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Choosing Smoothing Parameters For Exponential Smoothing:
Minimizing Sums Of Squared Versus Sums Of Absolute Errors

Terry Dielman
M.J. Nedey School of Business
Texas Christian University

When choosing smoothing parameters in exponential smoothing, the choice can be made by ether
minimizing the sum of squared one-step-ahead forecast errors or minimizing the sum of the absolute one-
step-ahead forecast errors. In this article, the resulting forecast accuracy is used to compare these two

options.
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Introduction

In a number of comparisons of forecasting
methods, exponential smoothing methods have
been shown to be simple but relatively accurate
techniques for generating forecasts (See
Makridakis et al., 1982; Makridakis et al., 1993;
Makridakis & Hibon, 2000). When using
exponential smoothing methods to forecast a
time series;, a smoothing parameter (or
parameters) must be chosen. One way this
choice can be made s to choose the parameter or
parameters that minimize some error criterion
over the history of the data available. Typically,
the choice made is to minimize the sum of
squared one-step-ahead forecast errors (SSE).
Another option would be to minimize the sum of
the absolute one-step-ahead forecast errors
(SAE). Minimizing SSE is the most often used
criterion for choosing the smoothing parameter,
but minimizing SAE could provide protection
against outliers in the time series. This article
examines the question of which of these choices
might be best in practice.

Terry Dielman is Professor of Decision Sciences
in the Information Systems and Supply Chain
Management department, M.J. Neeley School of
Business, Texas Christian University. Email:
t.dielman@tcu.edu
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In the context of regression models,
forecasts generated from least squares
(equivalent to SSE) coefficient estimates and
least absolute value (equivalent to SAE)
coefficient estimates were studied by Dielman
(1986). When the disturbance distribution was
long-tailed, presenting the opportunity for
outliers, the least absolute value based forecasts
were, on the whole, superior to the least squares
based forecasts. These results were obtained
from a simulation study assuming that an
exogenous independent variable was available
for use in the regressions. Whether the
superiority of a least absolute value type
criterion could exist for smoothing parameter
choice and subsequent generation of forecastsin
exponential smoothing methods is the issue
considered in this article.

The analyses presented in this article
support three main conclusions. First, while
instances where outliers will degrade forecast
peformance may not be common, such
instances do occur in practice. Second,
minimizing SAE to determine exponential
smoothing parameters can provide protection
against such outliers. Finaly, on average,
minimizing SAE does not result in much, if any,
deterioration in forecast accuracy over
minimizing SSE when conditions are optimal for
SSE.
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Methodol ogy

M 1-Competition Data

Three exponential smoothing techniques
are examined in this part of the study: single
exponential  smoothing, Brown's double
exponential  smoothing, and Holt's two-
parameter exponential smoothing.

The one-period-ahead forecast for single
exponential smoothing can be written as

9T+1 =ayr+(1-o0) 91' (1)

All subsequent forecasts have the same value.
The smoothing parameter, o, must be chosen to
implement this forecasting technique. The
choice is made by performing a grid search over
the range 0.01, 0.02, ..., 0.99 and choosing the
value of o from this range that minimizes either
the SSE or SAE.

Brown's double exponential smoothing
is often suggested when data are trended. The m-
period-ahead forecasts are generated from the
following equations:

S =y, +1-a)S, ")
S =05 +(01-)S 3)
Yrm = 8 + by, @
where

a=25-§ 5)
and

b= (§-) ©)

As with single exponential smoothing,
the smoothing parameter, o, is chosen by
performing a grid search over the range 0.01,
0.02, ..., 0.99 and choosing the value of «from
this range that minimizes either the SSE or SAE.

Holt's  two-parameter  exponential
smoothing is aso suggested when data are
trended, but is somewhat more flexible than
Brown's method because separate parameters

are allowed for the two smoothing equations.
The m-period-ahead forecasts are generated
from the following equations:

Lt = (th + (l - (x)(Lt.l + Tt.]_) (7)
Te=P(Li—Lta) + (1 —PB)Tes 8
9T+m = LT + mTT (9)

Values for two parameters, o and B, must be
chosen in this case. Again, a grid search is used
with values of 0.01, 0.02, ..., 0.99 for each
parameter. All possible parameter vaue
combinations are examined and the pair of
values that minimizes either the SSE or SAE is
chosen.

The 1001 time series used in the M1
forecasting competition (See Makridakis et al.,
1982) are used to evaluate the choice of criteria
for choosing the smoothing parameter. The
optimal values of the smoothing parameter(s)
are chosen for each of the time series. The
smoothing parameters for each method that
minimize either the SSE or the SAE for each
individual time series are chosen. One to six-
period-ahead out-of-sample forecasts are then
generated using the optimal values under the two
criteria.  The out-of-sample forecasts are
compared to the actual values and accuracy
measures are computed for the forecasts. The
three accuracy measures reported in this article
are the mean absolute percentage error (MAPE),
the root mean square error (RMSE), and the
mean absolute deviation (MAD). These
accuracy measures will be presented to compare
the forecasting accuracy for the parameter
choices of each criterion.

