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Properties Of Bound Estimators On Treatment Effect Heterogeneity  
For Binary Outcomes 

 
                             Edward J. Mascha            Jeffrey M. Albert 

Department of Quantitative Health Sciences Department of Epidemiology and Biostatistics 
        The Cleveland Clinic Foundation             Case Western Reserve University 

 
 
Variability in individual causal effects, treatment effect heterogeneity (TEH), is important to the 
interpretation of clinical trial results, regardless of the marginal treatment effect. Unfortunately, it is 
usually ignored. In the setting of two-arm randomized studies with binary outcomes, there are estimators 
for bounds on the probability of control success and treatment failure for an individual, or the treatment 
risk. Here, those bounds were refined and the sampling properties were assessed using simulations of 
correlated multinomial data via the Dirichlet multinomial. Results indicated low bias and mean squared 
error. Moderate to high intraclass correlation (ICC) and large numbers of clusters allow narrower 
confidence interval widths for the treatment risk. 
  
Key words: Blocked or clustered data, bounds, causal effects, Dirichlet multinomial, intraclass 
correlation, marginal treatment effect, randomized trial, potential outcomes, treatment effect 
heterogeneity, unit-treatment interaction. 
 
 

Introduction 
 
In randomized clinical trials comparing an 
experimental treatment (T) to a control (C), the 
focus is usually on the marginal treatment effect, 
(i.e., mean causal effect) estimated by the 
difference in means or the difference in the 
proportion having a successful outcome. 
Unfortunately, the amount of variability of the 
individual causal effects is usually ignored. 
Recent work has seen the development of 
bounds on a treatment effect heterogeneity 
parameter for binary outcomes (Gadbury, Iyer, 
& Albert, 2004; Albert, Gadbury, & Mascha, 
2005). The latter provided bound estimates and 
confidence intervals in the case of blocked 
binary outcomes. However, no study has been 
yet conducted to evaluate the properties and 
practicality of these methods. 
 
 
Edward J. Mascha, Ph. D., is an Assistant Staff 
Biostatistician. His interests include causal 
effects and correlated data methods. Email him 
at maschae@ccf.org. Jeffrey M. Albert, is an 
Assistant Professor of Biostatistics.  His research 
interests include causal inference. Email him at 
jma13@case.edu. 

Treatment effect heterogeneity (TEH), 
also called unit-treatment interaction (Gadbury 
& Iyer, 2000) or subject-treatment interaction 
(Gadbury, Iyer, & Allison, 2001), is the amount 
of variability in the causal effect of T versus C 
on some outcome Y. The causal effect for an 
individual is defined as the difference in the 
individual’s potential outcomes (Neyman, 1923; 
Rubin, 1974; 2000) on T and C, respectively. 
This is an unobservable latent variable since 
only one of the two potential outcomes may be 
observed for an individual. For example, 
consider a binary outcome scenario with success 
proportions of 0.50 and 0.30 for treatments T 
and C, respectively, giving a marginal treatment 
effect of 0.20. With these marginals, the 
minimum possible TEH would be that no 
patients who succeed on C would fail on T, 
implying that 0.20 of the patients would fail on 
C and succeed on T. With the same marginals, 
the maximum possible TEH would be that 0.30 
of patients would succeed on C but fail on T, 
and that 0.50 would fail on C but succeed on T.   

Thus, in the case of a binary outcome 
for two treatments, individuals fall into a 
category based on their potential outcomes: (1) 
failure on both T and C, (2) success on T and C, 
or (3) success on one but not the other. The 
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probabilities of membership into each of these 
categories are denoted as π00 , π01, π10 , π11, 
where indices indicate response (1=success, 
0=failure) to T and C, respectively. The 
probability of doing worse on a new treatment 
(T) than on standard treatment (C ), π01, may be 
understood as the treatment risk because patients 
would not expect to do worse on the new 
treatment. Although this quantity is typically 
overlooked in analyses of clinical trials, it would 
be of potential interest for both individual 
treatment decisions and the understanding of the 
population impact of treatment. 

Albert, Gadbury and Mascha (2005, 
AGM) provided bounds and bound estimators 
for the treatment risk π01  (referred to by AGM 
as π2). However, the AGM bounds cannot be 
reliably used in practice until their sampling 
properties have been assessed. Such is the 
purpose of this article. 
 
Background  

Gadbury and Iyer (2000) derived bounds 
for the probability of an unfavorable individual 
treatment effect where the outcome is 
continuous; for example, an individual doing 
better (higher value) on control than on 
treatment. They assumed a trivariate normal 
distribution between the potential outcomes on 
treatment X and control Y, and a covariate Z 
which is measured on all patients. Such methods 
are not easily applicable to binary outcomes 
because of the difficulty in specifying a 
meaningful multivariate distribution for the 
binary setting. 

