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Analysis Of Type-11 Progressively Hybrid
Censored Competing Risks Data

Debasis Kundu Avijit Joarder
Department of Mathematics Reserve Bank of India
Indian Institute of Technology

A Typell progressively hybrid censoring scheme for competing risks data is introduced, where the
experiment terminates at a pre-specified time. The likelihood inference of the unknown parameters is
derived under the assumptions that the lifetime distributions of the different causes are independent and
exponentially distributed. The maximum likelihood estimators of the unknown parameters are obtained in
exact forms. Asymptotic confidence intervals and two bootstrap confidence intervals are also proposed.
Bayes estimates and credible intervals of the unknown parameters are obtained under the assumption of
gamma priors on the unknown parameters. Different methods have been compared using Monte Carlo
simulations. One real data set has been analyzed for illustrative purposes.

Key words: Competing risk; maximum likelihood estimator; Type-l and Typell censoring; Fisher
information matrix; asymptotic distribution; bayesian inference; exponential distribution; gamma
distribution; Type-1l progressive censoring scheme.

Introduction (1960), Cox (1959), David and Moeschberger
(1978) considered the problem from the
In medical studies or in reliability analysis, it is parametric point of view. In the non-parametric
quite common that more than one cause or risk st up, no specific lifetime distribution is
factor may be present at the same time. In assumed. Kaplan and Meder (1958), Efron
analyzing the competing risks modd, it is (1967) and Peterson (1991) analyzed the non-
assumed that data consists of a failure time and parametric version of this model.
an indicator denoting the cause of failure The two most common censoring
Several studies have been carried out under this schemes, namely Type-l and Type-ll censoring
assumption for both the parametric and the non- schemes, are widely used in practice. Briefly,
parametric set up. For the parametric set up it is they can be described as follows. Consider n
assumed that different lifetime distributions items are under observations in a particular
follow some special parametric distribution, experiment. In  the conventional Type-l
namely exponential, Weibull or gamma. Several censoring scheme, the experiment continues up
authors, for example Berkson and Elveback to a pre-specified time T. On the other hand, the

conventional Type-1l censoring scheme requires

the experiment to continue until a pre-specified

Debasis Kundu is Professor of Statistics. His number of failures m < n occurs. In this
research interests include Statistical Signal scenario, only the smallest lifetimes are
Processing, Rdiability Analysis, Statistical observed. The mixture of Typel and Type-ll
Computing and Competing Risks Models. Email censoring schemes is known as the hybrid
him at kundu@iitk.ac.in. Avijit Joarder is censoring scheme. This hybrid censoring
Research Officer in Reserve Bank of India. His scheme was first introduced by Epstein (1954;
areas of interest are reliability, survival analysis 1960). But, recently it becomes quite popular in
and numerical analysis. The views in this article the reliability and life-testing experiments. See
are his personal views and not those of the for example the work of Chen and Bhattacharya
Reserve Bank of India. (1988), Childs, Chandrasekhar, Balakrishnan,

and Kundu (2003), Draper and Guttman (1987),
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Fairbanks, Madasan and Dykstra (1982), Gupta
and Kundu (1998), and Jeong, Park and Yum
(1996).

One of the drawbacks of the
conventional Type-l, Typell, or hybrid
censoring schemes is that they do not allow for
removal of units at points other than the terminal
point of the experiment. When the items are
highly reliable it might be necessary to know the
causes for which the items are failed and also
necessary to remove items in between the
experiment (at the time of each failure) for
efficient estimation of the parameters. Because
of this, one censoring scheme known as
progressive censoring scheme under competing
risks becomes very popular for the last few
years. It can be described as follows: Consider n
items in a study and assume that there is K
causes of failure, which are known. Suppose m
< nisfixed before the experiment. Moreover, m
other integers, Ry, . . . ,Rn are aso fixed before
sothat Ry + ...+ Ry + m=n. At thetime of the
first failure Xy.mn, Ry Of the remaining units are
randomly removed. Similarly, at the time of the
second failure X,mn, Rz Of the remaining units
are randomly removed and so on. Finaly, at the
time of the m™ failure Xmn, the rest of the R,
units are removed. It is also known that the first

failure takes place due to caused,, similarly the

second failure takes place dueto cause 0, and so
on, finally the m" failure takes place due to
cause o, . For an exhaustive list of references

and further details on Typell progressive
censoring, the readers may refer to the book by
Balakrishnan and Aggarwala (2000).

In this article, a Type-ll progressively
hybrid censoring scheme under competing risk
is introduced. As the name suggests, it is a
mixture of Typell progressive and hybrid
censoring schemes under the competing risk
data. In this new censoring scheme, the
likelihood inference of the unknown parameters
is obtained, under the assumptions that the
lifetime distributions of the different causes are
independent  identically  distributed  (i.i.d.)
exponential random variables. It is observed that
the maximum likelihood estimators of the
unknown parameters always exist and one
obtains the explicit form of the maximum
likelihood estimators (MLEs) of the unknown

parameters. One also obtains the asymptotic
confidence intervals and proposed two bootstrap
confidence intervals. Bayes estimates and
credible intervals are also obtained under the
assumption of the gamma priors on the unknown
parameters. Different methods are compared
using Monte Carlo simulations and for
illustrative purposes, one real data set is
analyzed.

Model Description and Notation

Suppose n identical items are put on a
test and the lifetime distributions of the n items
are denoted by X, . . ., X, Theinteger m<nis
prefixed and also Ry, . . .,Rn are m pre-fixed
integers satisfyingR; +. ..+ Ry, +m=n. T isa
pre-fixed time point. At the time of first failure
R; of the remaining units are randomly removed.
Similarly at the time of the second failure R, of
the remaining units are removed and so on. If
the m™ failure occurs before the time point T,
the experiment stops at the time point X m:m:n. On
the other hand, suppose the m™ failure does not
occur before time point T and only J failures
occur beforethe time point T, where0 < J<m,
then at the time point T al the remaining Ry
units are removed and the experiment terminates
at thetime point T. Notethat Ry = n-(Ry+. . .+R;
) - J. The two cases are denoted as Case | and
Casell respectively and this censoring schemeis
referred to as the Type-ll progressively hybrid
censoring scheme under competing risk data. In
the presence of Typell progressively hybrid
censoring scheme under competing risks data,
thefollowing is atype of observation:

Casel: {(Xl:m:m 511 R1)1 sy (Xm:m:n, 5m’ Rm)}1
if Xmmn<T,or Casell: {(Xzmn, 0;, Ry, ...,
(XJ:m:n, 531 RJ )1 (T1 RJ*)}; |f X:J:m:n < T <

XCHl:m:n-

Notethat for Casell, X3mn < T < Xpzmn<...<
Xm:m:n and X:}+1:m:n <...< Xm:m:n are not
observed.

