  quadratic  design agrees  
with the behavior for the linear design vector. In 
contrast, the gain in efficiency of the GLS 
estimator for different design vectors such as 
exponential and 1000 standard Normal, N(0,1)  
 
 

 
 
 

 
Table 1: Relative Efficiency of GLS to OLS for Linear Design 

 
Intercept Slope   

T = 50 T =100 T = 200 T = 50 T =100 T = 200 

-0.9 0.7097 0.8276 0.9047 0.6739 0.8012 0.8881 

-0.7 0.9162 0.9552 0.9768 0.9024 0.9471 0.9724 

-0.5 0.9694 0.9840 0.9918 0.9640 0.9810 0.9903 

-0.3 0.9908 0.9952 0.9976 0.9891 0.9943 0.9971 

-0.1 0.9991 0.9995 0.9998 0.9989 0.9994 0.9997 

0.1 0.9991 0.9995 0.9998 0.9989 0.9994 0.9997 

0.3 0.9911 0.9953 0.9976 0.9894 0.9944 0.9971 

0.5 0.9717 0.9846 0.9920 0.9662 0.9816 0.9904 

0.7 0.9288 0.9585 0.9777 0.9147 0.9503 0.9732 

0.9 0.8359 0.8691 0.9164 0.8000 0.8418 0.8993 

 
 

ρ 
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compared to the OLS estimator is substantial for 
moderate  and  large  values of ρ  . However, for 
small values of ρ  the OLS appears to be nearly 
as efficient as GLS. 
 
Performance Comparisons for AR (2) Process 
 The relative efficiencies of OLS to GLS 
are discussed for linear, quadratic, and 
exponential design vectors when the disturbance 
term follows an AR(2) process, 

T,2,,1t  ,uuu t2t21t1t …=ε+φ+φ= −− , assuming 

that the autoregressive coefficients 1φ  and 2φ  
are known priori. The three finite sample sizes 
used are 50, 100, and 200 for the selected 45 
pairs of the autoregressive coefficients. These 
coefficients were chosen according to stationary 

conditions ( )1and,1,1 21221 <φ<φ−φ<φ+φ  

and so that ( ) 1
211 1 −φ−φ=ρ  is positive. This 

second condition was chosen since this is the 
case in most econometric studies. 

To demonstrate the efficiency of OLS, 
consider the linear design vector. When the 
disturbance term follows an AR(2) process for 
the linear design with small sample size, OLS 
performs nearly as efficiently as GLS for 
estimating the slope for all AR(2) 
parametrizations except when s'φ are close to 
the stationary boundary. As the sample size 
increases, the difference between the 
performance of OLS and GLS decreases. Only 
when 9.2 −=φ , does OLS perform badly 
regardless of the sample size. The efficiency of 
GLS to OLS for the quadratic design mimics the 
behavior for the linear design. Finally, for 
exponential and 1000 standard Normal design 
vectors, the efficiency of OLS appears to be 
nearly as efficient as GLS for 2.1 =φ  and small 

values of 2φ ₂  for all sample sizes. Otherwise, 
OLS performs poorly. 

 
Simulation Study 
 In this section, the robustness of various 
estimators are considered, including estimated 
generalized least squares (EGLS). These 
simulations examine the sensitivity of estimators 
to model misspecification. In particular, how do 
estimators perform when an AR(2) process is 

appropriate and it is incorrectly assumed that the 
process is an AR(1)? The finite sample 
efficiencies of the OLS estimator relative to four 
GLS estimators are compared: the GLS based on 
the correct disturbance model structures and 
known AR(2) coefficients denoted as GLS-
AR(2); the GLS based on the correct disturbance 
model structures, but with estimated AR(2) 
coefficients denoted as EGLS-AR(2); the GLS 
based on AR(1) incorrect disturbance model 
structures with an estimated AR(1) coefficient 
denoted as EIGLS-AR(1); and the GLS based on 
AR(4) incorrect disturbance model structures 
with estimated AR(4) coefficients denoted as 
EIGLS-AR(4). This study focuses only on 
AR(p) GLS corrections disturbances which are 
widely used in econometric studies. 
 
