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Properties Of The GAR(1) Model For Time Series Of Counts 
 

Vasiliki Karioti          Chrys Caroni 
Department of Mathematics 

National Technical University of Athens 
 
 
Models for time series count data include several proposed by Zeger and Qaqish (1988), subsequently 
generalized into the GARMA family. The GAR(1) model is examined in detail. The maximum likelihood 
estimation of the parameters will be discussed and the properties of Pearson and randomized residuals 
will be examined.  
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Introduction 
 
Many of the time series recorded in practice 
consist of count data, in which each observation 
represents the number of events occurring at a 
point in time or in a given time interval. 
Examples include the number of cases of a 
particular disease reported each month. 
Especially when the counts are low, standard 
Gaussian time series models may need to be 
replaced by other models more suitable for count 
data, based on the Poisson distribution or 
another discrete distribution on the non-negative 
integers. 
 A number of models of this type have 
been developed. In this article, regression 
models for time series count data will be 
examined. These models, originally proposed by 
Zeger and Qaqish (1988), have been considered 
subsequently by several other authors (see, in 
particular, Kedem and Fokianos, 2002) and 
extended by Benjamin, Rigby, and 
Stasinopoulos     (2003).   In     these     models,  
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each observation yt in the series is represented as 
a Poisson variate which is conditionally 
independent of previous observations, given its 
mean, but whose mean depends on the previous 
observations -1 1,...,ty y  and possibly on 
covariates. These are examples of observation-
driven models for time-dependent data in the 
terminology introduced by Cox (1981). In the 
simplest case, with first-order dependence and 
no covariates: 

 

-1| ~  ( )t t ty y Poisson µ   

 

where   

-1( )=t t tyµ µ . 

 
In this article, the basic model is 

examined from several points of view relevant to 
its practical application to data. Principally, the 
performance of maximum likelihood estimation 
of the parameters and the properties of the 
residuals from the models are examined. 

 
Models 

Following Zeger and Qaqish (1988), let 

ty  be an outcome random variable and tx  an 
x1m  vector of covariates at time t . Define 

tµ =E(yt |Dt) where Dt = {xt , xt-1,…,  yt-1, …, y1} 
includes past outcomes and the past and present 
covariates. It is assumed that 

p
'

t t i i t
i 1

g( ) x f ( D )µ β θ
=

= +∑  
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where g is a link function, the if  are functions 
of the past data and the parameters β  and 

θ =(θ 1,…,θ p)
′ are to be estimated. Because the 

link function is applied to the lagged 
observations -t jy , this model goes beyond 

standard generalized linear models (GLM) with 
independent data (McCullagh and Nelder, 1989). 
A general model for tµ  is: 
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(1) 
 

This defines a class of models called 
generalized autoregressive moving average 
models (GARMA: Benjamin, Rigby, and 
Stasinopoulos, 2003). A special case of 
GARMA arises when the conditional 
distribution for ty  (given tD ) is Poisson and g  
the canonical link function as in standard GLM, 
that is, the logarithm. Equation (1) becomes: 
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(2) 
 

where *
-1 -1max( , ) ,  0 1t ty y c c= < <  (Zeger and 

Qaqish, 1988; Benjamin, Rigby, and 
Stasinopoulos, 2003). The effect of using *

ty  in 

place of ty  is that zero values of ty  are replaced 
by c. This device is adopted in order to avoid an 
absorbing state at y = 0. If 0,=jφ for 1,..., ,=j q  

the model is autoregressive order p, GAR(p). If 
0,=jθ  for 1,..., ,j p=  it is a moving average 

model of order q, GMA(q) (Li, 1994). In the 
special case of 0,=jφ  and p = 1, the model (2) 

is GAR(1) with the form: 

{ }' * '
1 -1 -1log( ( )) log( ) -         (3)= +t t t tg x y xµ β θ β  

 
If there are no covariates x, then writing 

' = =tx β µ constant, equation (3) becomes: 
 

1 *
-1exp( )                                 (4)

exp( )
t

t
y

θ

µ µ
µ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 

 
Positive values of 1θ  represent positive 
autocorrelation within the series and negative 
values represent negative autocorrelation. Zeger 
and Qaqish (1988) also proposed another way of 
solving the problem of the absorbing state. 
Instead of introducing *

ty , this model defines:  
 

1 
-1exp( )                           (5)

exp( )
t

t
y c

c

θ

µ µ
µ

⎡ ⎤+
= ⎢ ⎥+⎣ ⎦

 

 
where c is a constant added to each observation 
rather than only to zero outcomes. In some 
situations it might be interpreted as an 
immigration rate. This model is not part of the 
GARMA family.  
 