The conventional Typel progressive
censoring scheme needs the pre-specification of
Ry ... Rpnandadso Ty, ..., Tn, See Cohen
(1963; 1966) for details. The choices of Ty, . . .,
Tm are not trivial. For the conventional Type-ll
progressive censoring scheme the experimental
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time is unbounded. In the proposed censoring
scheme, the choice of T depends upon how
much maximum experimental time the
experimenter can afford to spend. Moreover, the
experimental time is bounded.

Without loss of generality, it is assumed
that there are only two independent causes of
failurei.e K = 2. It may be extended to the case
of K > 2. Before progressing further, the
following notations are introduced/ reviewed:

X;i : lifetime of the i individual under cause j;
forj=1,2andi=1,...,n

Ximn © i Observed failuretime i = 1, ... ,m
f(.) : probability density function (PDF) of X;

F(.) : cumulative distribution function (CDF) of
Xi

F(.) : cumulative distribution function (CDF) of
in

m; : the numbe of failures observed before
termination dueto cause 1 for Casel

m, : the numbe of failures observed before
termination due to cause 2 for Case |

m : total numbe of failures observed before
termination for Casel;i.e.m=m; + my

J. : the number of failures observed before
termination due to cause 1 for Caselll

J : the number of failures observed before
termination dueto cause 2 for Casell|

J : total number of failures observed before
termination for Casell;i.ee J=3 +
D; : the number of failures dueto cause 1, i.e. Dy
=m, for Casel and D; = J; for Casell

D, : the number of failures dueto cause 2, i.e. D,
=my, for Casel and D, = J, for Casell

D : total number of failures, i,ee D=m=m; +
m, for Casel and D =J=J; + J, for Casell

R: : the number of units removed at the time of
i"failureg R > 0

R, : the number of remaining units left at the
timepoint T for Casell

0, : indicator variable dencting the cause of

failure of thei™ individual

(A1) : exponential random variable with PDF
ﬂe—ﬂx

gamma( &, A) : gamma random variable with

PDF i X g
')

It isassumed that (Xy X2);i=1,...,n
are n i.i.d. exponentia random variables.
Further, Xy and X4 areindependent for all i = 1,
..., hand X; = min(Xy, Xz). Now, the MLEs of
the unknown parameters are provided when Xji's
(for1=1,...,n)arei.i.d exp(4,), forj=1,2

Maximum Likelihood Estimator

Based on the observations as discussed
in the previous subsection, the log-likelihood
function (without the constant term) can be
written as;

L(4,, A,)=D1InA, +DzInA, - (4, + A,)W,
()

where

Dl =my, D2 =My, W= Z(1+ Ri)xi:mn

i=1
for Casel and

J
Di=Jd, D=6, W= Z(1+ Ri)xi:m:n +TRJ
i=1

for Casell. From (1), it is clear that the MLES of
A, and A, always exists and they are
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A =— and A, =—=. 2)

It is not possible to obtain the exact distribution

of /?Al and /”22 because of the complicated nature

of the conditional distributions of Xymn . . -,
Xmmn given Xmmn < T. Interestingly, the

distribution of A4, and A, are the mixture of

discrete and continuous distributions. They have
positive masses at the point 0 and have the
bounded supports. Since, the exact distributions

of A4 and A,are not known, the exact
confidence intervals also cannot be obtained.

Confidence Intervals
In this section, three different
confidence intervals are proposed. One is based

on the asymptotic distribution of 4, and A, and
two different bootstrap confidence intervals.

Asymptotic Confidence Interval
In this section, we present the Fisher

Information matrix of A,andA,. Let I(4,, 4,)
= (Ii(4,, 4,)); i, j =1, 2, denote the Fisher
Information matrix of the parameters 4, and 4,,
where

_ o 9°L(A4L4,)
FTRLITEE) R
From (1) it follows that
E(D,)
|11( ’/12): >
& A
|12(/?1’/12)=|21(/?1’/12)=0
and
_E(D,)
| (4, 4,) = P

Simple calculation shows that

E(Dl) = i I:)(xi:m:n < T)
and

E(DZ) = i I:)(xi:mn < T) '

It is not easy to compute P(X;.m:n < T) for general
i, because Ximn is a sum of i independent, but
not identically distributed exponential random
variables. Therefore, for D; > 0 and D, > 0, the
following approximate 100(1- & )% confidence

interval for A,and A, are proposed,

and

(4)
respectively.

Bootstrap Confidence Intervals

In this subsection, two confidence
intervals based on the bootstrapping are
proposed. The two bootstrap methods that are
widely used in practice are;

(1) The percentile bootstrap (Boot-p) proposed
by Efron (1982), and

(2) The bootstrap-t method (Boot-t) proposed by
Hall (1988).

It is observed that in this type of
situations (Kundu, Kannan, & Balakrishnan,
2004), the non-parametric bootstrap method
does not work well. Hence, the following two
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parametric bootstrap confidence intervals for
AandA, are proposed. The procedure is
illustrated for the parameter A,. For the other
parameter (A,), a confidence interval may be
constructed in an anal ogous manner.

Boot-p Method

1. Estimate A, and A, from the sample
using (2).

2. Generate a bootstrap

%mple{X *l'mn,...,X*D*:m:n}, using ﬂl
and 4, , Ry, . . .Rm and T. Obtain the

bootstrap estimate of A4, say, 4, using
the bootstrap sample.
3. Repeat Step 2 NBOOT times.