The Simulation Setup 
 Three finite sample sizes (50, 100, and 
200) and three nonstochastic design vectors of 
the independent variable are used; linear, 
quadratic, and exponential. A standard Normal 
stochastic design vector of length 1000 is also 
generated (Assuming that the variance of the 

error term in AR(2) process 12 =σε ). Further, 

1000 observations for each of the AR(2) error 
disturbances with four pairs of autoregressive 
coefficients; (.2,-.9), (.8,-.9), (.2,-.7), and (.2,-.1) 
were also generated. Table (2) shows the values 
of autocorrelation coefficients 21  , ρρ , 

disturbance variances, 2
uσ , ( )( )[ ] 12

1
2
2

2
u 11

−ρ−φ−=σ  

and the relative efficiencies for estimating an 
intercept 0β , and the slope, 1β  of GLS to OLS 

for linear design with T=50, denoted ( )0RE β , 

and ( )1RE β . Looking at the table, it may be 
seen that the choices (.2,  -.9) and (.8, -.9) give 
the worst performance of OLS as compared to 
GLS for estimating ( 0β , 1β ) of the regression 

coefficients and the largest values of 2
uσ . 

However, the choices (.2, -.7) and (.2, -.1) give 
the moderate and best performance of OLS as 
compared to GLS and the smallest values of 

2
uσ . Results for other sample sizes and designs 

demonstrate a similar pattern as in Table (2). 
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The regression coefficients 0β , and 1β  

for an intercept and the slope were each chosen 
to be equal one. Breusch (1980) has shown that 

for a fixed design, the distribution of 
2
u

EGLS
ˆ

σ
β−β

 

does not depend on the choice for β  and 2
uσ , 

and the result holds even if the covariance 
matrix Σ  is misspecified. When the design 
vector is stochastic, the assumption of a fixed 
design can be constructed as conditioning upon a 
given realization of the design, provided that the 
design is independent of tu , Koreisha et al. 

(2002). 
 
Definition 
 The efficiency of the GLS estimates 
relative to that of OLS in terms of the mean 

squared error of the regression coefficient, 
j

ˆ
βζ , 

is given by: 

                  
( )
( )∑ β−β

∑ β−β
=ζ

=

=
β k

1i

2

jOLS,ij

k

1i

2

jGLS,ij

ˆ

~

ˆ
j

         (7) 

  
where j = 0,1, for four GLS estimates, and k is 
the number of simulations. A ratio less than one 
indicates that the GLS estimates is more 

efficient  than  OLS,  and  if  
j

ˆ
βζ is  close to one,  

 

 
 
 
 
 

then the OLS estimate is nearly as efficient as 
GLS estimates. 
  

The Simulation Results for 
j

ˆ
βζ  

 Tables (3) through (6) show the 
complete simulation results of the ratios of the 
GLS estimators relative to the OLS estimator in 
terms of the mean squared error of the 

regression coefficients, 
0

ˆ
βζ  and 

1

ˆ
βζ  in (7), 

when the serially correlated disturbance follows 
an AR(2) process. Each table presents the results 
for the three sample sizes considered, as well as 
all four selected pairs of AR(2) parametrizations. 
Each of the different designs is presented in a 
separate table. 
 Note that regardless of the sample size, 
selected design vectors, and AR(2) 
parametrizations the efficiency in estimating an 
intercept, 0β , and the slope, 1β , of the 

regression coefficients is higher for the GLS-
AR(2) estimator than OLS. This result 
emphasizes that GLS is the BLUE. However, 
OLS performs nearly as efficiently as GLS for 
all selected sample sizes and designs when Φ = 
(.2, -.1). This result is not surprising since the 
choice of Φ = (.2, -.1) gives the highest 
performance of OLS as compared to GLS, in 
addition, it gives the smallest values of 21  , ρρ , 

and 2
uσ . 