Maximum Likelihood Estimation 
 The likelihood function conditional on 
the first term of the series is given by 
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with log-likelihood  
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Let the vector of model parameters to be 
estimated be denoted by η . Then  
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Closed-form expressions are not available for 
the estimation of η . Consequently, the 
likelihood must be maximised numerically. The 
BCOAH subroutine was used from the IMSL 
library to minimize the negative of the log-
likelihood. This employs a modified Newton 
method and a user-supplied Hessian. Zeger and 
Qaqish (1988) fitted their models by quasi-
likelihood estimation. Benjamin, Rigby, and 
Stasinopoulos (2003) fitted GARMA models by 
maximum likelihood using iteratively weighted 
least squares. 
 
Simulation study 
 To examine the GAR(1) model from 
several points of view relevant to its practical 
application to data, a numerical study of 
simulated data was carried out. The limitation to 
first-order autoregression is common throughout 
the time series literature, chiefly for practical 
reasons (Greene, 2000). Because there is only 
one autoregressive parameter θ 1, its subscript 
will be dropped from this point on. To generate 
a realization of a time series of length m for 
selected values of µ , θ  and c, the GAR(1) 
model (4) was used to generate a sequence of m 
+ 50 counts, starting from a Poisson deviate. The 
pseudorandom number generator RNPOI from 
the IMSL library was used to generate Poisson 
deviates. The first 50 counts were discarded and 
the remaining m values were retained for 
analysis. A relatively short series of m = 50 
observations and longer series of m = 150 
observations were examined. 
 From (4), the parameter c appears in the 
likelihood only in the terms, if any, that 
immediately follow a zero. If there are few zeros 
in the series, then there is very little information 
available for the estimation of c. If desired, its 
estimation can be avoided in order to simplify 
the likelihood equations. As well, a very flat 
likelihood surface (with respect to c) can be 
avoided  by  dividing  the  series  into  blocks. A  
 
 
 
 
 
 
 

block   ends   when   a    zero   occurs,   and   the 
following block starts with the next non-zero 
outcome. The overall likelihood is the product of 
the likelihoods of the separate blocks, each of 
which is conditional on the first member of the 
block, and it is a function of θ  and µ  only. The 
minor drawback of this procedure is that some 
information is lost, because the overall 
likelihood consists not of m - 1 but m - 1 - m0 
terms, where m0 is the number of zeros 
occurring within the series.  

 
Results 

 
Table 1 shows summary statistics for the 
estimates of θ  in the GAR(1) model. Difficulties 
with the numerical fitting procedure prevented 
the use of the larger values of θ  when µ  was 

small. It appears that the maximum likelihood 
estimate of µ  is effectively unbiased, although a 
minor downward bias appears as θ  increases to 
large positive values. The precision of the 
estimate of µ  increases as µ  increases, and 
appears to be a decreasing function of θ  being 
lowest when θ  takes large positive values. 
Table 2 shows results for the estimation of θ . 
There is some downwards bias in θ , larger 

when 0>θ  than when 0≤θ , and larger for 
series of length 50 than ones of length 150. The 
precision of estimation of θ  is also a decreasing 
function of θ  but depends less heavily on the 
value of µ . Comparison of mean squared errors 
between Tables 1 and 2 shows that µ is 
estimated relatively much more precisely thanθ . 
 Table 3 shows the correlation between 
estimates of θ  and µ . Correlations appear to be 
a decreasing function of θ  and also of µ , but 
do not depend heavily on the length of the 
series. For the larger values of µ  (= 4, 6) and 
for θ  positive or moderately negative, the 
estimates of the two parameters are virtually 
uncorrelated. 
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Table 1. Average and mean squared error of maximum likelihood estimate of µ in the GAR(1) 
model. Each entry is based on 2,000 simulated sets of data.  