4. Let CDF(X)=P(4 <X), be the
cumulative distribution function of

A A A 1

ﬂl* . Define oot p(X) =CDF  (X)
for a given x. The approximate
100(1- )% confidence interval for

A, isgiven by:

A18Boot—p [%j, A1Boot-p [1 - %j

Boot-t Method

1. Estimate A, and A, from the sample

using (2) as before.

2. Generate a bootstrap

%mple{X *l'mn,...,X*D*:m:n}, using ﬂ/\l

and A, , Ry; . . ;Rmand T. Also compute
2

Ay

V(4 ) =/11—* for D, > 0.
Dl
3. Determinethe T, statistic

W4 )
4. Repeat Steps 2 - 3NBOOT times.

5 L& CDF(X)=P(T, <X), be the

cumulative distribution function of Tl* .
For a given X, define

Asoot (X) = A+ YV (/{l*) COF (%)

The approximate 100(1- ¢ )%

confidenceinterval for A, isgiven by

[;\1 1Boot-t [% j, ﬁleoot—t [1 - %jj .

Bayesian Analysis
In this section, the problem is
approached from the Bayesian point of view. In

the context of exponential lifetimes, A,andA,
may be reasonably modelled by the gamma
priors. It is assumed that A,andA, are
independently distributed as gamma (&, by) and
gamma (ag, by) priors, respectively. The gamma
parameters &, by, a and b, are all assumed to be
positive. When &g = b; = 0 (& = b, = 0), one
obtains the non-informative priors of A4, (A4,).
The posterior density of A4, and A, based on the
gamma priorsis given by

I(A,, 4,|data)
oc 1,07aL] Prrerlg Wi g s (Wiby)

Q)

From (5), it is clear that the posterior density
functions of A,andA,, say I(A,|data) and
I(A,|data), respectively, are independent.
Further, I( A,|data) is the density function of a
gamma(D; + a;, W + by) random variable, and
I(A,|data) is the density function of a
gamma(D, + a, W + by) random variable.
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Therefore, the Bayes estimates of A andA,
under squared error loss functions are

” D, +a
/’ileayeﬁ =
W +b
and
A D,+a
ZZBay% == 2
W +b,

(6)

respectively. Interestingly, when the non-
informative priors & = b; = & = b, = 0, the
Bayes estimators coincide  with  the
corresponding MLEs.

The credible intervals for 4,and A, can
be obtained using the posterior distributions of
A,and A,. Note that a posteriori Z; =24, (W +
b) and Z, = 24, (W + b)) folow yx°
distributions with 2(D; +a) and 2(D, +a)
degrees of freedom respectively, provided both
2(D; + &) and 2(D; + &) are positive integers.
Therefore, 100(1- )% credible intervals for
Aand A, are

2 2 ]
X aora)a-t X 2(0ra). ]

2W+by) 2W+b) |

and

2 2
X 2(D2+a2),1—% X 2(D2+a2),%

2W+b,) " 2W+b,)

()

respectively for (D, + &) > 0and (D, + &) > 0.

Here sz,% and ;(zk,l_%denote the lower and
o . . 2

upper B} -th percentile points of a y

distribution with k degrees of freedom. Note that
if 2(D; + &) and 2(D, + &) are not integer
values, then gamma distribution can be used to
construct the credible intervals. If no prior
information is available, then non-informative

priors can be used to compute the credible
intervals for A4,and A,. Alternatively, using the

suggestion of Congdon (2001), very small
positive values of &, by, & and b, can be used to
construct the Bayes estimates or the
corresponding credible intervals.

Numerical Results and Discussions

Since the performance of the different
methods cannot be compared theoretically,
Monte Carlo simulations are used to compare
different methods for different parameter values
and for different sampling schemes. The term
different sampling schemes means for different
sets of R/'s and for different T values. All the
computations are performed using Pentium 1V
processor and using the random number
generation algorithm RAN2 of Press, Flannery,
Teukolsky, & Veterling.(1991). All the
programs are written in FORTRAN and they can
be obtained from the authors on request.

Before progressing further, first a
description of how the Typell progressively
hybrid censored competing risk data was
generated for agivensetn, m, Ry, ..., Rpyand T.
The following transformation as suggested in
Balakrishnan and Aggarwala (2000) is used.

Zl = nX1:m:n
Z;= (n -R;- l)(XZ:m:n - Xl:m:n)

Zm:(n -Ri-...-Rpai—m +1)(Xm:m:n - Xm-l:m:n)-
)

It is known that if Xi's arei.i.d. exp(A4,+4,),

then the spacings Z's are also i.i.d. exp( 4, + 4,)
random variables. From (8) it follows that

1

X :min = _Z
1 n 1
X2:m:n = ;Zz +lzl
n-R -1 n
Xmmn= L Zm+...+}21.
n-R-..-R,,—m+1 n

(9)
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Using (9), Typell progressively hybrid
censored competing risk data can be easily
generated as follows. For a given n, m,
Ry, o ,Rmy Ximne-- - Xmmen IS generated using (9).
Again using the random number generation
algorithm RAN2 of Press et al. (1991), a new
random variable U(i), for i = 1...m is generated.

A
T

Now if U(i) < , then assign 6, =1
2

otherwise, 0, = 2. If Xpymn < T. Then, one has
Case | and the corresponding sample is
{(Xynr 01 R )b (X s 0,0 R )} otherwise,
one has Case Il and J, such that X;mn < T <
Xz1mn IS found. The corresponding sample

is{(xl'mn ’*51’ R1)""’(Xm:m:n ’ am’ Rm)’ (T’ R*J )}’
where R; is same as defined before.

Different n, m, T, 4,, 4, and R's are
considered. In all of the simulation experiments,
A, =1.0and 4, = 0.8 is taken. The following
aretaken n= 15, 25, 50, 100, m=5, 10, 15, T =
0.25, 050, 1.00, 2.00 and three different

sampling schemes. Schemel: R;=... =Rn1 =0
and R, =n-m. Scheme2: Ri=n-mand R; =
...=Ry,=0.Scheame3:R;=... =R,;=1and

Rn = n-2m + 1. For each case, the MLEs and
the 95% confidence intervals of A,and A, are

computed using all three of the proposed
methods. For comparison purposes, the 95%
credible intervals are computed using non-
informative prior. The process is replicated 1000
times in each case and the average bias, mean
squared errors, and the coverage percentages are
reported. Theresults arereported in Tables 1 - 9.