New methods are available, however, to 
estimate bounds on treatment effect 
heterogeneity for binary outcomes. These 
include simple bounds and bounds which make 
use of clustering. Based on the fact that 
π11, π00,  π10,  π01 sum to 1.0 and that 
π10 − π01 =πΤ − πC; Gadbury, Iyer, and Albert 
(2004), which is referred to as GIA, derived 
simple bounds for π01 such that 

 

01C CT T
s smax  min π(0,π - π ) L U (1-π ,π )≡ ≤ ≤ ≡  

(1) 
 

For example, with true marginal successes πT  = 
.80 and πC =.70, simple bounds for π01 are (0, 
.20), and by substituting πT for πC and visa 
versa, the simple bounds for π10 are (.10, .30). 
The marginal proportions πΤ  and πC have a large 
effect on the possible range of unit-treatment 
interaction in the binary outcome case. A 
proportion close to 0 or 1 greatly limits the range 
of TEH, and so allows tighter bounds on the 
parameters of interest. When neither of the 
marginals is close to 0 or 1, there is a wider 
range of possible heterogeneity, and therefore 
greater opportunity for narrowing through more 
refined methods.  

GIA also give more refined bounds on 
π01, first using a matched-pairs design in which 
one member of a pair is randomly assigned to 
receive treatment and the other member receives 
control. They construct bounds which narrow as 
the quality of the matching improves. Further, 
they consider an extended matched-pairs design, 
in which some pairs are randomized to either 
both treatment or both control, which allows the 
refined bounds to be estimated. 

Gadbury, Iyer, and Albert (2004) 
defined the probability that a treatment unit fails 
(YT(u1)=0) and the matched control unit has 
success (YC(u2)=1), i.e., control beats treatment, 
or, 

2
g

1 2( ( ) 0, ( ) 1)T CP Y u Y u= = =  

 
where u1 and u2 are two members of a matched 

pair. GIA also define  Th and Ch as 

probabilities of success for both members of a 
pair of randomly chosen matched treated or 
control units, respectively, such that 
 

1 2( ( ) 1, ( ) 1)T T Th P Y u Y u= = =  

 
and 

 

1 2( ( ) 1, ( ) 1)C C Ch P Y u Y u= = =  

 
Higher hT and hC indicate better matching and 
will lead to tighter bounds. Lower and upper 
bounds for π01, with the “B” subscript referring 
to the blocked (in the present case, the extended 
matched pairs) design, are as follows: 
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2 T T C C

2 T T C C

 C

C

Max (0, min(π ,π ))

Min (1, min(π ,π ))

L g h h

U g h h

≡ − − −
≡ + − −

 

(2) 
 

The bounds for π01 (equation 2) were derived by 
first expressing g2 , hT and hC as functions of the 
underlying parameters of interest, and then 
adding terms to the expression for g2 so that the 
resulting form consisted of quantities for which 
one has estimators. 

In the latest development, Albert, 
Gadbury, and Mascha (2005, AGM) used 
bounds with the same form as (2) for π01, but 
extend definitions to the more general blocked 
or clustered design. That is, the pair of 
individuals u1 and u2 in the definitions of 2g , 

 Th and Ch , is now considered as belonging to 

the same cluster. In many cases this is more 
realistic than the matched or extended pairs 
design. Blocks can be created post-hoc. Good 
blocking or matching gives narrower bounds.  

AGM provide non-parametric estimators 
of the bounds in (2). Each represents a 
proportion with the given outcome combination, 
and is estimated as the ratio of the sum across 
clusters of the number of pairs observed with the 
given outcome combination to the number of 
pairs with the given treatment assignments. For 
example, 
 

C1j T0j
j

Cjj Tj
2

n n

ĝ = ,
n n

∑

∑
 

 
is the estimator for g2, and is the proportion of 
observed pairs with treatment failure and control 
success out of the total number of possible 
treatment-control pairs. Substitution into (2) 

yields estimated cluster bounds BL̂  and ˆ
BU . 

AGM (equations 6 through 11) give variances 
and covariances for estimators of the lower and 
upper bounds on π01 and for their components. 
Refer to their article for details on the formulae, 
which are quite extensive. 

In this study, the AGM estimators for 
bounds on π01 are first refined. Then, through 

simulations their statistical properties, including 
bias, variance, MSE, and coverage are 
evaluated. Because the AGM bound estimators 
depend on clustering in the data, a simulation 
method that allows specification of the intraclass 
correlation (ICC) as well as the underlying 
probabilities has been devised. Simultaneous 
confidence intervals for the lower and upper 
bounds are shown to provide at least 1-α 
coverage of π01, the real parameter of interest. 
Properties are shown to depend on degree of 
ICC, TEH, marginal success, number of clusters, 
and sample size. 