A Brief Simulation

A small simulation was run to further
compare forecast performance for the SAE and
SSE criteria. Only single exponential smoothing
was examined in this simulation. Single
exponential  smoothing  provides  optimal
forecasts when the data generation process is
ARIMA (0,1,1). This was the process used to
generate the data for the simulation experiment.
The procedures outlined in Dunne (1992) were
used to generate data from an ARIMA (0O, 1, 1)
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process. The following were factors considered
in the experiment:

1 Sample sizes of T = 20, 30 and 50 were
used.
2. The error distributions considered were:

a Normal with mean zero and standard
deviation one (Normal). The following
distributions will be referred to as outlier-
producing distributions:

b) Contaminated Normal with 0.75 probability
of observations coming from a N(0,1)
distribution and 0.25 probability from a N(0,5)
distribution. The contamination was introduced
in three different ways to assess potential
situations where the minimum SAE criterion
might outperform the minimum SSE criterion.
CNR5: The contamination was allowed to occur
randomly throughout the time series.

CNBS5: The first 25% of the observations were
fromthe N (0, 5) distribution.

CNES5: The last 25% of the observations were
fromthe N (0, 5) distribution.

c) Same as b but the contaminating distribution
was N (0, 10) (CNR10, CNB10 and CNE10).

d) Cauchy with median zero and scal e parameter
one (Cauchy). These erors represent a
pathological situation where extreme outliers are
possible and should be the best-case scenario for
minimizing SAE.

3. The true value of the exponential
smoothing parameter was set at 0.2, 0.3, 0.5, 0.7
and 0.8.

For each experimental setting of the
simulation, 10,000 time series were generated,
the optimal value of the smoothing parameter
was estimated using a grid search over the
values 0.01, 0.02, ..., 0.99, and one period ahead
forecasts were computed using this parameter

value. Out-of-sample forecasts were computed
and were compared to the actual values (which
were generated from the process used in the
simulation) and the MAPE, RMSE, and MAD
were computed for these 10,000 forecasts. All
programs were written in FORTRAN and IMSL
subroutines were used for random number
generation.

Results

M 1-Competition Results

Each of the three exponential smoothing
methods was applied to each of the 1001 time
series from the M1-competition. Optimal
smoothing parameters to minimize both SSE and
SAE were chosen and forecasts were generated.
Table 1 shows the values of the accuracy
measures for the one through six period ahead
forecasts (combined). Table 2 shows the values
for the one period ahead forecast. Cases where
minimizing SAE results in greater accuracy are
highlighted in bold. The choice of criterion is
dependent to some extent on the accuracy
measure. For example, in Table 1 the MAPE is
smaller for the SAE criterion for single
exponential smoothing, although the RMSE and
MAD are both smaller for the SSE criterion.
This experiment was conducted using seasonally
adjusted data as well (where appropriate) with
little difference in the results of the comparison.
The forecast accuracy was improved regardless
of criterion (because of the presence of seasonal
series in the data set), but the difference in
forecast accuracy between SAE and SSE did not
change appreciably. The tables for the
seasonally adjusted results have not been
included in the article.

The results suggest that there are
instances where the SAE forecasts provide
improvement over the SSE forecasts according
to some accuracy criterion. In other words, there
are cases with outliers present that can affect
forecast accuracy. The results from the
simulation are intended to shed additional light
on situations when the SAE forecasts might be
most beneficial.
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Table 1: Accuracy Measures One Through Six Period Ahead Forecasts

RMSE MAD

SAE SSE SAE  SSE

MAPE
SAE _SSE
Single 175 17.7
Brown 20.7 199
Holt 225 223

578348 572521

290890 272913

290928 389576

32884 32668

19475 18056

19657 25428

Table2: Accuracy Measures One Period Ahead Forecasts

RMSE MAD

SAE SSE SAE SSE

MAPE
SAE SSE
Single 111 111
Brown 13.3 135
Holt 14.0 140

Simulation Results

Tables 3 through 17 summarize the
simulation results. In all experimental settings
when the disturbances were normal, there was
little difference between accuracy measures for
minimizing SAE versus SSE. In cases where
there was a difference, the accuracy measures
for minimizing SSE were smaller. In most of the
outlier-producing distributions, the accuracy
measures for minimizing SAE were smaller than
those for minimizing SSE. The differencesin the