Some of the important observations are
as follows. For fixed n as m increases the biases

and MSEs of both A, and A, decreasefor all

cases as expected. But, interestingly for fixed m
as n increases the biases increase and the M SEs

decrease for both A, and A,. This phenomenon

is quite counter intuitive and a proper
explanation cannot be found for this. Now,
comparing different confidence intervals in
terms of their average lengths and coverage
percentages, it is observed that the MLEs,
BOOT-T confidence intervals and Bayes
credible intervals behave quite satisfactory
unlessthe T is very small.

Otherwise, most of the cases of these
three confidence intervals maintain the nominal
coverage probabilities. Since BOOT-T method
is involved numerically and the confidence
intervals based on the asymptotic distributions
are dightly larger than the Bayes credible
intervals, it is recommended to use the Bayes
credible intervals for all cases. Among the
different schemes, it is observed that scheme 1
produces the smallest confidence intervals,
followed by scheme 3 and scheme 2.

Data Analysis

In this section, one real-life dataset
originally analyzed by Hod (1972) s
considered. The data arose from a laboratory
experiment in which male mice received a
radiation dose of 300 roentgens at 5 to 6 weeks
of age. The cause of death for each mouse was
determined by autopsy to be thymic lymphoma,
reticulum cell sarcoma, or other causes. For the
purpose of analysis, reticulum cell sarcoma is
considered as cause 1 and the other causes of
death are combined as cause 2. There were n =
77 observations in the data. A progressively
type-ll censored sample was generated from the
original measurements.
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Tablel:n=15,m=5".
Scheme Methods T=025 T=050 T=100 T=200
A 0.2406 (1.2953) 0.2834 (1.2330) 0.2842 (1.2314) 0.2842 (1.2314)
A, 0.1422 (0.6589) 0.1754 (0.6266) 0.1759 (0.6258) 0.1759 (0.6258)
MLE /11 2.8876 (86.4) 2.9185(93.3) 2.9192 (93.4) 2.9192 (93.4)
A, 2.4473 (90.5) 2.4790 (89.6) 2.4801 (89.6) 2.4801 (89.6)
1 Boot-P A 4.0095 (88.3) 40829 (91.1) 4,0721 (91.6) 4,0717 (91.6)
/12 3.2510(87.0) 3.3224 (89.1) 3.3175(89.4) 3.3172 (89.4)
Boot-T A 2.6389 (87.7) 2.8758 (90.7) 2.9050 (90.6) 2.9055 (90.6)
A, 2.1035 (89.8) 2.3166 (83.7) 2.3436 (88.7) 2.3438(88.7)
Bayes A, | 27977 (93.2) 2.8322 (93.9) 2.8331 (93.9) 2.8331 (93.9)
/12 2.3545 (88.9) 2.3885 (91.6) 2.3895 (91.6) 2.3895 (91.6)
A 0.2280 (1.7153) 0.2247 (1.3883) 0.2417 (1.2802) 0.2759 (1.2423)
/12 0.1689 (1.0298) 0.1461 (0.7663) 0.1475 (0.6577) 0.1706 (0.6320)
MLE /11 3.6133(79.0) 3.1929 (88.3) 2.9571(90.7) 2.9142 (92.8)
A, | 30830 (69.5) 2.6902 (81.5) 2.5017 (87.5) 2.4762 (89.2)
2 Boot-P A 4.1914 (77.3) 4.0090 (85.5) 4.0136 (90.7) 4.0654 (89.9)
/12 3.3645 (67.7) 3.2375(79.9) 3.2395(86.2) 3.3093(88.9)
Boot-T A 3.3581(78.7) 2.9655 (87.4) 2.8422 (91.3) 2.8636 (90.8)
A, | 26215 (69.4) 2.3683 (80.9) 2.2597 (88.1) 2.3070 (89.0)
Bayes A 3.4450 (77.3) 3.0707 (87.1) 2.8612 (92.9) 2.8273(93.6)
A, 2.8805 (67.9) 2.5721 (80.6) 2.4046 (83.0) 2.3851 (91.0)
A 0.2199 (1.3079) 0.2804 (1.2382) 0.2842 (1.2314) 0.2842 (1.2314)
A, 0.1269 (0.6734) 0.1725 (0.6300) 0.1759 (0.6258) 0.1759 (0.6258)
MLE A 2.9090 (89.5) 2.9144 (92.6) 2.9192 (93.4) 2.9192 (93.4)
A, 2.4540 (87.9) 2.4755 (89.3) 2.4801 (89.6) 2.4801 (89.6)
3 Boot-P A 3.9577 (89.2) 4,0778 (90.5) 4,0734 (91.6) 4,0717 (91.6)
A, | 32041 (85.2) 3.3183(83.9) 3.3180 (89.4) 3.3172(89.4)
Boot-T A 2.6347 (91.1) 2.8461 (90.7) 2.9038 (90.6) 2.9055 (90.6)
A, 2.0913 (88.2) 2.2907 (88.6) 2.3413 (88.7) 2.3438 (88.7)
Bayes A, | 28142 (92.0) 2.8282 (93.7) 2.8331 (93.9) 2.8331 (93.9)
/12 2.3580(86.2) 2.3848(91.1) 2.3895 (91.6) 2.3895 (91.6)

" In each cell, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLEs. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Table2: n=25,m=5".