 
Methodology 

 
First, a refinement to the AGM bounds is 
proposed, and then the Dirichlet-multinomial 
(DMN) is introduced as the model for the 
potential outcomes. Finally, the treatment effect 
heterogeneity scenarios and simulation methods 
used to assess statistical properties of the 
estimators for bounds on π01 and their 
components are outlined.  

 
Refinement to AGM Bounds 

With good blocking, the AGM cluster 
bounds in (2) are narrower than the simple 
bounds (1) on π01. However, it can be shown 
that the cluster bounds are the same or wider 
than the simple bounds when subjects are 
independent from each other (and thus, hT = πT

2 
and g2 = (1-πT) πC), which would occur if the 
matching or clustering were at random or non-
existent. Therefore, a modification of the AGM 
cluster bounds to be the narrower of the simple 
and AGM cluster bounds is proposed, such that: 

 

S T T C

S T T

MC

MC

2 C

2 C C

( ,g min(π -h ,π -h ))

( ,g min(π -h ,π -h ))

L Max L

U Min U

≡ −
≡ +

 

(3) 
 

With random matching, the modified AGM 
cluster bounds (MAGM) and simple bounds are 
identical, and the cluster bound width will 
always be at least as narrow as the simple bound 
width, sometimes significantly narrower, 
depending on the TEH scenario, the marginals, 
and the amount of clustering.  
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Property assessment 
In order to assess the statistical 

properties of the bound estimators for π01, a 
model of the underlying (i.e., latent) correlated 
multinomial data was needed, where each unit or 
subject belongs to one of the four potential 
outcome categories (C00, C01, C10, C11), indexed 
by the latent response to treatment and control, 
respectively, with probabilities π00,  π01,  π10,  π11, 
and where units are correlated within clusters. 
Various approaches to modeling correlated 
multinomial data have been used (Gange, 1995, 
Morel & Nagaraj, 1993, Banergee & Paul, 
1999). Mosimann (1962) and Brier (1980) extol 
the Dirichlet multinomial (DMN) distribution, 
also called the multivariate beta-binomial 
distribution, as a natural way to model over-
dispersed multinomial data. The DMN is used 
because it also allows direct specification of the 
intra-class correlation and there is no need to 
assume an underlying continuous distribution of 
the data. It is less computationally intensive than 
some of the other methods and can therefore be 
used with large numbers of clusters and units per 
cluster, r, where the method of Gange (1995), 
for example, cannot. 

It is assumed that each unit latently falls 
into one of the four population categories with 
the corresponding probabilities 
π00,   π01,  π10,  π11, denoted as the vector π. Each 
cluster’s set of probabilities deviates randomly 
from the underlying vector according to the 
Dirichlet distribution and the counts within each 
cluster are independent multinomial data 
conditional on the realized cluster probabilities. 
The unconditional counts in the 4 categories are 
distributed as DMN, or DMN4(n,π,k), where k is 
a structural parameter related to the ICC, the 
correlation among units within the same cluster 
and category, such that k= (1-ICC)/ICC, and so 
ICC=1/ (1+k). This relationship between k and 
the ICC is used to induce varying levels of 
correlation among subjects within clusters in the 
simulations. 

The statistical properties of the MAGM 
and AGM estimators for bounds on π01 and 
estimators for their components (g2, HT,HC, πT 

and πC ) were evaluated under five treatment 
effect heterogeneity (TEH) scenarios (Table 1). 
Scenarios are distinguished by the level of TEH 

(low, medium or high value of π01 for the given 
marginals) and the marginal success proportions 
πT and πC: one marginal close to zero (πT =.20, 
πC =.10) or both close to .50 (πT =.45, πC =.55). 
Each scenario is also described by the amount of 
correlation among the potential outcomes on T 
and C, or ρ PO. This correlation is a function of 
π01 and the marginal success proportions, so that 
zero ρ PO indicates independence of the potential 
outcomes, in which case π01 and π10 are the 
product of the corresponding marginals, and 
which may be the most natural case. Negative 
ρ PO indicates high TEH (π01 and π10 are higher 
than under independence) and positive ρ PO 
indicates low TEH (π01 and π10 are lower than 
expected under independence). Within each 
scenario, the ICC (.15, .50, and .85), the total 
sample size N (600, 3000), and the number of 
clusters C (20, 40, and 100) are varied to assess 
the effect of each factor on the estimator 
properties. 