 

 
 
 
 
 

Table 2: Autocorrelation Coefficients, Disturbance Variances and the Relative Efficiencies of GLS to 
OLS for Standardized Linear Design with T = 50 

 

( )21   , φφ  1ρ  2ρ  2
uσ  ( )0RE β  ( )1RE β  

(.2, -.9) .1053 -.8789 5.3221 .7656 .5645 

(.8, -.9) .4211 -.5632 6.3973 .8325 .6026 

(.2, -.7) .1176 -.6765 1.9883 .9414 .8531 

(.2, -.1) .1818 -.0636 1.0446 .9993 .9980 
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When the order of the disturbance term 
is under estimated, i.e. EIGLS-AR(1), the GLS 
estimate performs poorly. In fact, OLS is more 
efficient for nearly every situation considered 
here. For example, when Φ  = (.8, -.9) for 

quadratic design with T = 50, ( )
10

ˆ,ˆ
ββ ζζ  = 

( )1.72961.4179,  as shown in Table (3).  
This shows that EIGLS-AR(1) can be 

much less efficient than OLS. The poor 
performance of EIGLS-AR(1) relative to OLS is 
most marked when the sample size is relatively 

 
 
 
 

 
 

 
 
 

estimation is smaller than an appropriate 
estimated   AR   structure.   This    suggests    the  
small (i.e. T = 50) and the order of the 
autoregressive process used in the GLS 
surprising result that OLS may often be better 
than assuming an AR(1) when the actual process 
is AR(2). However, for the choice of  Φ  = (.2, -
.1) there is little difference between OLS and 
EIGLS-AR(1). For example, for linear design 

with T=200, ( )
10

ˆ,ˆ
ββ ζζ  = (.9998, .9984) as 

presented in Table (4).  
 
 
 
 
 

 
 
 
 
 

 
Table 3: Efficiency for MSEs of the Regression Coefficients of the GLS Estimators Relative to OLS 

Estimator for Quadratic Design 
 
  ( Φ1, Φ2) 

 (.2, -.9) (.8, -.9) (.2, -.7) (.2, -.1) 

Size Estimator     

50 GLS-AR(2) 0.7929 0.5540 0.8321 0.6174 0.9435 0.8349 1.0002 0.9954

EGLS-AR(2) 0.7934 0.5567 0.8342 0.6172 0.9453 0.8409 1.0079 1.0094

EIGLS-AR(1) 1.0935 1.1973 1.4179 1.7296 1.0355 1.0861 1.0063 1.0050

EIGLS-AR(4) 0.7968 0.5623 0.8399 0.6182 0.9564 0.8500 1.0385 1.0332

100 GLS-AR(2) 0.8660 0.6950 0.8849 0.7104 0.9638 0.9287 1.0003 0.9993

EGLS-AR(2) 0.8661 0.6957 0.8844 0.7089 0.9676 0.9319 0.9993 0.9980

EIGLS-AR(1) 1.0453 1.0963 1.2136 1.4127 1.0207 1.0348 0.9989 1.0001

EIGLS-AR(4) 0.8651 0.6974 0.8861 0.7093 0.9723 0.9342 1.0078 1.0091

200 GLS-AR(2) 0.9410 0.8331 0.9700 0.8269 0.9628 0.9400 1.0004 0.9984

EGLS-AR(2) 0.9409 0.8326 0.9702 0.8265 0.9637 0.9400 1.0016 0.9990

EIGLS-AR(1) 1.0180 1.0417 1.0453 1.2683 1.0094 1.0187 1.0014 1.0023

 EIGLS-AR(4) 0.9418 0.8338 0.9707 0.8290 0.9627 0.9407 1.0018 1.0021
 

0βζ̂ 0βζ̂ 0βζ̂ 0βζ̂1β
ζ̂

1β
ζ̂

1β
ζ̂

1β
ζ̂
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This result is expected because the 

choice of 1.2 −=φ  indicates that the serially 
correlated disturbance very nearly AR(1) since 

2φ  is close to zero. 
To further demonstrate the efficiency of 

OLS, consider the quadratic and linear designs. 
OLS is nearly as efficient or more efficient in 
estimating ( )10 ,ββ  than the GLS estimators; 

EGLS-AR(2), and EIGLS-AR(4), for moderate 
and large sample sizes (i.e. T=100 and 200) with 
AR(2) parametrizations Φ  = (.2, -.7) and (.2, -
.1) Tables (3) and (4). However, there are 
examples where OLS performs poorly as well. 
For the exponential design, OLS is nearly as 
efficient as EGLS-AR(2), and EIGLS-AR(4) for 
all sample sizes only when Φ  = (.2, -.1).  