  Length 50 Length 150 
µ  θ  mean m.s.e. mean m.s.e. 

2 -0.6 2.000 0.0011 2.000 0.0004 
 -0.3 1.998 0.0017 2.001 0.0057 
 0 1.996 0.0028 1.999 0.0010 
 0.3 1.996 0.0057 1.998 0.0021 
 0.6 1.976 0.0215 1.990 0.0068 
      
4 -0.8 4.000 0.0001 4.000 0.00004 
 -0.6 4.000 0.0001 4.000 0.00005 
 -0.3 3.999 0.0002 4.000 0.0001 
 0 3.999 0.0004 4.000 0.0001 
 0.3 3.999 0.0007 4.000 0.0003 
 0.6 3.997 0.0023 3.999 0.0008 
 0.8 3.988 0.0102 3.995 0.0032 
      
6 -0.8 6.000 0.00002 6.000 0.00001 
 -0.6 6.000 0.00002 6.000 0.00001 
 -0.3 6.000 0.00003 6.000 0.00001 
 0 6.000 0.00005 6.000 0.00002 
 0.3 6.000 0.0001 6.000 0.00004 
 0.6 5.999 0.0003 6.000 0.00011 
 0.8 5.998 0.0013 5.999 0.0018 

Table 2. Average and mean squared error of maximum likelihood estimate of θ in the GAR(1) model. 
Each entry is based on 2,000 simulated sets of data. 
 
 

  Length 50 Length 150 
µ  θ  mean m.s.e. mean m.s.e. 

2 -0.6 -0.586 0.0087 -0.596 0.0026 
 -0.3 -0.300 0.0129 -0.298 0.0044 
 0 -0.014 0.0162 -0.007 0.0053 
 0.3 0.267 0.0173 0.288 0.0054 
 0.6 0.549 0.0165 0.584 0.0046 
      
4 -0.8 -0.776 0.0086 -0.790 0.0025 
 -0.6 -0.586 0.0127 -0.596 0.0036 
 -0.3 -0.303 0.0168 -0.301 0.0056 
 0 -0.021 0.0186 -0.007 0.0065 
 0.3 0.258 0.0206 0.285 0.0064 
 0.6 0.539 0.0186 0.580 0.0049 
 0.8 0.727 0.0168 0.777 0.0033 
      
6 -0.8 -0.777 0.0094 -0.791 0.0027 
 -0.6 -0.587 0.0130 -0.597 0.0041 
 -0.3 -0.307 0.0177 -0.302 0.0059 
 0 -0.021 0.0202 -0.009 0.0069 
 0.3 0.258 0.0202 0.285 0.0064 
 0.6 0.542 0.0184 0.578 0.0053 
 0.8 0.729 0.0162 0.775 0.0034  
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Residuals 
 In any regression model, it is important 
to examine residuals in order to assess the 
model’s adequacy. Our ability to do this depends 
quite heavily on whether or not the residuals 
follow the normal distribution; otherwise it may 
be difficult to draw conclusions from their 
behavior. Benjamin, Rigby, and Stasinopoulos 
(2003) advocated using Dunn and Smyth’s 
(1996) randomized quantile residuals for this 
purpose, because they expected Pearson or 
deviance residuals to be highly non-normally 
distributed for count data, at least when the 
mean count is low. Randomized quantile 
residuals are defined by 
 
                           ( )1

t tr uΦ −=                        (6) 

 

where -1Φ  is the inverse standard normal 
cumulative distribution function, ut is a random 
variable  uniformly   distributed  on  the  interval 

( ) ( )ˆ ˆ-1;  ,  ;  ⎡ ⎤⎣ ⎦t t t tF y F yµ µ and ( )ˆ;  t tF y µ  is the 

fitted Poisson cumulative distribution function. 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 Figures 1-4 show examples of the 
behavior of ordinary Pearson residuals 
( ) 1/ 2ˆ ˆ/−t t ty µ µ and randomized quantile residuals 

in series of length 50, first within a series (all 
residuals from one simulated series) and then 
across series (the residual for t=20 examined 
across all 2000 simulations of the same set of 
parameter values). Figure 1 shows that, even 
though the counts are quite low ( µ =2), the 
Pearson residuals within a series do not depart 
from normality as much as might be expected, 
so although the randomized quantile residuals 
(Figure 2) give an improvement, this does not 
seem to be important. However, across series the 
Pearson residuals depart markedly from a 
normal distribution (Figure 3) in the extreme 
tails whereas the randomized quantile residuals 
have much better behavior (Figure 4).  
 In the corresponding Figures 5-8 for 
series of length 150, it can be seen that the 
Pearson residuals are quite satisfactory; 
therefore there is little scope for the randomized 
quantile residuals to offer any improvement. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Correlations between maximum likelihood estimates of  µ and θ . 
 