A set of simulations was conducted for 
each TEH scenario from Table 1, for each 
variation of ICC, total sample size, and number 
of clusters. For each cluster i , Dirichlet random 

deviates 
(i) (i)

1 4
p ,...,p  were formed of success 

probabilities from the underlying vector π as the 
ratio of random gamma deviates over the sum of 
the associated four gamma deviates (Jensen, 
1998), where subscripts 1, …, 4 indicate the four 
population categories C00, C01, C10, C11, 
respectively. The parameter for each of the four 
gamma deviates is the clustering parameter k 
times the probability of the associated 
underlying population category. Next, n units 
(where n=N /C) were randomly sampled from 
the four population categories according to a 
multinomial distribution with probabilities 

(i) ( i)
p ,.. ., p1 4 for the ith cluster. Each unit 

within each cluster was randomly assigned to 
have either the response to YT or YC observed. 
Finally, the estimated bounds (and estimated 
bound components) for π01, plus individual and 
simultaneous (lower, upper bound) confidence 
intervals for the bounds were calculated. This 
was repeated 1,000 times for each scenario 
combination (each particular scenario, sample 
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size, ICC and number of clusters combination) 
and summarized across simulations.     

For the AGM and MAGM bound 
estimators and their components within each 
scenario, the expected value (mean over 1,000 
simulations), bias, true variance (variance of the 
estimated values over the simulations), mean 
estimated variance and mean squared error 
(MSE) were assessed. Formula-based 95% 
confidence intervals (CI) and their widths for 
lower and upper bounds were then obtained. 
Approximate confidence intervals were 
calculated using a normal approximation for the 
distribution of the bound estimators. For 
example, a 100(1-α) % confidence interval (CI) 
for the AGM upper bound, BU , is 

2/1
2/1 ))ˆ(ˆ(ˆ

BB UVzU α−±  , where z1-α/2 is the (1-

α/2) percentile of the standard normal 
distribution. A CI for the lower bound, BL , was 
obtained similarly. Finally, coverage of the true 
bounds for both the lower and upper bound 
estimators was obtained. 

Simultaneous (i.e., joint) asymptotic (1- 
α)% confidence intervals intended to have at 
least a 1- α probability of containing the true 
population values of both the lower and upper 
bounds were also obtained. These were formed 
by the estimated lower 95% CL of the lower 
bound and the estimated upper 95% CL of the 
upper bound from the AGM formulae. Because 
the formed intervals are designed to have the 
given nominal probability of containing the true 
bounds on π01, by definition they should have at 
least as great a probability of containing the true 
π01, the parameter of interest. Using these 
intervals, the mean estimated width, the 
simultaneous estimated coverage of the true 
bounds, and the estimated coverage of the true 
parameter π01 are reported. 

For comparison purposes, and because 
the joint distribution of the lower and upper 
bounds is not readily available (assumed to be 
independent in forming the confidence intervals 
above), joint confidence intervals were also 
estimated using a bootstrap method which 
naturally accounts for dependency between the 
bounds and also allows non-symmetric intervals 
around the estimators. Bickel and Friedman 
(1981) proved that the bootstrap can be used to 
construct confidence intervals for two unknown 

parameters simultaneously. Horowitz and 
Manski (2000) use the bootstrap to put bounds 
on the treatment effect for missing-value data, 
where either baseline covariates and/or 
outcomes are missing for some subjects. The 
same method was used to provide a joint 
confidence interval for a pair of lower and upper 
cluster bounds on the parameter π01. The goal 

was to create an interval of the form [ L̂  – dα , 

Û  + dα ], where L̂  and Û . An appropriate 
value of a constant dα was chosen such that the 
interval contains the true parameters L and U 
with probability 1- α asymptotically. The delta 
was applied non-symmetrically in hopes of 
achieving even better coverage with equivalent 
or smaller confidence interval widths as with the 
formula method. 

 
Results 

 
Tables 2 and 3 report bias, variance and MSE of 
the MAGM lower and upper bound estimators 
for two representative scenarios: scenario 1, the 
combination of low treatment heterogeneity 
(π01= .01 ) and marginals close to zero and 
scenario 5, the combination of high treatment 
heterogeneity (π01= .40) and marginals close to 
.50. Bias of the lower and upper bound 
estimators and their components is consistently 
low, typically much less than 5% of the expected 
value of the estimator  for low, medium, or high 
ICC for each scenario assessed. Bias decreases 
with increasing ICC. Higher ICC increases the 
mean estimated variance of the lower and upper 
bound estimators and components and therefore 
the MSE, given the consistently low bias. As 
expected, the mean estimated variances and 
covariances of the bound estimators across 
simulations using the AGM formulas are also 
very close to the true variances and covariances 
for each estimator. Having a larger number of 
clusters for a fixed ICC and sample size steadily 
decreases the variance of all estimators and their 
associated MSEs. Similar properties and 
relationships were observed for scenarios 2, 3, 
and 4 (results not shown).  