297704 291140

120026 119844

123836 170598

14001 13695
9713 10088

10714 13391

accuracy measures in favor of SAE are more
pronounced in cases where the true smoothing
constant is larger and where outliers are more
likely. When the contaminated normal
disturbances were used, the differences in the
accuracy measures in favor of SAE occurred
when the standard deviation was larger (10
rather than 5) and when the occurrence of the
outliers was at the end or throughout the series
rather than at the beginning.
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Table3: Accuracy Measures for Simulation using T = 50 and alpha = 0.2

MAPE RMSE MAD
Errors SAE SSE SAE  SSE SAE SSE
Normal 082 0.81 1.03 1.02 082 081
CNR5 164 167 269 271 163 1.66
CNR10 271 284 514 521 263 277
CNB5 083 0.83 103 104 082 0.83
CNB10 084 0.85 103 105 083 084
CNES5 416 4.18 519 523 414 416
CNE10 854 858 10.47 10.55 834 838
Cauchy 724  7.90 85.14 86.00 6.07 6.72

Table4: Accuracy Measures for Simulation using T = 30 and alpha = 0.2

MAPE RMSE MAD
Errors SAE SSE SAE SSE SAE SSE
Normal 082 0.81 1.03 102 082 081
CNR5 165 1.70 269 273 164 1.69
CNR10 273 291 513 525 267 285
CNB5 082 0.83 103 105 082 0.83
CNB10 083 0.86 103 107 082 0.85
CNES5 415 422 521 531 413 4.20
CNE10 854 8.67 10.56 10.76 837 850

Cauchy 759 9.26 63.97 98.24 510 7.21
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Table5: Accuracy Measures for Simulation using T = 20 and alpha = 0.2

Errors
Normal
CNR5
CNR10
CNB5
CNB10
CNES
CNE10

Cauchy

MAPE RMSE MAD
SAE SSE SAE SSE SAE SSE
083 0.83 1.04 1.04 0.83 0.83
168 173 273 277 1.68 172
279 296 5.20 5.34 2.74 291
084 0.85 1.05 1.07 0.83 0.85
085 0.89 1.05 111 0.84 0.88
412 4.22 5.15 5.28 411 421
836 875 10.30  10.80 8.21 8.59

10.15 11.86 1574.45 1570.05 23.62 23.60

Table6: Accuracy Measures for Simulation using T =50 and alpha= 0.3

Errors
Normal
CNR5
CNR10
CNB5
CNB10
CNES
CNE10

Cauchy

MAPE RMSE MAD
SAE SSE SAE SSE SAE SSE
082 0.82 1.03 102 082 0.82
164 167 269 271 162 1.66
272 285 513 521 262 276
083 084 103 104 083 0.83
085 0.86 104 106 083 0.85
415 419 518 5.23 413 4.16
858 8.63 10.46 10.54 833 839
6.62 7.17 85.13 86.17 6.04 6.68
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Table7: Accuracy Measures for Simulation using T = 30 and alpha= 0.3

MAPE RMSE MAD
Errors SAE SSE SAE  SSE SAE SSE
Normal 0.82 0.81 1.03 1.02 082 081
CNR5 1.64 170 268 273 164 1.69
CNR10 2.72 291 511 523 265 284
CNB5 0.83 0.84 103 106 082 084
CNB10 0.84 0.87 104 109 083 0.86
CNES5 4.15 4.20 520 527 413 4.18
CNE10 8.52 8.60 1051 10.62 834 842
Cauchy 9.38 10.39 64.54 103.00 516 7.36

Table8: Accuracy Measures for Simulation using T =20 and alpha= 0.3

MAPE RMSE MAD
Errors SAE SSE SAE  SSE SAE SSE
Normal 083 0.83 105 104 0.83 0.83
CNR5 168 173 272 278 1.67 173
CNR10 277 298 519 533 2.72 2.92
CNB5 083 0.85 104 107 0.83 0.85
CNB10 084 0.89 105 110 0.83 0.88
CNES5 413 422 516 527 4.11 4.20
CNE10 838 8.69 10.32 10.71 8.22 8.52

Cauchy 3231 32.89 1572.09 1569.45 2320 23.50
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Table9: Accuracy Measures for Simulation using T =50 and alpha= 0.5

Errors
Normal
CNR5
CNR10
CNB5
CNB10
CNES
CNE10

Cauchy

MAPE RMSE MAD
SAE SSE SAE SSE SAE SSE
082 0.82 1.03 1.02 082 081
165 1.68 2.69 271 162 1.65
279 291 514 5.19 262 273
084 084 1.04 1.05 083 0.83
087 0.89 1.04 1.07 083 0.85
417 4.21 518 523 412 4.16
873 879 1045 10.55 832 839
584 6.25 85.13 87.23 6.03 6.68