 Length 50 Length 150 

θ  µ =2 4 6 µ =2 4 6 

-0.8  0.179 0.082  0.201 0.081 
-0.6 0.309 0.145 0.040 0.351 0.125 0.049 
-0.3 0.246 0.084 0.033 0.246 0.043 0.035 

0 0.168 0.060 0.054 0.168 0.069 0.001 
0.3 0.108 0.065 0.025 0.150 0.055 0.059 
0.6 0.021 0.070 0.006 0.055 -0.015 -0.027 
0.8  0.063 0.015  0.008 0.028  
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Figure 1. Normal probability plot of Pearson residuals from one realization of GAR(1) with m = 50, 
µ = 2, θ  = 0.3. 

 
 
 

 
 

Figure 2. Normal probability plot of randomized residuals from one realization of GAR(1) with m = 
50, µ = 2, θ  = 0.3. 
 
 



PROPERTIES OF THE GAR(1) MODEL FOR TIME SERIES OF COUNTS 
 

146 

 
 

 
 

 

 
 

Figure 3. Normal probability plot of Pearson residuals at t = 20 from 2000 realizations of GAR(1) with m = 
50, µ = 2, θ  = 0.3. 
 
 
 

 
 

Figure 4. Normal probability plot of randomized residuals at t = 20 from 2000 realizations of GAR(1) with m 
= 50, µ = 2, θ  = 0.3. 
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Figure 5. Normal probability plot of Pearson residuals from one realization of GAR(1) with m = 150, µ = 

4, θ  = -0.6. 
 
 

 
 

Figure 6. Normal probability plot of randomized residuals from one realization of GAR(1) with m = 150, 
µ = 4, θ  = -0.6. 
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Figure 7. Normal probability plot of Pearson residuals at t = 20 from 2000 realizations of GAR(1) with m 
= 150, µ = 4, θ  = -0.6. 
 
 

 
 

Figure 8. Normal probability plot of randomized residuals at t = 20 from 2000 realizations of GAR(1) 
with m = 150, µ = 4, θ  = -0.6. 
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 Table 4 presents results on the 
distribution of the residuals in relation to the 5% 
and 1% critical values of the standard normal 
distribution. Binomial standard errors of these 
simulated exceedance probabilities with n = 
2000 are about 0.5% for the 5% point and about 
0.2% for the 1% point. There is a moderate 
tendency for the exceedance probabilities to be 
lower  than  the  nominal  values,  which  would  
 
 

 
 
 
 
 
 

 
lead to conservative tests based on the normal 
distribution. Fitting logistic regression models 
with factors µ ,θ  and the type of residual 
(Pearson or randomized) confirmed a difference 
between the exceedance probabilities of the two 
residuals for m = 50 at the 5% point (logistic 
regression coefficient for randomized versus 
Pearson = 0.154 with standard error 0.029) but 
not at the 1% point (-0.067, s.e. 0.067). 
 
 

 
 
 
 
 

 

 
Table 4. Simulated exceedance probabilities (x1000) of normal 5% and 1% critical values of a randomly 
selected Pearson residual (P) and randomized residual (R). Each entry is based on 2,000 simulations of 
the GAR(1) model. 
 
