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Choosing Smoothing Parameters For Exponential Smoothing: 
Minimizing Sums Of Squared Versus Sums Of Absolute Errors 

 
Terry Dielman 

M.J. Neeley School of Business 
Texas Christian University 

 
 
When choosing smoothing parameters in exponential smoothing, the choice can be made by either 
minimizing the sum of squared one-step-ahead forecast errors or minimizing the sum of the absolute one-
step-ahead forecast errors. In this article, the resulting forecast accuracy is used to compare these two 
options. 
 
Key words: Exponential smoothing, forecasting accuracy, M-competition, outliers, parameter selection, 
Simulation 
 
 

Introduction 
 

In a number of comparisons of forecasting 
methods, exponential smoothing methods have 
been shown to be simple but relatively accurate 
techniques for generating forecasts (See 
Makridakis et al., 1982; Makridakis et al., 1993; 
Makridakis & Hibon, 2000). When using 
exponential smoothing methods to forecast a 
time series, a smoothing parameter (or 
parameters) must be chosen. One way this 
choice can be made is to choose the parameter or 
parameters that minimize some error criterion 
over the history of the data available. Typically, 
the choice made is to minimize the sum of 
squared one-step-ahead forecast errors (SSE). 
Another option would be to minimize the sum of 
the absolute one-step-ahead forecast errors 
(SAE). Minimizing SSE is the most often used 
criterion for choosing the smoothing parameter, 
but minimizing SAE could provide protection 
against outliers in the time series. This article 
examines the question of which of these choices 
might be best in practice.  
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t.dielman@tcu.edu 
 
 

 In the context of regression models, 
forecasts generated from least squares 
(equivalent to SSE) coefficient estimates and 
least absolute value (equivalent to SAE) 
coefficient estimates were studied by Dielman 
(1986). When the disturbance distribution was 
long-tailed, presenting the opportunity for 
outliers, the least absolute value based forecasts 
were, on the whole, superior to the least squares 
based forecasts. These results were obtained 
from a simulation study assuming that an 
exogenous independent variable was available 
for use in the regressions. Whether the 
superiority of a least absolute value type 
criterion could exist for smoothing parameter 
choice and subsequent generation of forecasts in 
exponential smoothing methods is the issue 
considered in this article. 

The analyses presented in this article 
support three main conclusions: First, while 
instances where outliers will degrade forecast 
performance may not be common, such 
instances do occur in practice. Second, 
minimizing SAE to determine exponential 
smoothing parameters can provide protection 
against such outliers. Finally, on average, 
minimizing SAE does not result in much, if any, 
deterioration in forecast accuracy over 
minimizing SSE when conditions are optimal for 
SSE.  
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Methodology 
M1-Competition Data  

Three exponential smoothing techniques 
are examined in this part of the study: single 
exponential smoothing, Brown’s double 
exponential smoothing, and Holt’s two-
parameter exponential smoothing.  

The one-period-ahead forecast for single 
exponential smoothing can be written as 

 

1ˆ +Ty  = αyT + (1 – α) Tŷ                                    (1) 
  
All subsequent forecasts have the same value. 
The smoothing parameter, α, must be chosen to 
implement this forecasting technique. The 
choice is made by performing a grid search over 
the range 0.01, 0.02, …, 0.99 and choosing the 
value of α from this range that minimizes either 
the SSE or SAE.  

Brown’s double exponential smoothing 
is often suggested when data are trended. The m-
period-ahead forecasts are generated from the 
following equations: 
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As with single exponential smoothing, 

the smoothing parameter, α, is chosen by 
performing a grid search over the range 0.01, 
0.02, …, 0.99 and choosing the value of α from 
this range that minimizes either the SSE or SAE.  

Holt’s two-parameter exponential 
smoothing is also suggested when data are 
trended, but is somewhat more flexible than 
Brown’s method because separate parameters 

are allowed for the two smoothing equations. 
The m-period-ahead forecasts are generated 
from the following equations: 

 
Lt = αyt + (1 – α)(Lt-1 + Tt-1)                             (7) 
    
Tt = β(Lt – Lt-1) + (1 – β)Tt-1                                               (8) 

      

mTy +ˆ  = LT + mTT                                                                        (9) 

       
Values for two parameters, α and β, must be 
chosen in this case. Again, a grid search is used 
with values of 0.01, 0.02, …, 0.99 for each 
parameter. All possible parameter value 
combinations are examined and the pair of 
values that minimizes either the SSE or SAE is 
chosen.  