 
 
 

 
Otherwise, OLS performs poorly as shown in 
Table (5). For example, when T = 50 with Φ  =  

(.2, -.9), 
1

ˆ
βζ  = (.2035, .2108). However, even in 

this case, the performance of the OLS estimator 

for estimating the intercept is not bad, 
0

ˆ
βζ  = 

(.7561, .7606). In fact, the performance of OLS 
is always better for estimating the intercept than 
the slope. 

For the standard Normal stochastic 
design model, OLS fares more poorly. Only for 
Φ  = (.2, -.1) does the efficiency of OLS match 
GLS as shown in Table (6). However, regardless 
of the sample size, OLS performs as nearly as 
efficiently or better than EIGLS-AR(1) for all 
selected autoregressive coefficients for 
estimating 0β . 

 
 

 
Table 4: Efficiency for MSEs of the Regression Coefficients of the GLS Estimators Relative to 

OLS Estimator for Linear Design 
 
  ( Φ1, Φ2) 

Size Estimator (.2, -.9) (.8, -.9) (.2, -.7) (.2, -.1) 

      

50 GLS-AR(2) 0.7472 0.5740 0.8214 0.6193 0.9740 0.8511 1.0012 0.9964

EGLS-AR(2) 0.7485 0.5771 0.8219 0.6200 0.9773 0.8548 1.0091 1.0073

EIGLS-AR(1) 1.1004 1.1893 1.3624 1.6995 1.0181 1.0895 1.0055 1.0079

EIGLS-AR(4) 0.7490 0.5824 0.8255 0.6220 0.9868 0.8595 1.0122 1.0448

100 GLS-AR(2) 0.8756 0.6641 0.8992 0.7340 0.9724 0.9204 1.0005 0.9996

EGLS-AR(2) 0.8766 0.6632 0.8992 0.7323 0.9718 0.9219 1.0025 1.0003

EIGLS-AR(1) 1.0349 1.0995 1.1826 1.4783 1.0156 1.0266 1.0025 1.0023

EIGLS-AR(4) 0.8782 0.6654 0.8992 0.7391 0.9758 0.9285 1.0133 1.0021

200 GLS-AR(2) 0.9127 0.8137 0.9584 0.8662 0.9623 0.9262 0.9990 0.9977

EGLS-AR(2) 0.9127 0.8135 0.9586 0.8662 0.9621 0.9271 1.0000 0.9980

EIGLS-AR(1) 1.0252 1.0464 1.0666 1.2104 1.0092 1.0175 0.9998 0.9984

 EIGLS-AR(4) 0.9117 0.8123 0.9584 0.8668 0.9618 0.9255 1.0022 1.0032
 

0βζ̂ 0βζ̂ 0βζ̂ 0βζ̂1β
ζ̂

1β
ζ̂

1β
ζ̂

1β
ζ̂
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Table 5: Efficiency for MSEs of the Regression Coefficients of the GLS Estimators 

Relative to OLS Estimator for Exponential Design 
 

  ( Φ1, Φ2) 

  (.2, -.9) (.8, -.9) (.2, -.7) (.2, -.1) 