Confidence interval width and coverage 
results of both the individual and the 
simultaneous lower and upper bound estimators 
on π01 are given in Tables 4 and 5 for scenarios 
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1 and 5, respectively, and in Figures 1 (all 
scenarios, 20 clusters) and 2 (scenarios 1, 3 and 
5 for 20, 40 and 100 clusters). As expected from 
results on the variance of the bound estimators, 
CI widths for the individual lower and upper 
bounds were in general much narrower for 
scenario 1 (Table 4) and scenario 2 (data not 
shown), where at least one of the marginal 
success proportions is close to 0 or 1. Mean CI 
widths for the lower and upper bounds increase 
substantially as the ICC increases from 0.15 to 
0.85, and this is a function of the variance 
increasing with ICC. Widths decrease 
substantially with increasing number of clusters 
(but C=100 also has a larger total N). The 
MAGM and AGM methods produce very 
similar or identical simultaneous (lower, upper) 
bound widths in cases where the ICC is at least 
0.50 (Tables 4, 5) or where neither marginal is 
close to 0 or 1 (Table 5). The MAGM method 
has widths that are a 0-20% narrower than the 
AGM for low ICC and marginals close to 0 or 1 
(Table 4, ICC=.15).   

Joint CI width of the lower and upper 
bounds is much narrower when either marginal 
is close to zero, especially with low to moderate 
ICC (Figures 1 and 2). The average width of the 
simultaneous intervals narrows by as much as 
50% as the ICC increases from 0.15 to 0.85, and 
this is more pronounced with larger total sample 
size. The average joint CI width also decreases 
substantially as the number of clusters is 
increased within a fixed sample size, particularly 
when the ICC is 0.50 or 0.85 (Figure 2). Across 
all of the scenarios assessed, the average width 
of the joint intervals is only 3-15 percentage 
points wider than the width of the true bounds. 
Higher values of π01 (and thus higher TEH) for 
fixed marginals increase the joint CI width 
(Figure 1). 

Coverage of the individual true bounds 
was between 90% and 100% for both the AGM 
and MAGM methods in most situations (Tables 
4 and 5, columns H and M). Coverage was 
above 90% under all scenarios when the ICC 
was 0.15 or when it was 0.50 and with 30 or 
more clusters (data shown for 40 and 100 
clusters). However, it dropped below 90% with 
the combined scenario of smaller number of 
clusters (20), marginals closer to zero, and 
moderate to high ICC. In a few situations with 

only 10 clusters (not shown), the coverage was 
as low as 65-70%. With the unlikely ICC of 0.85 
and marginals close to zero or one, forty or more 
clusters were sometimes needed to obtain 
coverage of at least 90%.  

Simultaneous coverage of the true 
bounds (column O in Tables 4 and 5) is at least 
90% in most cases, and often above 95%. It 
follows a pattern similar to coverage of the 
individual bounds, being best when the ICC is 
moderate or low and with a non-trivial number 
of clusters (20 or more). In most situations, the 
coverage was close to or slightly better than the 
worst of the individual lower and upper bound 
coverages for that scenario. The width of the 
simultaneous interval was sometimes narrower 
for the bootstrap method, but the slightly 
narrower width was usually accompanied by 
lower coverage of the true bounds. In general, 
coverage of the true MAGM bounds was better 
with the variance formula method than for the 
bootstrap method (as much as 0.15 better) for 
similar CI width.  

Finally, coverage of the unobservable 
quantity π01 using the simultaneous confidence 
intervals (column P in Tables 4 and 5) is often 
100% and nearly always above 95%. It is 
affected by the ICC, number of clusters, TEH 
scenario and total sample size with the same 
pattern as for the simultaneous bounds coverage. 

 
Conclusion 

 
AGM and refined AGM estimators have good 
statistical properties (low bias, MSE) and can 
thus be used in practice to estimate bounds for 
treatment effect heterogeneity with a binary 
outcome. Moderately or highly clustered data 
result in narrower confidence intervals for the 
measure of treatment heterogeneity π01, the 
probability of treatment failure and control 
success, which is termed the treatment risk. 
Higher ICC is preferable because the bounds 
themselves move considerably closer to the 
parameter they are bounding, π01, for larger ICC, 
and this phenomenon leads to narrower 
confidence interval widths for the simultaneous 
bounds as well as for π01.. A moderate or large 
number of clusters (at least 20) and larger 
sample    size  allow     more  narrow  confidence  
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Table 1. Simulation scenarios used to assess π01 bound estimators and components. 

 
 

Marginal Success 
Heterogeneity  
Descriptions 

 

 
Prob (YT=i, YC=j) 

 
Scenario 

πT πC TEH ρ PO
1 π00 π01 π10 π11 

         
1 0.20 0.10 Low .58 .79 .01 .11 .09 
2 “ “ Med .00 .72 .08 .18 .02 
3 0.55 0.45 Low .78 .44 .01 .11 .44 
4 “ “ Med .00 .25 .20 .30 .25 
5 “ “ High -.80 .05 .40 .50 .05 

 

Note: 1 = correlation among potential outcomes on T, C 
  

 
Table 2.  Bias, variance and MSE for Scenario #1 (low TEH + marginals near 0). 