The 1001 time series used in the M1 
forecasting competition (See Makridakis et al., 
1982) are used to evaluate the choice of criteria 
for choosing the smoothing parameter. The 
optimal values of the smoothing parameter(s) 
are chosen for each of the time series. The 
smoothing parameters for each method that 
minimize either the SSE or the SAE for each 
individual time series are chosen. One to six-
period-ahead out-of-sample forecasts are then 
generated using the optimal values under the two 
criteria. The out-of-sample forecasts are 
compared to the actual values and accuracy 
measures are computed for the forecasts. The 
three accuracy measures reported in this article 
are the mean absolute percentage error (MAPE), 
the root mean square error (RMSE), and the 
mean absolute deviation (MAD). These 
accuracy measures will be presented to compare 
the forecasting accuracy for the parameter 
choices of each criterion.  
 
A Brief Simulation  

A small simulation was run to further 
compare forecast performance for the SAE and 
SSE criteria. Only single exponential smoothing 
was examined in this simulation. Single 
exponential smoothing provides optimal 
forecasts when the data generation process is 
ARIMA (0,1,1). This was the process used to 
generate the data for the simulation experiment. 
The procedures outlined in Dunne (1992) were 
used to generate data from an ARIMA (0, 1, 1) 
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process. The following were factors considered 
in the experiment: 

 
1. Sample sizes of T = 20, 30 and 50 were 
used. 
 
2.    The error distributions considered were: 
 
a) Normal with mean zero and standard 
deviation one (Normal). The following 
distributions will be referred to as outlier-
producing distributions: 
 
b) Contaminated Normal with 0.75 probability 
of observations coming from a N(0,1) 
distribution and 0.25 probability from a N(0,5) 
distribution. The contamination was introduced 
in three different ways to assess potential 
situations where the minimum SAE criterion 
might outperform the minimum  SSE criterion.  
CNR5: The contamination was allowed to occur 
randomly throughout the time series. 

 CNB5: The first 25% of the observations were 
from the N (0, 5) distribution. 

 CNE5: The last 25% of the observations were 
from the N (0, 5) distribution. 

  
c) Same as b but the contaminating distribution 
was N (0, 10) (CNR10, CNB10 and CNE10). 

  
d) Cauchy with median zero and scale parameter 
one (Cauchy). These errors represent a 
pathological situation where extreme outliers are 
possible and should be the best-case scenario for 
minimizing SAE.  
 
3.  The true value of the exponential 
smoothing parameter was set at 0.2, 0.3, 0.5, 0.7 
and 0.8. 

 
For each experimental setting of the 

simulation, 10,000 time series were generated, 
the optimal value of the smoothing parameter 
was estimated using a grid search over the 
values 0.01, 0.02, …, 0.99, and one period ahead 
forecasts  were  computed  using  this  parameter  

 
 
 

 

value. Out-of-sample forecasts were computed 
and were compared to the actual values (which 
were generated from the process used in the 
simulation) and the MAPE, RMSE, and MAD 
were computed for these 10,000 forecasts. All 
programs were written in FORTRAN and IMSL 
subroutines were used for random number 
generation. 

 
Results 

 
M1-Competition Results 
Each of the three exponential smoothing 
methods was applied to each of the 1001 time 
series from the M1-competition. Optimal 
smoothing parameters to minimize both SSE and 
SAE were chosen and forecasts were generated. 
Table 1 shows the values of the accuracy 
measures for the one through six period ahead 
forecasts (combined). Table 2 shows the values 
for the one period ahead forecast. Cases where 
minimizing SAE results in greater accuracy are 
highlighted in bold. The choice of criterion is 
dependent to some extent on the accuracy 
measure. For example, in Table 1 the MAPE is 
smaller for the SAE criterion for single 
exponential smoothing, although the RMSE and 
MAD are both smaller for the SSE criterion. 
This experiment was conducted using seasonally 
adjusted data as well (where appropriate) with 
little difference in the results of the comparison. 
The forecast accuracy was improved regardless 
of criterion (because of the presence of seasonal 
series in the data set), but the difference in 
forecast accuracy between SAE and SSE did not 
change appreciably. The tables for the 
seasonally adjusted results have not been 
included in the article. 