Table 10: Accuracy Measures for Simulation using T = 30 and alpha = 0.5

Errors
Normal
CNR5
CNR10
CNB5
CNB10
CNES
CNE10

Cauchy

MAPE RMSE MAD
SAE SSE SAE SSE SAE SSE
082 0.81 1.03 102 082 081
164 1.69 267 272 163 1.68
276 292 510 521 264 280
083 0.85 104 106 082 084
085 0.89 104 110 083 0.86
414 417 517 522 411 4.14
850 8.58 10.40 10.50 826 834
9.07 984 65.21 124.25 522 7.77
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Table11: Accuracy Measures for Simulation using T = 20 and alpha = 0.5

MAPE RMSE MAD
Errors SAE SSE SAE SSE SAE SSE
Normal 0.84 0.83 1.05 1.04 084 0.83
CNR5 1.67 173 2.71 2.77 166 1.72
CNR10 2.78 297 5.17 531 270 2.89
CNB5 0.85 0.86 1.06 1.08 084 0.86
CNB10 0.86 0.90 1.06 112 085 0.88
CNES5 4.15 421 5.19 5.26 413 419
CNE10 8.45 8.69 10.38  10.69 826 8.50
Cauchy 839 10.76 1568.82 1569.82 2245 2353

Table12: Accuracy Measures for Simulation using T = 50 and alpha = 0.7

MAPE RMSE MAD
Errors SAE SSE SAE  SSE SAE SSE
Normal 082 0.82 1.03 102 082 081
CNR5 166 1.68 269 270 162 164
CNR10 297 3.07 513 518 262 271
CNB5 084 0.85 103 104 082 0.83
CNB10 091 0.93 104 107 083 0.85
CNES5 419 422 516 520 411 414
CNE10 897 9.05 10.40 10.52 828 837

Cauchy 910 942 85.15 89.06 6.04 6.74
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Table 13: Accuracy Measures for Simulation using T = 30 and alpha = 0.7

Errors
Normal
CNR5
CNR10
CNB5
CNB10
CNES
CNE10

Cauchy

MAPE RMSE MAD
SAE SSE SAE SSE SAE SSE
0.82 0.81 1.02 102 082 081
1.65 1.69 267 270 163 1.67
2.87 3.00 510 519 264 277
0.83 0.84 1.03 105 082 0.83
0.87 0.90 104 108 083 0.85
411 4.15 513 517 407 411
8.52 8.63 10.30 10.43 8.18 8.30
798 852 65.47 161.36 521 851

Table 14: Accuracy Measures for Simulation using T = 20 and alpha = 0.7

Errors
Normal
CNR5
CNR10
CNB5
CNB10
CNES
CNE10

Cauchy

MAPE RMSE MAD
SAE SSE SAE SSE SAE SSE
083 0.83 1.05 1.04 083 083
167 1.72 2.71 2.75 166 170
282 297 5.18 5.28 269 284
085 0.86 1.06 1.08 084 086
088 0.91 1.07 111 085 0388
416 421 5.20 5.26 414 418
850 8.78 1040 10.75 828 855
798 8.92 1567.46 1571.71 2181 2371
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Table 15: Accuracy Measures for Simulation using T = 50 and alpha = 0.8

MAPE RMSE MAD
Errors SAE  SSE SAE SSE SAE SSE
Normal 082 081 1.02 1.02 082 081
CNR5 167 1.69 2.69 2.70 162 164
CNR10 337 345 513 5.17 262 270
CNB5 084 0.85 1.03 1.04 082 0.83
CNB10 1.00 101 1.03 1.06 082 084
CNES5 419 422 514 5.18 410 4.12
CNE10 926 934 10.35 10.48 824 833
Cauchy 11.10 1177 85.17 89.92 6.05 6.73

Table 16: Accuracy Measures for Simulation using T = 30 and alpha = 0.8

MAPE RMSE MAD
Errors SAE SSE SAE  SSE SAE SSE
Normal 081 0.81 1.02 102 081 081
CNR5 166 1.68 267 2.69 163 1.66
CNR10 422 507 510 517 264 275
CNB5 083 084 1.03 105 082 0.83
CNB10 088 0.91 104 108 082 0.85
CNES5 410 4.14 511 515 406 4.10
CNE10 855 8.69 10.25 1043 814 829

Cauchy 833 870 65.71 181.03 526 8091
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Table17: Accuracy Measures for Simulation using T = 20 and alpha = 0.8

MAPE RMSE MAD
Errors SAE SSE SAE  SSE SAE SSE
Normal 083 082 104 1.03 083 0.82
CNR5 1.67 171 2.71 2.75 165 169
CNR10 286 2.98 518 526 269 281
CNB5 085 0.86 106 1.08 084 0.85
CNB10 0.88 091 1.07 111 0.85 0.88
CNES 4,16 4.21 5.18 5.27 413 4.18
CNE10 850 885 10.38 10.83 826 859
Cauchy 9.66 10.72 1567.28 1572.77 2171 23.72
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