 
 

PROPERTY                       

    θ        ICC    # Clusters    ( )θΕ   ˆ( )θΕ       ˆ( )θ θΕ −  ˆˆ( ( ))V θΕ  ( )ˆV θ   MSE 

    _______________________________________________________________ 
      
    LB       0.15     20         0.0000 0.0012 0.0012 0.0001 0.0000 0.0000 
                      40              . 0.0009 0.0009 0.0001 0.0000 0.0000 
                      100             . 0.0001 0.0001 0.0000 0.0000 0.0000 
             0.5      20         0.0000 0.0063 0.0063 0.0003 0.0001 0.0002 
                      40              . 0.0061 0.0061 0.0002 0.0001 0.0001 
                      100             . 0.0030 0.0030 0.0001 0.0000 0.0000 
             0.85     20         0.0070 0.0149 0.0079 0.0006 0.0005 0.0005 
                      40              . 0.0162 0.0092 0.0005 0.0003 0.0004 
                      100             . 0.0107 0.0037 0.0001 0.0001 0.0001 
 
    UB       0.15     20         0.1000 0.0998 -.0002 0.0014 0.0010 0.0010 
                      40              . 0.1008 0.0008 0.0010 0.0006 0.0006 
                      100             . 0.1004 0.0004 0.0003 0.0002 0.0002 
             0.5      20         0.0900 0.0804 -.0096 0.0015 0.0016 0.0017 
                      40              . 0.0831 -.0069 0.0009 0.0009 0.0009 
                      100             . 0.0874 -.0026 0.0003 0.0003 0.0003 
             0.85     20         0.0340 0.0268 -.0072 0.0010 0.0009 0.0009 
                      40              . 0.0304 -.0036 0.0007 0.0006 0.0006 
                      100             . 0.0344 0.0004 0.0002 0.0002 0.0002 
    _______________________________________________________________ 
        
 

Notes:Marginals: πΤ = .20 , πC= .10;    P(YT=i,YC=j): π00= .79 , π01= .01,  π10= .11 , π11= .09; Τotal 
N=600 (for C=20, 40), N=300 (for C=100);  1,000 simulations per scenario. 
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Table 3.   Bias, variance and MSE for Scenario #5 (high TEH + marginals near 0.5). 

 
PROPERTY 

     θ        ICC    # Clusters   ( )θΕ   ˆ( )θΕ      ˆ( )θ θΕ −  ˆˆ( ( ))V θΕ  ( )ˆV θ  MSE 

    _______________________________________________________________ 
    
     LB     0.15      20         0.0218 0.0377 0.0159 0.0021 0.0014 0.0017 
                      40              . 0.0334 0.0116 0.0014 0.0010 0.0011 
                      100             . 0.0266 0.0049 0.0004 0.0004 0.0004 
             0.5      20         0.1775 0.1891 0.0116 0.0068 0.0066 0.0068 
                      40              . 0.1863 0.0088 0.0039 0.0039 0.0040 
                      100             . 0.1815 0.0040 0.0014 0.0015 0.0015 
             0.85     20         0.3333 0.3447 0.0114 0.0106 0.0112 0.0114 
                      40              . 0.3434 0.0102 0.0058 0.0060 0.0061 
                      100             . 0.3382 0.0050 0.0022 0.0021 0.0022 
 
     UB      0.15     20         0.4425 0.4284 -.0141 0.0022 0.0021 0.0023 
                      40              . 0.4248 -.0177 0.0015 0.0013 0.0016 
                      100             . 0.4365 -.0060 0.0005 0.0004 0.0005 
             0.5      20         0.4250 0.4084 -.0166 0.0063 0.0062 0.0065 
                      40              . 0.4082 -.0168 0.0035 0.0035 0.0038 
                      100             . 0.4192 -.0058 0.0013 0.0013 0.0014 
             0.85     20         0.4075 0.3954 -.0121 0.0103 0.0105 0.0106 
                      40              . 0.3930 -.0145 0.0056 0.0054 0.0056 
                      100             . 0.4047 -.0028 0.0021 0.0019 0.0019 
    _______________________________________________________________ 
      

Notes: Marginals:   πΤ =.55, πC=.45;      P(YT=i, YC=j):  π00= .05 , π01= .40,  π10= .50, π11= .05 
 Τοtal N=600 (for C=20, 40), N=300 (for C=100);  1000 simulations per scenario. 
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Table 4. CI width and coverage of bounds on π01 for scenario 1: Low heterogeneity and 
marginals near zero. 
                             Simultaneous 
       Lower Bound(LB)       Upper Bound(UB)       Lower, Upper 
 

ICC #C/#U  Meth   True L95 U95 W  Cov   True L95 U95  W Cov    W  Cov Cπ01  

 
.15 20/30  AGM   .000 .00 .02 .02 1.0   .15 .07 .22 .15 .90   .22 .92 1.0 
           MAGM  .000 .00 .02 .02 1.0   .10 .03 .17 .15 .97   .17 .97 1.0 
 