The results suggest that there are 
instances where the SAE forecasts provide 
improvement over the SSE forecasts according 
to some accuracy criterion. In other words, there 
are cases with outliers present that can affect 
forecast accuracy. The results from the 
simulation are intended to shed additional light 
on situations when the SAE forecasts might be 
most beneficial. 
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Simulation Results  

Tables 3 through 17 summarize the 
simulation results. In all experimental settings 
when the disturbances were normal, there was 
little difference between accuracy measures for 
minimizing SAE versus SSE. In cases where 
there was a difference, the accuracy measures 
for minimizing SSE were smaller. In most of the 
outlier-producing distributions, the accuracy 
measures for minimizing SAE were smaller than 
those for minimizing SSE. The differences in the  
 
 
 
 
 
 
 
 

 
 
accuracy measures in favor of SAE are more 
pronounced in cases where the true smoothing 
constant is larger and where outliers are more 
likely. When the contaminated normal 
disturbances were used, the differences in the 
accuracy measures in favor of SAE occurred 
when the standard deviation was larger (10 
rather than 5) and when the occurrence of the 
outliers was at the end or throughout the series 
rather than at the beginning. 
 
 
 
 
 
 
 
 
 

 
Table 1:  Accuracy Measures One Through Six Period Ahead Forecasts 

                                 MAPE          RMSE           MAD 
 

               SAE   SSE     SAE      SSE    SAE   SSE 
 

Single  17.5 17.7  578348   572521 32884 32668 
 

Brown  20.7 19.9  290890   272913 19475 18056 
 

Holt  22.5 22.3  290928   389576 19657 25428 
 

 
 
 

Table 2:  Accuracy Measures One Period Ahead Forecasts 

                    MAPE             RMSE           MAD 
 

               SAE  SSE     SAE      SSE     SAE   SSE 
 

Single  11.1 11.1  297704   291140 14001 13695 
 

Brown  13.3 13.5  120026   119844   9713 10088 
 

Holt  14.0 14.0  123836   170598 10714 13391 
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Table 3:  Accuracy Measures for Simulation using T = 50 and alpha = 0.2 

                         MAPE                 RMSE               MAD 
 

Errors  SAE SSE    SAE    SSE  SAE SSE 
 

Normal  0.82 0.81    1.03    1.02  0.82 0.81 
 

CNR5  1.64 1.67    2.69    2.71  1.63 1.66 
 

CNR10  2.71 2.84    5.14    5.21  2.63 2.77 
 

CNB5  0.83 0.83    1.03    1.04  0.82 0.83 
 

CNB10  0.84 0.85    1.03    1.05  0.83 0.84 
 

CNE5  4.16 4.18    5.19    5.23  4.14 4.16 
 

CNE10  8.54 8.58              10.47     10.55  8.34 8.38 
 

Cauchy  7.24 7.90              85.14     86.00  6.07 6.72 

 

Table 4:  Accuracy Measures for Simulation using T = 30 and alpha = 0.2 

                         MAPE                RMSE               MAD 
 

Errors  SAE SSE   SAE   SSE  SAE SSE 
 

Normal  0.82 0.81   1.03   1.02  0.82 0.81 
 

CNR5  1.65 1.70   2.69   2.73  1.64 1.69 
 

CNR10  2.73 2.91   5.13   5.25  2.67 2.85 
 

CNB5  0.82 0.83   1.03   1.05  0.82 0.83 
 

CNB10  0.83 0.86   1.03   1.07  0.82 0.85 
 

CNE5  4.15 4.22   5.21   5.31  4.13 4.20 
 

CNE10  8.54 8.67             10.56     10.76  8.37 8.50 
 

Cauchy  7.59 9.26             63.97     98.24  5.10 7.21 
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Table 5:  Accuracy Measures for Simulation using T = 20 and alpha = 0.2 