Scheme Methods T=025 T=050 T=1.00 T=200
/?1 0.2825 (1.2347) 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314)
/12 0.1741 (0.6284) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258)
MLE /11 2.9170(93.1) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4)
/12 2.4770 (89.6) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6)
1 Boot-P /11 4.0845 (90.8) 4.0726 (91.6) 40717 (91.6) 40717 (91.6)
/12 3.3214(89.3) 3.3178(89.4) 3.3172(89.4) 3.3172(89.4)
Boot-T /11 2.8529 (90.8) 2.9056 (90.6) 2.9055 (90.6) 2.9055 (90.6)
/12 2.2954 (88.9) 2.3428 (88.7) 2.3437 (88.7) 2.3438(88.7)
Bayes /11 2.8308 (93.6) 2.8331(93.9) 2.8331(93.9) 2.8331(93.9)
/12 2.3864 (91.2) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6)
/11 0.2370 (1.6967) 0.2279 (1.3813) 0.2414 (1.2803) 0.2759 (1.2423)
/12 0.1712 (1.0103) 0.1482 (0.7633) 0.1483 (0.6561) 0.1715 (0.6314)
MLE /11 3.6058 (80.1) 3.1899 (88.8) 2.9538(90.9) 2.9139(92.8)
/12 3.0232 (70.7) 2.6895 (81.9) 2.5017 (87.7) 24777 (89.3)
2 Boot-P /11 4.2070 (78.3) 4.0052 (85.3) 4.0114 (90.8) 4.0654 (90.0)
/12 3.3690 (68.8) 3.2410 (79.5) 3.2438 (86.4) 3.3097 (88.9)
Boot-T /11 3.4596 (79.9) 2.9826 (87.5) 2.8495 (90.8) 2.8646 (90.7)
/12 2.6999 (69.9) 2.3953 (81.5) 2.2670 (88.0) 2.3073(89.0)
Bayes /11 3.4403 (78.2) 3.0685 (87.7) 2.8583(93.0) 2.8271(93.6)
/12 2.8724 (69.2) 25718 (81.3) 2.4047 (88.2) 2.3866 (91.1)
/11 0.2812 (1.2368) 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314)
/12 0.1718 (0.6308) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258)
MLE /11 2.9159 (92.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4)
/12 2.4744 (89.3) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6)
3 Boot-P /11 4.0860 (90.7) 4.0736 (91.6) 40717 (91.6) 4.0717 (91.6)
/12 3.3216 (89.1) 3.3181(89.4) 3.3172(89.4) 3.3172(89.4)
Boot-T /11 2.8364 (90.4) 2.9047 (90.6) 2.9055 (90.6) 2.9055 (90.6)
/12 2.2802 (88.8) 2.3412 (88.7) 2.3437 (88.7) 2.3438(88.7)
Bayes /11 2.8297 (94.2) 2.8331(93.9) 2.8331(93.9) 2.8331(93.9)
/12 2.3838(90.8) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6)

* |n each cdl, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLES. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Table3: n=25 m=10".
Scheme Methods T=0.25 T=0.50 T=1.00 T=2.00
A, 0.0812 (0.3105) 0.1225 (0.2790) 0.1225 (0.2789) 0.1225 (0.2789)
/12 0.0560 (0.2404) 0.0882 (0.2188) 0.0891 (0.2182) 0.0891 (0.2182)
MLE A 1.8802 (90.8) 1.8411 (94.0) 1.8406 (93.9) 1.8406 (93.9)
A, 1.6573 (92.5) 1.6259 (92.7) 1.6261 (92.7) 1.6261 (92.7)
1 Boot-P A 2.1524 (91.4) 2.1440 (94.0) 2.1319 (94.1) 2.1317 (94.1)
/12 1.8623 (88.6) 1.8597 (91.8) 1.8537 (91.8) 1.8536 (91.8)
Boot-T A 1.7514 (92.6) 1.8218 (93.7) 1.8341 (93.7) 1.8340 (93.7)
A, 1.5029 (89.7) 1.5810 (90.8) 1.5951 (91.2) 1.5950 (91.2)
Bayes A 1.8460 (92.8) 1.8120 (94.3) 1.8116 (94.1) 1.8116 (94.1)
A, 1.6194 (91.1) 15932 (93.6) 15935 (93.6) 1.5935 (93.6)
A 0.0753 (0.5199) 0.0778 (0.3620) 0.0084 (0.3136) 0.1181 (0.2821)
A, 0.0400 (0.4258) 0.0497 (0.2902) 0.0733 (0.2355) 0.0828 (0.2208)
MLE A 2.5991 (90.3) 2.1705 (91.5) 1.9260 (92.9) 1.8488 (93.7)
A, 2.2059 (85.2) 1.8888 (87.7) 1.7022 (91.6) 1.6304 (92.7)
2 Boot-P A 27334 (91.7) 23661 (92.2) 2.1893 (93.5) 2.1398 (93.9)
A, 2.2943 (85.3) 2.0360 (92.0) 1.8917 (89.8) 1.8541 (91.3)
Boot-T A 2.4446 (91.5) 2.0895 (91.9) 1.8889 (93.4) 1.8255 (93.8)
A, 2.0044 (85.7) 1.7540 (91.0) 1.6192 (89.9) 1.5852 (91.1)
Bayes A 2.5100 (90.7) 2.1177 (92.9) 1.8908 (93.4) 1.8191 (94.4)
A, 2.1189 (83.9) 1.8330 (92.0) 1.6633 (92.9) 15971 (93.4)
A 0.0752 (0.3272) 0.1142 (0.2855) 0.1226 (0.2788) 0.1225 (0.2789)
/12 0.0445 (0.2500) 0.0823 (0.2222) 0.0890 (0.2182) 0.0891 (0.2182)
MLE A 1.9918 (90.5) 1.8449 (94.0) 1.8407 (93.9) 1.8406 (93.9)
A, 1.7386 (88.3) 1.6301 (92.3) 1.6261 (92.7) 1.6261 (92.7)
3 Boot-P A 2.2036 (92.2) 2.1502 (93.5) 2.1335(94.1) 2.1317 (94.1)
/12 1.9051 (89.8) 1.8606 (91.3) 1.8547 (91.8) 1.8536 (91.8)
Boot-T A 1.8715 (92.3) 1.8015 (93.6) 1.8326 (93.7) 1.8340 (93.7)
A, 1.5931 (89.6) 1.5596 (91.0) 1.5940 (91.2) 1.5950 (91.2)
Bayes A, 1.9504 (92.7) 1.8152 (94.0) 1.8117 (94.1) 1.8116 (94.1)
/12 1.6939 (90.7) 1.5968 (93.7) 1.5935 (93.6) 1.5935 (93.6)

" In each cell, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLEs. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Table4:n=50,m=5".