    40/15  AGM   .000 .00 .02 .02 1.0   .15 .09 .21 .12 .93   .21 .95 1.0 
           MAGM  .000 .00 .02 .02 1.0   .10 .04 .16 .12 .97   .16 .98 1.0 
 
   100/30  AGM   .000 .00 .01 .01 1.0   .15 .11 .18 .07 .94   .18 .96 1.0 
           MAGM  .000 .00 .01 .01 1.0   .10 .07 .13 .07 .98   .13 .99 1.0 
 
.50 20/30  AGM   .000 .00 .03 .03 1.0   .09 .02 .16 .14 .88   .16 .89 1.0 
           MAGM  .000 .00 .03 .03 .99   .09 .01 .15 .14 .86   .15 .87 1.0 
 
    40/15  AGM   .000 .00 .03 .03 1.0   .09 .03 .15 .12 .91   .15 .91 1.0 
           MAGM  .000 .00 .03 .03 1.0   .09 .03 .14 .11 .89   .14 .89 1.0 
 
   100/30  AGM   .000 .00 .02 .02 1.0   .09 .06 .12 .07 .94   .12 .95 1.0 
           MAGM  .000 .00 .02 .02 1.0   .09 .05 .12 .07 .93   .12 .94 1.0 
 
.85 20/30  AGM   .007 .00 .05 .05 .87   .03 .00 .08 .08 .76   .08 .76 .92 
           MAGM  .007 .00 .05 .05 .87   .03 .00 .08 .08 .75   .08 .75 .92 
 
    40/15  AGM   .007 .00 .05 .05 .96   .03 .00 .08 .08 .89   .08 .89 .98 
           MAGM  .007 .00 .05 .05 .96   .03 .00 .08 .08 .89   .08 .89 .98 
 
   100/30  AGM   .007 .00 .03 .03 .96   .03 .01 .06 .06 .92   .06 .93 1.0 
           MAGM  .007 .00 .03 .03 .96   .03 .01 .06 .06 .92   .06 .93 1.0 
      
__________________________________________________________________ 
Legend: Table values are means over 1000 simulations, except for columns labeled ‘True’ values 
ICC= Dirichlet multinomial correlation;  #C= number of clusters, #U= number of units per cluster 
AGM=Equation 2.2; MAGM=Equation 2.6;  W=width of 95% CI= U95-L95;  Cov=coverage;  
Simultaneous: coverage of both Lb and UB using L95 of LB, U95 of UB; Cπ01: coverage of π01  using 
L95 of LB, U95 of UB 
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Table 5. CI width and coverage of bounds on π01 for scenario 5: High heterogeneity and 
marginals near 0.50. 
             
                                                              Simultaneous 
                                                                           
                  Lower Bound(LB)        Upper Bound(UB)       Lower, Upper 
 

ICC #C/#U  Meth   True L95 U95 W  Cov   True L95 U95  W Cov    W  Cov Cπ01  

 
.15    20/30  AGM   .022 .00 .12 .12 .99   .44 .35 .53 .18 .93   .53 .94 1.0 
           MAGM  .022 .00 .12 .12 .99   .44 .34 .52 .18 .92   .52 .92 1.0 
 
    40/15  AGM   .022 .00 .11 .11 .98   .44 .36 .51 .15 .95   .51 .94 1.0 
           MAGM  .022 .00 .11 .11 .98   .44 .35 .50 .15 .94   .50 .92 1.0 
 
   100/30  AGM   .022 .00 .07 .06 .98   .44 .40 .48 .08 .94   .48 .94 1.0 
           MAGM  .022 .00 .07 .06 .98   .44 .39 .48 .08 .94   .48 .93 1.0 
 
.50 20/30  AGM   .178 .04 .35 .31 .93   .43 .26 .57 .31 .93   .53 .93 .97 
           MAGM  .178 .04 .35 .31 .93   .43 .25 .56 .31 .92   .52 .92 .97 
 
    40/15  AGM   .178 .07 .31 .24 .95   .43 .30 .53 .23 .93   .46 .93 .98 
           MAGM  .178 .07 .31 .24 .95   .43 .29 .52 .23 .93   .46 .92 .98 
 
   100/30  AGM   .178 .11 .25 .15 .94   .43 .35 .49 .14 .95   .38 .94 1.0 
           MAGM  .178 .11 .25 .15 .94   .43 .35 .49 .14 .95   .38 .94 1.0 
 
.85 20/30  AGM   .333 .14 .55 .40 .93   .41 .20 .60 .40 .92   .45 .92 .95 
           MAGM  .333 .14 .55 .40 .93   .41 .20 .59 .40 .92   .45 .92 .94 
 