                           MAPE                 RMSE               MAD 
 

Errors    SAE   SSE    SAE     SSE  SAE   SSE 
 

Normal    0.83   0.83    1.04     1.04  0.83   0.83 
 

CNR5    1.68   1.73    2.73     2.77  1.68   1.72 
 

CNR10    2.79   2.96    5.20     5.34  2.74   2.91 
 

CNB5    0.84   0.85    1.05     1.07  0.83   0.85 
 

CNB10    0.85   0.89    1.05     1.11  0.84   0.88 
 

CNE5    4.12   4.22    5.15     5.28  4.11   4.21 
 

CNE10    8.36   8.75              10.30       10.80  8.21   8.59 
 

Cauchy  10.15 11.86          1574.45   1570.05             23.62      23.60 

 

Table 6:  Accuracy Measures for Simulation using T = 50 and alpha = 0.3 

                         MAPE                 RMSE              MAD 
 

Errors  SAE SSE    SAE   SSE  SAE SSE 
 

Normal  0.82 0.82    1.03   1.02  0.82 0.82 
 

CNR5  1.64 1.67    2.69   2.71  1.62 1.66 
 

CNR10  2.72 2.85    5.13   5.21  2.62 2.76 
 

CNB5  0.83 0.84    1.03   1.04  0.83 0.83 
 

CNB10  0.85 0.86    1.04   1.06  0.83 0.85 
 

CNE5  4.15 4.19    5.18   5.23  4.13 4.16 
 

CNE10  8.58 8.63  10.46 10.54  8.33 8.39 
 

Cauchy  6.62 7.17  85.13 86.17  6.04 6.68 
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Table 7:  Accuracy Measures for Simulation using T = 30 and alpha = 0.3 

                                                     MAPE                  RMSE   MAD 
 

Errors  SAE   SSE    SAE    SSE  SAE SSE 
 

Normal  0.82   0.81    1.03    1.02  0.82 0.81 
 

CNR5  1.64   1.70    2.68    2.73  1.64 1.69 
 

CNR10  2.72   2.91     5.11    5.23  2.65 2.84 
 

CNB5  0.83   0.84    1.03    1.06  0.82 0.84 
 

CNB10  0.84   0.87    1.04    1.09  0.83 0.86 
 

CNE5  4.15   4.20    5.20    5.27  4.13 4.18 
 

CNE10  8.52   8.60  10.51  10.62  8.34 8.42 
 

Cauchy  9.38 10.39  64.54 103.00  5.16 7.36 
 

 

Table 8:  Accuracy Measures for Simulation using T = 20 and alpha = 0.3 

                            MAPE                RMSE                MAD 
 

Errors    SAE   SSE   SAE   SSE  SAE   SSE 
 

Normal    0.83   0.83   1.05   1.04  0.83   0.83 
 

CNR5    1.68   1.73   2.72   2.78  1.67   1.73 
 

CNR10    2.77   2.98   5.19   5.33  2.72   2.92 
 

CNB5    0.83   0.85   1.04   1.07  0.83   0.85 
 

CNB10    0.84   0.89   1.05   1.10  0.83   0.88 
 

CNE5    4.13   4.22   5.16   5.27  4.11   4.20 
 

CNE10    8.38   8.69             10.32      10.71  8.22   8.52 
 

Cauchy              32.31     32.89         1572.09   1569.45             23.20      23.50 
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Table 9:  Accuracy Measures for Simulation using T = 50 and alpha = 0.5 

                           MAPE                 RMSE                 MAD 
 

Errors  SAE SSE  SAE   SSE  SAE SSE 
 

Normal  0.82 0.82  1.03   1.02  0.82 0.81 
 

CNR5  1.65 1.68  2.69   2.71  1.62 1.65 
 

CNR10  2.79 2.91  5.14   5.19  2.62 2.73 
 

CNB5  0.84 0.84  1.04   1.05  0.83 0.83 
 

CNB10  0.87 0.89  1.04   1.07  0.83 0.85 
 

CNE5  4.17 4.21   5.18   5.23  4.12 4.16 
 

CNE10  8.73 8.79             10.45      10.55  8.32 8.39 
 

Cauchy  5.84 6.25             85.13      87.23  6.03 6.68 

 