Scheme Methods T=0.25 T=0.50 T=1.00 T =200
/?1 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314)
A 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258)
2
MLE /11 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4)
A 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6)
2
1 Boot-P /11 40723 (91.6) 40717 (91.6) 40717 (91.6) 4.0717 (91.6)
A | 33176 (894) 3.3172(89.4) 3.3172(89.4) 3.3172(89.4)
2
Boot-T /11 2.9049 (90.6) 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6)
A | 23430(887) 2.3437(88.7) 2.3438 (88.7) 2.3438 (88.7)
2
Bayes 2.8331(93.9) 2.8331(93.9) 2.8331(93.9) 2.8331(93.9)
A4
A 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6)
2
/11 0.2378 (1.6791) 0.2302 (1.3733) 0.2427 (1.2795) 0.2757 (1.2485)
A | 0.1761(1.0055) 0.1494 (0.7596) 0.1493 (0.6548) 0.1716 (0.6312)
2
MLE /11 3.5945 (80.7) 3.1875(89.5) 2.9530 (90.8) 2.9136 (92.8)
/1 3.0208 (71.5) 2.6866 (82.2) 2.5029 (87.8) 24777 (89.3)
2
2 Boot-P /11 42231 (78.9) 40181 (85.7) 40113 (90.4) 4.0653 (90.1)
A 3.3637 (69.2) 3.2376 (79.8) 3.2436 (86.2) 3.3096 (88.9)
2
Boot-T 3.4955 (80.4) 2.9977 (87.6) 2.8515 (90.9) 2.8656 (90.7)
A4
A 2.7151 (70.4) 2.3951 (81.7) 2.2697 (87.8) 2.3087 (89.0)
2
Bayes 3.4304 (78.9) 3.0669 (88.0) 2.8577 (92.8) 2.8267 (93.6)
A4
A 2.8714 (70.1) 2.5696 (81.4) 2.4060 (88.5) 2.3866 (91.0)
2
/11 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314)
A 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258)
2
MLE /11 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4)
A 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6)
2
3 Boot-P /11 4.0726 (91.6) 40717 (91.6) 40717 (91.6) 4.0717 (91.6)
A | 33178(894) 3.3172(89.4) 3.3172(89.4) 3.3172(89.4)
2
Boot-T /11 2.9056 (90.6) 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6)
/1 2.3428 (88.7) 2.3437 (88.7) 2.3438 (88.7) 2.3438 (88.7)
2
Bayes 2.8331(93.9) 2.8331(93.9) 2.8331(93.9) 2.8331(93.9)
A
A 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6)
2

" In each cell, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLEs. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Table5: n=50, m=10".
Scheme Methods T=0.25 T=0.50 T=1.00 T=2.00
A, 0.1226 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789)
A, 0.0890 (0.2183) 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182)
MLE A 1.8408 (93.9) 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9)
A, 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7)
1 Boot-P A 2.1406 (94.0) 2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1)
A, 1.8576 (91.7) 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8)
Boot-T A 1.8280 (93.7) 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7)
A, 1.5886 (91.1) 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2)
Bayes A 1.8118 (94.1) 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1)
/12 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6)
A 0.0812 (0.5127) 0.0794 (0.3626) 0.1002 (0.3127) 0.1183 (0.2816)
A, 0.0405 (0.4190) 0.0510 (0.2876) 0.0733 (0.2343) 0.0831 (0.2204)
MLE A 2.5875 (90.1) 2.1628 (91.3) 1.9254 (93.4) 1.8488 (93.6)
A, | 2108 (85.7) 1.8825 (87.8) 1.7004 (91.7) 1.6306 (92.9)
2 Boot-P A 27158 (92.1) 2.3613 (92.3) 2.1873 (93.3) 2.1396 (93.8)
A, 2.3004 (86.0) 2.0385 (91.6) 1.8924 (90.2) 1.8550 (91.3)
Boot-T A 2.4721 (91.7) 2.0908 (91.5) 1.8900 (93.3) 1.8256 (93.8)
A, 2.0481 (86.1) 1.7653 (90.9) 1.6233 (90.3) 1.5857 (91.1)
Bayes A 2.5003 (91.0) 2.1106 (92.4) 1.8904 (93.5) 1.8191 (94.5)
A, 2.1061 (84.8) 1.8274 (91.9) 1.6616 (93.0) 1.5972 (93.6)
A 0.1225 (0.2790) 0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789)
A, 0.0882 (0.2188) 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182)
MLE A 1.8411 (94.0) 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9)
A, 1.6259 (92.7) 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7)
3 Boot-P A 2.1440 (94.0) 2.1319 (94.1) 2.1317 (94.1) 2.1317 (94.1)
A, 1.8597 (91.8) 1.8537 (91.8) 1.8536 (91.8) 1.8536 (91.8)
Boot-T A 1.8218 (93.7) 1.8341 (93.7) 1.8340 (93.7) 1.8340 (93.7)
A, 1.5810 (90.8) 1.5951 (91.2) 1.5950 (91.2) 1.5950 (91.2)
Bayes A, 1.8120 (94.3) 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1)
/12 1.5932 (93.6) 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6)

" In each cell, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLEs. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Table6: n=50,m=15".