Size Estimator     

50 GLS-AR(2) 0.7529 0.1951 0.8208 0.2160 0.9394 0.5576 0.9986 0.9706

EGLS-AR(2) 0.7561 0.2035 0.8256 0.2241 0.9464 0.5642 0.9987 1.0030

EIGLS-AR(1) 1.0451 1.1030 1.1649 1.1683 1.0167 1.0656 0.9969 1.0019

EIGLS-AR(4) 0.7606 0.2108 0.8293 0.2322 0.9473 0.5815 1.0042 1.0775

100 GLS-AR(2) 0.8922 0.1979 0.9139 0.2311 0.9668 0.5461 1.0009 0.9830

EGLS-AR(2) 0.8895 0.2021 0.9163 0.2353 0.9682 0.5467 0.9993 0.9980

EIGLS-AR(1) 1.0115 1.0803 1.0893 1.1383 1.0077 1.0575 0.9991 0.9965

EIGLS-AR(4) 0.8904 0.2068 0.9149 0.2357 0.9692 0.5578 0.9997 1.0187

200 GLS-AR(2) 0.9168 0.2139 0.9771 0.2084 1.0162 0.5293 1.0022 0.9877

EGLS-AR(2) 0.9164 0.2143 0.9782 0.2132 1.0150 0.5303 1.0008 0.9990

EIGLS-AR(1) 1.0053 1.0645 1.0492 1.2352 0.9999 1.0390 1.0012 0.9900

 EIGLS-AR(4) 0.9171 0.2161 0.9802 0.2151 1.0149 0.5425 1.0006 1.0062
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Discussion 
 In investigating the simulation results in 
the previous section, the following significant 
results were observed. First and foremost, it was 
noticed that regardless of the sample size for all 
design structures and selected autoregressive 
coefficients, the efficiency in estimating an 
intercept, 0β , and the slope, 1β , of the 

regression model is higher for the GLS estimator 
based on the correct disturbance model 
structures and known AR(2) coefficients. This 
result is expected since GLS is BLUE, but 
because GLS requires a priori knowledge of Σ , 
this is not a viable option. 

 
 
 

 
 
In addition, the relative efficiency of 

OLS is better than EIGLS-AR(1) in estimating 
( 0β , 1β ) for all sample sizes and nonstochastic 

design vectors. The relative efficiency of OLS to 
be superior to that of EIGLS in estimating the 
slope when T=50 with AR(2) parametrization 
(.8, -.9) was also observed. This choice of (.8, -
.9) gives the highest first-order autoregressive 
coefficient ( ).42111 =ρ  and largest variance of 

the error process ( )6.39732
u =σ  among the 

other choices of AR(2) parametrizations. This 
explains the poor relative  performance  of  OLS  
to     GLS      for    this   choice    of    parameter.   

 
 
 

 
Table 6: Efficiency for MSEs of the Regression Coefficients of the GLS Estimators Relative to 

OLS Estimator Standard Normal Stochastic Design 
 

  ( Φ1, Φ2) 

  (.2, -.9) (.8, -.9) (.2, -.7) (.2, -.1) 

Size Estimator     

50 GLS-AR(2) 0.6416 0.1127 0.7427 0.0667 0.8851 0.3334 0.9998 0.8838

EGLS-AR(2) 0.6437 0.1149 0.7442 0.0676 0.8807 0.3428 1.0176 0.9513

EIGLS-AR(1) 1.0536 0.9591 1.2168 0.5186 1.0129 0.9598 1.0091 0.9244

EIGLS-AR(4) 0.6509 0.1211 0.7477 0.0737 0.8908 0.3652 1.0385 1.0221

100 GLS-AR(2) 0.7601 0.1055 0.8466 0.0640 0.9350 0.3230 0.9978 0.8902

EGLS-AR(2) 0.7598 0.1060 0.8472 0.0639 0.9341 0.3274 0.9984 0.9076

EIGLS-AR(1) 1.0241 0.9568 1.1141 0.5261 1.0121 0.9546 0.9994 0.9158

EIGLS-AR(4) 0.7611 0.1109 0.8477 0.0668 0.9346 0.3386 1.0033 0.9359

200 GLS-AR(2) 0.8624 0.1002 0.9323 0.0720 0.9715 0.3226 1.0038 0.9194

EGLS-AR(2) 0.8628 0.1006 0.9319 0.0725 0.9707 0.3245 1.0028 0.9331

EIGLS-AR(1) 1.0141 0.9581 1.0400 0.5181 1.0021 0.9598 1.0033 0.9418

 EIGLS-AR(4) 0.8630 0.1033 0.9314 0.0748 0.9719 0.3307 1.0058 0.9512
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However, from Table (3) through Table (6), it 
may be seen that the performance of EIGLS-
AR(1) is even worse. This appears to occur 
because AR(2) parametrization (.8, -.9) produces 
large values of 21 , ρρ  in absolute value 

( 5632.2 −=ρ ) and disturbance variance 
comparing to the other parameter choices. This 
means using OLS is better than assuming 
another incorrect error process. 

The third general conclusion from the 
simulation study is that regardless of the sample 
size, all of the estimators perform equally well 
with AR(2) parametrization       (.2, -.1). This 
result is not surprising because the choice of (.2, 
-.1) gives the smallest variance of the 

process ( )0446.12
u =σ , which is sufficiently 

close to the variance of standard OLS. 
Fourth, for all stochastic and non-

stochastic design vectors, the differences in the 
relative efficiency of OLS and all GLS 
estimators in estimating 0β  with a few expected 

exceptions are negligible. In fact, this is so even 
when the variance of the process is large, in 
other words, when AR(2) parametrizations are 
(.2, -.9) and (.8, -.9). 