 

Table 10:  Accuracy Measures for Simulation using T = 30 and alpha = 0.5 

                          MAPE                 RMSE                 MAD 
 

Errors  SAE SSE   SAE   SSE  SAE SSE 
 

Normal  0.82 0.81   1.03   1.02  0.82 0.81 
 

CNR5  1.64 1.69   2.67   2.72  1.63 1.68 
 

CNR10  2.76 2.92   5.10   5.21  2.64 2.80 
 

CNB5  0.83 0.85   1.04   1.06  0.82 0.84 
 

CNB10  0.85 0.89   1.04   1.10  0.83 0.86 
 

CNE5  4.14 4.17   5.17   5.22  4.11 4.14 
 

CNE10  8.50 8.58             10.40      10.50  8.26 8.34 
 

Cauchy  9.07 9.84              65.21    124.25  5.22 7.77 

 



CHOOSING SMOOTHING PARAMETERS FOR EXPONENTIAL SMOOTHING 126 

  

 
Table 11:  Accuracy Measures for Simulation using T = 20 and alpha = 0.5 

                            MAPE                   RMSE      MAD 
 

Errors  SAE   SSE  SAE    SSE   SAE  SSE 
 

Normal  0.84   0.83  1.05    1.04   0.84  0.83 
 

CNR5  1.67   1.73  2.71    2.77   1.66  1.72 
 

CNR10  2.78   2.97  5.17    5.31   2.70  2.89 
 

CNB5  0.85   0.86  1.06    1.08   0.84  0.86 
 

CNB10  0.86   0.90  1.06    1.12   0.85  0.88 
 

CNE5  4.15   4.21  5.19    5.26   4.13  4.19 
 

CNE10  8.45   8.69             10.38       10.69   8.26  8.50 
 

Cauchy  8.39      10.76         1568.82   1569.82             22.45     23.53 

 

 

Table 12:  Accuracy Measures for Simulation using T = 50 and alpha = 0.7 

                             MAPE    RMSE                  MAD 
 

Errors  SAE SSE   SAE   SSE  SAE SSE 
 

Normal  0.82 0.82    1.03   1.02  0.82 0.81 
 

CNR5  1.66 1.68    2.69   2.70  1.62 1.64 
 

CNR10  2.97 3.07    5.13   5.18  2.62 2.71 
 

CNB5  0.84 0.85    1.03   1.04  0.82 0.83 
 

CNB10  0.91 0.93    1.04   1.07  0.83 0.85 
 

CNE5  4.19 4.22    5.16   5.20  4.11 4.14 
 

CNE10  8.97 9.05  10.40 10.52  8.28 8.37 
 

Cauchy  9.10 9.42  85.15 89.06  6.04 6.74 
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Table 13:  Accuracy Measures for Simulation using T = 30 and alpha = 0.7 

                         MAPE                 RMSE               MAD 
 

Errors  SAE   SSE    SAE     SSE  SAE SSE 
 

Normal  0.82   0.81     1.02     1.02  0.82 0.81 
 

CNR5  1.65   1.69     2.67     2.70  1.63 1.67 
 

CNR10  2.87   3.00     5.10     5.19  2.64 2.77 
 

CNB5  0.83   0.84     1.03     1.05  0.82 0.83 
 

CNB10  0.87   0.90     1.04     1.08  0.83 0.85 
 

CNE5  4.11   4.15     5.13     5.17  4.07 4.11 
 

CNE10  8.52   8.63                10.30   10.43  8.18 8.30 
 

Cauchy  7.98  8.52   65.47  161.36  5.21 8.51 
 
 
 
 