Scheme Methods T=025 T=050 T=1.00 T=200
/11 0.0800 (0.1570) 0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520)
/12 0.0336 (0.1174) 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150)
MLE /11 1.4553 (93.5) 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0)
/12 1.2720 (93.1) 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7)
1 Boot-P /11 1.6128 (93.6) 1.5828 (94.3) 1.5826 (94.3) 1.5826 (94.3)
/12 1.4223 (93.1) 1.4045 (93.5) 1.4043 (93.5) 1.4043 (93.5)
Boot-T /11 1.4274 (94.0) 1.4515 (93.9) 1.4516 (93.9) 1.4516 (93.9)
/12 1.2578 (93.0) 1.2819 (93.5) 1.2817 (93.5) 1.2817 (93.5)
Bayes /11 1.4400 (94.0) 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4)
/12 1.2545 (95.9) 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8)
/11 0.0746 (0.3559) 0.0651 (0.2411) 0.0682 (0.1739) 0.0819 (0.1545)
/12 0.0313 (0.2689) 0.0270 (0.1677) 0.0275 (0.1314) 0.0332 (0.1180)
MLE /11 2.1969 (87.6) 1.7837(90.7) 1.5448 (93.3) 1.4626 (94.1)
/12 1.8902 (90.7) 1.5599 (92.3) 1.3513 (92.6) 1.2771 (92.9)
2 Boot-P /11 2.2113 (91.7) 1.8593 (94.5) 1.6663 (94.0) 1.5974 (94.7)
/12 1.8917 (91.8) 1.6091 (92.0) 1.4683 (94.4) 1.4134 (93.4)
Boot-T /11 2.0680 (91.0) 1.7434 (94.6) 1.5346 (93.4) 1.4580 (93.9)
/12 1.7138 (91.4) 1.4864 (91.5) 1.3445 (93.0) 1.2842 (93.3)
Bayes /11 2.1411 (93.0) 1.7534 (92.2) 1.5258 (93.6) 1.4471 (94.3)
/12 1.8314 (92.3) 1.5262 (93.1) 1.3298 (94.4) 1.2594 (95.2)
/11 0.0686 (0.1630) 0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520)
/12 0.0241 (0.1216) 0.0365 (0.1151) 0.0366 (0.1150) 0.0366 (0.1150)
MLE /11 1.4702 (93.2) 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0)
/12 1.2846 (93.1) 1.2687 (93.6) 1.2687 (93.7) 1.2687 (93.7)
3 Boot-P /11 1.6215 (93.1) 1.5844 (94.3) 1.5826 (94.3) 1.5826 (94.3)
/12 1.4262 (93.3) 1.4056 (93.4) 1.4043 (93.5) 1.4043 (93.5)
Boot-T /11 1.4336 (94.1) 1.4499 (93.9) 1.4516 (93.9) 1.4516 (93.9)
/12 1.2587 (93.3) 1.2813 (93.5) 1.2817 (93.5) 1.2817 (93.5)
Bayes /11 1.4539 (93.7) 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4)
/12 1.2660 (94.9) 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8)

" In each cell, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLEs. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Table7: n=100,m=5".
Scheme Methods T=025 T=050 T=1.00 T=200
A, 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314)
1. | 01759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258)
2
MLE A 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4)
1. | 24801 (896) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6)
2
1 Boot-P A 4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6)
A | 33172(8949) 3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4)
2
Boot-T A 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6)
A | 23438(887) 2.3438 (88.7) 2.3438(88.7) 2.3438 (88.7)
2
Bayes 2.8331(93.9) 2.8331(93.9) 2.8331(93.9) 2.8331(93.9)
A
/1 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6)
2
A 0.2398 (1.6732) 0.2317 (1.3679) 0.2428 (1.2792) 0.2759 (1.2422)
2. | 01783(1.0011) 0.1500 (0.7576) 0.1512 (0.6542) 0.1715 (0.6313)
2
MLE A 3.5902 (80.8) 3.1872(89.8) 2.9520 (90.7) 2.9141(92.7)
A | 30201 (716) 2.6851 (82.3) 2.5047 (87.9) 2.4775 (89.3)
2
2 Boot-P A 4.2216 (78.9) 4.0150 (85.8) 4,0098 (90.5) 4,0650 (90.1)
/1 3.3769 (69.5) 3.2425 (79.8) 3.2461 (86.2) 3.3100 (88.9)
2
Boot-T 3.4957 (80.4) 2.9995 (87.4) 2.8521(90.9) 2.8666 (90.7)
A
1. | 2787710 2.4007 (8L.6) 2.2715 (87.9) 2.3092 (89.0)
2
Bayes 3.4270 (78.9) 3.0669 (88.4) 2.8568 (92.9) 2.8272 (93.6)
A
2. | 28711(708) 25683 (8L.5) 2.4079 (88.5) 2.3865 (91.0)
2
A 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314)
1. | 01759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258)
2
MLE A 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4)
1. | 24801 (896) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6)
2
3 Boot-P A 4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6)
A | 33172(8949) 3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4)
2
Boot-T A 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6)
A | 23437(887) 2.3438(88.7) 2.3438(88.7) 2.3438(88.7)
2
Bayes 2.8331(93.9) 2.8331(93.9) 2.8331(93.9) 2.8331(93.9)
z
1. | 23895 (0L6) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6)
2

" In each cell, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLEs. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Table8: n=100,m=10".

Scheme Methods T=025 T=050 T=1.00 T=200
ﬂ‘l 0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789)
/12 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182)
MLE /11 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9)
/12 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7)
1 Boot-P /11 2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1) 2.1317 (94.1)
/12 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8)
Boot-T /11 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7)
/12 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2)
Bayes /11 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1)
/12 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6)
/11 0.0833 (0.5097) 0.0795 (0.3643) 0.1005 (0.3126) 0.1182 (0.2817)
/12 0.0418 (0.4155) 0.0512 (0.2890) 0.0729 (0.2342) 0.0830 (0.2204)
MLE /11 2.5789 (90.0) 2.1578 (91.4) 1.9246 (93.5) 1.8485 (93.6)
/12 2.1851 (86.0) 1.8791 (87.9) 1.6989 (91.7) 1.6303 (92.9)
2 Boot-P /11 2.7055 (91.9) 2.3619 (92.4) 2.1864 (93.3) 2.1397 (93.9)
/12 2.3012 (86.6) 2.0384 (91.4) 1.8924 (90.3) 1.8552 (91.3)
Boot-T /11 2.4757 (91.7) 2.0947 (91.7) 1.8898 (93.3) 1.8258 (93.9)
/12 2.0653 (86.3) 1.7689 (90.7) 1.6233 (90.5) 1.5857 (91.1)
Bayes /11 2.4928 (91.4) 2.1060 (92.5) 1.8896 (93.7) 1.8189 (94.5)
/12 2.1004 (85.2) 1.8243 (91.8) 1.6603 (93.0) 1.5970 (93.6)
/11 0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789)
/12 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182)
MLE /11 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9)
/12 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7)
3 Boot-P /11 2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1) 2.1317 (94.1)
/12 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8)
Boot-T /11 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7)
/12 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2)
Bayes /11 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1)
/12 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6)