Similar to results for section 2, when the 
design vector is linear or quadratic, the relative 
efficiency of OLS is nearly as good as the 
EGLS-AR(2) and EIGLS-AR(4) estimators for 
moderate and large sample sizes for estimating 

1β  with small variance of the disturbances. 
It is observed that the differences in the 

relative efficiencies of GLS-AR(2), EGLS-
AR(2), and EIGLS-AR(4) in estimating ( 0β , 1β ) 

are insignificant. Hence, when confronted with 
an error with unknown order p, it appears that 
using AR(4) is the best bet. 

Finally, OLS may often be more 
preferable than assuming an AR(1) process 
when the actual process is AR(2). In other 
words, it is sometimes better to ignore the 
autocorrelation of the disturbance term and use 
the OLS estimation rather than to incorrectly 
assume the process is an AR(1). 

 
Future Research 
 Perhaps, even more important than the 
efficiency of the different estimation methods in 

these models, is the effect on forecasting 
performance. Koreisha et al. (2004) investigated 
the impact that EIGLS correction may have on 
forecast performance. They developed a new 
procedure for generating forecasts for regression 
models with auto-correlated disturbances based 
on OLS and a finite AR process. They found 
that for predictive purposes there is not much 
gained in trying to identify the actual order and 
form of the auto-correlated disturbances or using 
more complicated estimation methods such as 
GLS or MLE procedures, which often require 
inversion of large matrices. It is necessary to 
extend Koreisha et al. (2004) results for different 
design vectors of the independent variables 
including both stochastic and nonstochastic 
designs instead of using one independent 
variable generated by an AR(1) process as in 
their investigation. 

A second important consideration is the 
estimation of the standard errors of the 
estimators. In practice, if one were using a 
statistical package to compute the OLS 
estimators the variance estimate produced would 

be based on ( ) 12
u XX −′σ , which may be biased 

for the true variance 

( ) ( ) 112
u XXXXXX −− ′∑′′σ . For GLS 

estimation ( Σ  known), on the other hand, the 
variance estimate is unbiased for the true 
variance of the GLS estimator. It is unclear, 
however, how the variance estimators for EGLS 
estimation behave. The impact that the variance 
estimators may have on inference based on the 
OLS estimator is currently being investigated. 

Finally, the long range goal is the 
creation of guidelines or rules of thumb which 
will aid the practitioner when deciding which 
regression estimation procedure to use. 

 
Conclusion 

 
This article has investigated an important 
statistical problem concerning estimation of the 
regression coefficients in the presence of 
autocorrelated disturbances. In particular, the 
comparison of efficiency of the ordinary least 
squares (OLS) estimation to alternative 
procedures such as generalized least squares 
(GLS) and estimated GLS (EGLS) estimators in 
the presence of autocorrelated disturbances was 
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discussed. Both stochastic and non-stochastic 
design vectors were used with different sample 
sizes. 

It was found that regardless of the 
sample size, design vector, and order of the 
auto-correlated disturbances, the relative 
efficiency of the OLS estimator generally 
increases with decreasing values of the 
disturbance variances. In particular, if the 
disturbance structure is a first or second order 
autoregressive and the dependent variable is 
nonstochastic and linear or quadratic, OLS 
performs nearly as well as its competitors for 
small values of the disturbance variances. The 
gain in efficiency of the GLS estimator for 
different design vectors such as exponential and 
standard Normal compared to the OLS estimator 
is substantial for moderate and large values of 
the autoregressive coefficient in the case of an 
AR(1) process and large values of the 
disturbance variance in the presence of an AR(2) 
process. However, for small values of the 
autoregressive coefficient and disturbance 
variance the OLS estimator appears to be nearly 
as efficient as the GLS estimator. 

It was also found that if the error 
structure is autoregressive, and the dependent 
variable is nonstochastic and linear or quadratic, 
the OLS estimator performs nearly as well as its 
competitors. When faced with an unknown error 
structure, however, AR(4) may be the best 
choice. 
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