    40/15  AGM   .333 .19 .49 .30 .95   .41 .25 .54 .29 .93   .35 .93 .96 
           MAGM  .333 .19 .49 .30 .95   .41 .25 .54 .29 .93   .35 .92 .95 
 
   100/30  AGM   .333 .25 .43 .18 .95   .41 .31 .50 .18 .96   .25 .95 .98 
           MAGM  .333 .25 .43 .18 .95   .41 .31 .50 .18 .96   .25 .95 .98 
__________________________________________________________________ 
Legend: Table values are means over 1000 simulations, except for columns labeled ‘True’ values 
ICC= Dirichlet multinomial correlation;  #C= number of clusters, #U= number of units per cluster 
AGM=Equation 2.2; MAGM=Equation 2.6;  W=width of 95% CI= U95-L95;  Cov=coverage;  
Simultaneous: coverage of both Lb and UB using L95 of LB, U95 of UB; Cπ01: coverage of π01  using 
L95 of LB, U95 of UB 
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intervals for the individual bounds, the 
simultaneous bounds and for π01.. 

The effect of ICC on confidence interval 
widths is more dramatic in the case where the 
marginal success probabilities are closer to 0.5. 
In this case, when there is high heterogeneity 
(π01=0.4), 95% CI widths for π01  are reduced 
from around 0.5 (at ICC=0.15) to as low as 0.3 
(at ICC = 0.8), and a similar reduction in width 
(from roughly 0.4 to 0.2) is seen in the low 
heterogeneity (π01=0.01). This is important 
because CI widths of more than .20 or so are 
unlikely to be very useful. 

Although nominal or near-nominal 
coverage of the true bounds was attained for 
most of the scenarios considered, the estimators 
did not give sufficient coverage of either the 
individual bounds or the simultaneous bounds 
with the combination of very high ICC and 
small number of clusters (20 or less) when using 
the fixed total sample size of 600. In results not 
presented, it was found that using less than 20 
clusters (specifically, 10) gave very poor 
coverage in most scenarios. Creating a 
confidence interval estimator which directly 
takes into account the number of clusters and the 
ICC might greatly improve the coverage in these 
outlying situations. 

These methods assume that the observed 
data consist of clusters (or blocks) that are either 
natural or can be created post-hoc. Post-hoc 
clusters can be created by first predicting the 
observed outcome on either T or C using all 
available baseline covariables, excluding 
treatment group, and then grouping patients by 
percentiles of their predicted probability of 
success. In order to be able to apply these 
methods and obtain appropriately narrow 
confidence intervals on bound estimators, 
studies would best collect data on as many 
baseline covariables as feasible. SAS macros 
will soon be available to calculate the bound 
estimators and confidence intervals. 

Confidence intervals for the treatment 
risk could be used in several ways in practice. 
First is the case where the lower confidence 
limit on treatment risk is zero, and the interval 
width is small. Being able to conclude that the 
new intervention is expected to be successful for 
a certain proportion of the existing treatment 
failures, but not likely to change any of the 

existing treatment successes, seems ideal. But a 
non-zero upper bound estimate would imply that 
the treatment risk may be non-zero, and this may 
provoke interest, concern and perhaps more 
research. Second, if the lower estimated 
confidence limit was above zero, non-zero 
treatment risk would be concluded, and 
researchers would best search for patient subsets 
that would be better off with the standard 
treatment. Researchers for a new drug or 
treatment would likely be more satisfied with an 
intervention that had very low probability of 
failing in patients already expected or known to 
have success on the standard treatment.  

For individual decision-making, the 
confidence intervals on treatment risk might be 
useful in some situations. An individual with no 
experience with either intervention might well 
choose the one with the largest observed 
marginal success, regardless of the estimated 
bounds on the treatment risk. On the other hand, 
if it was believed that the treatment risk was 
high, an individual with known or supposed 
success on the control might be hesitant to 
switch to an intervention with greater marginal 
success, even with fewer expected side effects. 
The gamble would be more likely if the 
treatment risk was thought to be low. In future 
work, study of the methods of using covariate 
information to help predict an individual’s 
underlying category is planned. 

The Dirichlet multinomial (DMN) was 
found to be a useful model for assessing the 
statistical properties of estimators for bounds on 
treatment effect heterogeneity because the ICC 
can be directly specified and because of the 
natural clumping of the data with higher ICC. 
One potential limitation of the DMN for this 
work is that the covariance structure is based on 
the underlying proportion of individuals in each 
category, and the corresponding structure of the 
intraclass between-category correlations may not 
be intuitive for some real situations. However, 
there is no reason to believe that an underlying 
model, allowing full specification of the 
covariance between the four categories of 
interest, would yield substantially different 
property assessment results. Because the 
parameters of interest are non-estimable (only 
one of two potential outcomes is observed for 
each unit or individual), without distributional 
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assumptions, at best bounds may be put on the 
parameters of interest. 
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