 
  Length 50 Length 150 
  5% 1% 5% 1% 

µ  θ  P R P R P R P R 
2 -0.6 430 445 90 90 475 485 135 80 
 -0.3 430 440 60 80 425 470 100 85 
 0 500 550 130 130 510 470 65 95 
 0.3 460 510 105 95 430 500 90 80 
 0.6 370 435 65 65 435 465 80 75 
          
4 -0.8 435 420 110 105 550 565 110 110 
 -0.6 415 410 80 75 480 510 75 95 
 -0.3 490 495 85 105 445 455 85 100 
 0 450 485 115 85 445 435 90 65 
 0.3 440 460 110 100 570 560 70 90 
 0.6 465 465 130 125 525 505 95 90 
 0.8 440 420 85 85 460 485 85 75 
          
6 -0.8 490 485 120 100 505 510 80 90 
 -0.6 435 420 80 70 490 495 100 100 
 -0.3 415 410 35 40 485 490 95 105 
 0 500 505 125 120 515 525 105 115 
 0.3 520 545 140 140 545 550 110 130 
 0.6 460 470 55 55 505 515 105 115 
 0.8 500 490 110 110 535 525 130 135 

 
 



PROPERTIES OF THE GAR(1) MODEL FOR TIME SERIES OF COUNTS 
 

150 

Conclusion 
 

These results suggest that the GAR(1) model 
without covariates is numerically well behaved, 
except in the case of the combination of small µ  

and large θ . Restricting the study to GAR(1) is 

not unreasonable, because this is likely to be the 
most important practical case. According to 
Greene (2000), “The first-order autoregression 
has withstood the test of time and 
experimentation as a reasonable model for 
underlying processes that probably, in truth, are 
impenetrably complex” (p.531). 
 The results also show that the Pearson 
residuals do not depart from normality as much 
as might have been expected. However, the 
randomized residuals are available for use, if 
preferred, and their distribution seems to be very 
close to normal. Sometimes there are objections 
to using randomization within statistical analysis 
but, as Dunn and Smyth (1996) pointed out, 
these do not apply when the aim is to look at the 
overall pattern of residuals, which is what 
happens when all the residuals within one run 
are being considered. On the other hand, the 
random element does become an issue when 
specific residuals are being examined. This is 
the case when, for instance, extreme values are 
under consideration as potential outliers. 
 Although the simulation results show 
that the normal distribution applies quite well 
even at the 1% points, outlier detection may be 
based on much more extreme values than this 
(for example, when Bonferroni adjustments are 
used). Figure 4 compared to Figure 3 and to a 
lesser extent, Figure 8 compared to Figure 7, 
show that the randomized residuals would work 
far better than the Pearson residuals for this 
purpose. One way of obtaining the advantage of 
adjusting the residuals, but avoiding 
randomization, is as follows. Instead of 
definition (6), define adjusted residuals by 
 

( )* 1 *−=t tr uΦ  

 

where *
tu  is the mid-point of the interval 

( ) ( )t tˆ ˆ1;  ,  ;  ⎡ ⎤−⎣ ⎦t tF y F yµ µ . In other words, the 

random variable ut in (6) is replaced by its 

expected value. The distribution of these 
adjusted residuals across series in the 
simulations was very close to the distribution of 
the randomized residuals shown in Figures 4 and 
8. 
 One unsatisfactory feature of the model 
(2) or (4) is the necessity for introducing *

ty . 
This is an artificial device to enable the series to 
restart from zero, which otherwise would be an 
absorbing state. As remarked above, the amount 
of information available on the parameter c is 
very small and it is preferred to ignore it entirely 
by dividing the series up into blocks. This is 
only an issue when µ  is small, because 
otherwise the chances of reaching zero are 
negligible. On the other hand, this case may be 
the most interesting for the application of these 
models. It is noted that Benjamin, Rigby, and 
Stasinopoulos (2003) did not discuss this 
problem and in their example (which includes 
many zeroes) they appear simply to have used c 
= 0.1 without estimation. Kedem and Fokianos 
(2002) used examples without zeroes.  
 During the course of the investigations, 
the alternative model (5) was also examined. It 
was found that the likelihood surface tends to be 
very flat with respect to c. Because of this 
practical problem, but especially because of the 
dislike of the unrealistic device of adding a 
constant to every observation, this work has not 
been pursued and was not reported in this article. 
Another model, replacing both (4) and (5), could 
allow a random quantity (independent of other 
parts of the model and other time periods) to be 
added to each observation. This could be a much 
more satisfactory physical model of immigration 
from elsewhere than is offered by the existing 
proposals. 
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