Table 14:  Accuracy Measures for Simulation using T = 20 and alpha = 0.7 

                        MAPE              RMSE               MAD 
 

Errors  SAE SSE  SAE   SSE   SAE   SSE 
 

Normal  0.83 0.83  1.05   1.04   0.83   0.83 
 

CNR5  1.67 1.72  2.71   2.75   1.66   1.70 
 

CNR10  2.82 2.97  5.18   5.28   2.69   2.84 
 

CNB5  0.85 0.86  1.06   1.08   0.84   0.86 
 

CNB10  0.88 0.91  1.07   1.11   0.85   0.88 
 

CNE5  4.16 4.21  5.20   5.26   4.14   4.18 
 

CNE10  8.50 8.78             10.40      10.75   8.28   8.55 
 

Cauchy  7.98 8.92         1567.46   1571.71             21.81      23.71 
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Table 15:  Accuracy Measures for Simulation using T = 50 and alpha = 0.8 

                           MAPE                   RMSE    MAD 
 

Errors  SAE  SSE   SAE    SSE  SAE SSE 
 

Normal  0.82  0.81   1.02    1.02  0.82 0.81 
 

CNR5  1.67  1.69   2.69    2.70  1.62 1.64 
 

CNR10  3.37  3.45   5.13    5.17  2.62 2.70 
 

CNB5  0.84  0.85   1.03    1.04  0.82 0.83 
 

CNB10  1.00  1.01   1.03    1.06  0.82 0.84 
 

CNE5  4.19  4.22   5.14    5.18  4.10 4.12 
 

CNE10  9.26  9.34              10.35      10.48  8.24 8.33 
 

Cauchy            11.10      11.77                  85.17      89.92  6.05 6.73 
 
 
 

Table 16:  Accuracy Measures for Simulation using T = 30 and alpha = 0.8 

                           MAPE                RMSE                 MAD 
 

Errors  SAE SSE  SAE  SSE  SAE SSE 
 

Normal  0.81 0.81  1.02  1.02  0.81 0.81 
 

CNR5  1.66 1.68  2.67  2.69  1.63 1.66 
 

CNR10  4.22 5.07  5.10  5.17  2.64 2.75 
 

CNB5  0.83 0.84  1.03  1.05  0.82 0.83 
 

CNB10  0.88 0.91  1.04  1.08  0.82 0.85 
 

CNE5  4.10 4.14  5.11  5.15  4.06 4.10 
 

CNE10  8.55 8.69                  10.25     10.43  8.14 8.29 
 

Cauchy  8.33 8.70             65.71   181.03  5.26 8.91 
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Conclusion 

The analyses presented suggest that minimizing 
SAE to determine exponential smoothing 
parameters can provide protection against 
outliers. Analysis of the M1-competition data 
suggests that cases where parameters selected by 
minimizing SAE result in superior forecasts do 
occur in practice. However, on average, 
minimizing SSE appears to provide forecasts 
that are reasonably robust to most outliers 
encountered. The simulation recommends that 
use of the SAE criterion would be most 
beneficial with the presence of outliers in 
conjunction with one or more of the following: 
larger values of the true smoothing parameter, 
outliers occurring near the end or throughout the 
series where forecasts are to be generated rather 
than at the beginning, and, obviously, cases 
where larger outliers are more likely. Further, 
even if outliers are not present, using the SAE 
criterion will not result in much deterioration in 
forecast accuracy. 
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Table 17:  Accuracy Measures for Simulation using T = 20 and alpha = 0.8 

                        MAPE                RMSE                MAD 
 

Errors  SAE SSE    SAE    SSE    SAE   SSE 
 

Normal  0.83  0.82    1.04    1.03    0.83   0.82 
 

CNR5  1.67  1.71    2.71    2.75    1.65   1.69 
 

CNR10  2.86  2.98    5.18    5.26    2.69   2.81 
 

CNB5  0.85  0.86    1.06    1.08    0.84   0.85 
 

CNB10  0.88  0.91    1.07    1.11    0.85   0.88 
 

CNE5  4.16  4.21    5.18    5.27    4.13   4.18 
 

CNE10  8.50  8.85              10.38      10.83    8.26   8.59 
 

Cauchy  9.66     10.72          1567.28   1572.77              21.71     23.72 
 
 


	Journal of Modern Applied Statistical Methods
	5-1-2006

	Choosing Smoothing Parameters For Exponential Smoothing: Minimizing Sums Of Squared Versus Sums Of Absolute Errors
	Terry E. Dielman
	Recommended Citation


	Serlincombo et al .fm