" In each cell, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLEs. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Table9: n=100, m=15.
Scheme Methods T=0.25 T=0.50 T=1.00 T=2.00
ﬂ‘l 0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520)
A, 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150)
MLE A 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0)
A, 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7)
1 Boot-P A 15826 (94.3) 15826 (94.3) 15826 (94.3) 15826 (94.3)
A, 1.4044 (93.5) 1.4043 (93.5) 1.4043 (93.5) 1.4043 (93.5)
Boot-T A 1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9)
A, 1.2818 (93.5) 1.2817 (93.5) 1.2817 (93.5) 1.2817 (93.5)
Bayes A 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4)
A, 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8)
/11 0.0739 (0.3503) 0.0675 (0.2395) 0.0678 (0.1735) 0.0819 (0.1545)
A, 0.0343 (0.2643) 0.0264 (0.1671) 0.0275 (0.1315) 0.0332 (0.1180)
MLE A 2.1841 (87.9) 1.7816 (90.9) 1.5434 (93.3) 1.4625 (94.2)
A, 1.8860 (90.7) 1.5555 (92.0) 1.3503 (92.4) 1.2770 (92.9)
2 Boot-P A 2.2098 (92.0) 1.8572 (94.6) 1.6646 (94.0) 1.5972 (94.7)
A, 1.8977 (91.8) 1.6063 (92.6) 1.4677 (94.4) 1.4136 (93.4)
Boot-T A 2.0764 (91.3) 1.7421 (94.2) 1.5339 (93.3) 1.4576 (93.9)
A, 1.7271 (91.6) 1.4871 (91.7) 1.3446 (93.1) 1.2843(93.3)
Bayes A 2.1292 (92.6) 1.7515 (91.8) 1.5245 (93.7) 1.4469 (94.3)
A, 1.8280 (92.5) 1.5221 (93.0) 1.3289 (94.4) 1.2593 (95.2)
/11 0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520)
/12 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150)
MLE A 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0)
A, 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7)
3 Boot-P A 15828 (94.3) 15826 (94.3) 15826 (94.3) 15826 (94.3)
A, 1.4045 (93.5) 1.4043 (93.5) 1.4043 (93.5) 1.4043 (93.5)
Boot-T A 1.4515 (93.9) 1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9)
A, 1.2819 (93.5) 1.2817 (93.5) 1.2817 (93.5) 1.2817 (93.5)
Bayes A, 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4)
A, 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8)

" In each cell, the first row of ﬂiand /12 represents the average biases and the corresponding mean squared errors are

reported within brackets for the MLEs. The second, third, fourth and fifth rows of A, and A, represent the average 95%
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are
reported within brackets.
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Example 1: Inthiscase, n=77andm=25,T =
700, Ri=Ry=.. .=R24=2andR25=4al’e
taken. Thus, the Type Il progressively hybrid
censored sampleis:

(40, 2), (42, 2), (62, 2), (163, 2), (179,2), (206,
2), (222, 2), (228, 2), (252, 2), (259, 2), (318, 1),
(385, 2), (407, 2), (420, 2), (462, 2), (507, 2),
(517, 2), (524, 2), (525, 1), (528, 1), (536, 1),
(605, 1), (612, 1), (620, 2), (621, 1).

In this cag, D;=7, D,=18 and
25
w=> 1+ R))Xx

i:m:n
i=1

= 28962. Therefore,

= = 241696x10™
28962
and
G =8 6.21504x10.
28962

The 95% asymptotic, Boot-P, Boot-t confidence
intervals and also the 95% credible intervals of
A, and A, arereported in Table 10.

It is clear that although all of them
provided amost similar confidence/credible
intervals, but Bayes credible intervals have the
smallest lengths. Now, the data using T = 600
instead of T = 700 is generated, while m and
R(i)'s are the same as before.

Example 2: In this case the progressively hybrid
censored sample obtained as:

(40, 2), (42, 2), (62, 2), (163, 2), (179,2), (206,
2), (222, 2), (228, 2), (252, 2), (259, 2), (318, 1),
(385, 2), (407, 2), (420, 2), (462, 2), (507, 2),
(517, 2), (524, 2), (525, 1), (528, 1), (536, 1).

Here D=4, D, =17 and
21

W = > (1+R)Xy, = 20346. Therefore, the
i=1

following is obtained:

di=— % —139150x10
28746
and
do =1 202380910
28746

In this case, the 95% asymptotic, Boot-P, Boot-t
confidence intervals and also the 95% credible
intervalsof A4, and A, arereported in Table 11.

From Table 11, it is observed that T
plays a major role for the estimation of 4's and
for the construction of the corresponding
confidence intervals. As T decreases, the lengths
of the confidence/credible intervals for both the
parameters are as expected. It is also important
to note that Boot-p and Boot-t are the most
affected due to T and the Bayes confidence
intervals are the least affected. Therefore, Bayes
confidence intervals are quite robust also with
respectto T.

Conclusion

In this article, a new censoring scheme is
discussed, namely the Type Il progressively
hybrid censoring scheme under competing risks
data. Assuming that the lifetime distributions are
exponentially distributed, one may obtain the
maximum likelihood estimators of the unknown
parameter and propose different confidence
intervals using asymptotic distributions as well
as using bootstrap methods. Bayesian estimates
of the unknown parameters are also proposed
and it is observed that the Bayes credible
intervals with respect to non-informative prior
work quite well in this case and it has several
desirable properties. Although it is assumed that
the lifetime distributions are exponential, most
of the methods may be extended for other
distributions also, such as the Weibull or gamma
distribution.
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Table 10.

Methods A A,

Asymptotic (0.62645%10*,4.20747x10*) | (3.34384x10*,9.08624x10™*)
Boot-p (0.76099%10,4.52108x10™*) | (3.47439x10*,10.52984x10™*)
Boot-t (0.58039x10*,4.26943x10™*) | (2.71588x10*,9.46895x10*)
Credible (0.97174x10*,4.50918x10*) | (3.60913x10*9.31153x10™*)

Table 11.

Methods A, A,

Asymptotic (0.02783x10*,2.75517x10™*) | (10.61752x10,29.85867x10*)
Boot-p (0.00000%10*,3.02527x10*) | (14.13159%x10*,32.89348x10*)
Boot-t (0.00000x10*,3.63490x10™*) | (11.92432x10,27.94359x10*)
Credible (0.37913x10*,3.04992x10*) | (3.37047x10*8.95152x10*)
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