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Variance Estimation and Construction of Confidence Intervals for GEE Estimator 
 

                                 Shenghai Zhang            Mary E. Thompson 
     Centre for Infectious Disease Prevention and Control    Department of Statistics & Actuarial Sciences 
                   Public Health Agency of Canada                                University of Waterloo 
 
 
The sandwich estimator, also known as the robust covariance matrix estimator, has achieved increasing 
use in the statistical literature as well as with the growing popularity of generalized estimating equations 
(GEE). A modified sandwich variance estimator is proposed, and its consistency and efficiency are 
studied. It is compared with other variance estimators, such as a model based estimator, the sandwich 
estimator and a corrected sandwich estimator. Confidence intervals for regression parameters based on 
these estimators are discussed. Simulation studies using clustered data to compare the performance of 
variance estimators are reported.  
 
Key words: Generalized estimating equation, sandwich estimator, bias corrected estimator, variance-
covariance matrix 
 
 

Introduction 
 

Once the estimators of regression parameters are 
obtained from a generalized estimating equation 
(GEE) (see Diggle, Liang & Zeger,1994; Liang 
& Zeger,1986), one needs the variance estimator 
to conduct inferences about the parameters. The 
sandwich estimator, also known as the robust 
covariance matrix estimator, has been used to 
achieve this goal. Its virtue is that it provides 
consistent estimates of the covariance matrix for 
parameter estimates even if the correlation 
structure in the parametric model is mis-
specified. However, the properties of the 
sandwich method, other than consistency, had 
been little discussed until Kauermann and 
Carroll (2001). Further discussion about the 
properties will be provided, as well as a new 
variance estimator. This will be compared with 
other variance estimators: (a) a model based 
estimator,  (b) the sandwich estimator, and (c) a 
corrected sandwich estimator. 
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Estimation of )cov( iY  will be discussed 

first, where T
imii yyY ),,( 1 �=

 

is a vector of 

repeated measurements taken on the i th  
subject; associated with each measurement ijy  

is a vector of covariates T
ijpijij xxx ),,( 1 �=  

,1( mj ≤≤  )1 ni ≤≤ .  The mean of the 

marginal distribution of ijy  is denoted by ijµ . It 

is assumed that iY  and kY  are independent 

vectors for all ki ≠ .  A bias reduced variance 
estimator will be provided next, and its 
consistency and efficiency will be discussed. 
Also, methods of constructing confidence 
intervals based on the variance estimators will 
be discussed.  The simulation studies using 
clustered data to compare the performance of 
variance estimators will be reported. 
 
Estimating Covariance 
 The main parameter of interest 

is T
p ),,( 1 βββ �= , where β , covariates  ijx  

and the mean ijµ  of the marginal distribution 

are connected by a link    function (.).h  The 

variance )()var( 1
ijij vy µφ −= , where (.)v  is a 

known function, and where φ  is a dispersion 
scalar that is either unknown or a known 
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constant. Let )(αR  be a mm×  symmetric 
matrix which is a ‘working’ correlation matrix. 
The estimation of the nuisance parameter α  
will not be discussed  and will be assumed to be 
known. The results could be generalized to the 
estimated α̂  of the α . Let    
  

T
ij ijxη β= . 

Then   
 

)( ijij h ηµ = , 

 
and  

1( , , ) ;T
i i imX x x= �  

 
))(( iji hdiagA η′= ; 

 
)))((( iji hvdiag η=Γ                 

   (1) 
 

are matrices with order pm× , mm×   and 
mm×  respectively. It is well known that the 

general estimating function is defined as the 
following (Liang & Zeger, 1986): 
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 iV1−φ  was used to replace the true 

covariance )cov( iY  in the optimal estimating 

function linear in iS .  Because )cov( iY  is 

usually unknown, the estimation of )cov( iY is 

first discussed. Typically, the residual estimator 
T

iiii YY )ˆ)(ˆ( µµ −− is used to estimate )cov( iY , 

where )ˆ,,ˆ(ˆ 1 imii µµµ �=  is the vector of fitted 

values based on the estimated parameters GEEβ̂  

obtained by solving equation 0),( =αβng .  

Because the fitted values tend to be closer to the 
observed values than the true values are, the 
residuals tend to be too small. Therefore, 

)cov( iY  tends to be underestimated by this 

method. To reduce the bias in general, another 
estimator of )cov( iY  will be proposed. 

Considering a first-order Taylor series 

expansion of )ˆ(ˆ GEEii βµµ =
 

at the true 

parameter 0β , one has the following 

expressions:  
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Based on an expansion for 0
ˆ ββ −GEE  

(see 

Zhang , 2003),  
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and  
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 ),( αβf  is used to denote the value of a 

function f at ),( αβ . For example,  
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Taking expectation on both sides of (4), under 
certain integral conditions, 
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where 

T
inkkki DgDVh 1

0,
1 ][][ −−= � , 

                 (7)                                                                                                                
 
for nki ,,1, �= , and  iI   is an identity matrix 

of the  same dimension as that of iih .  An alter-

native estimator for )cov( iY  was proposed by 

Mancl and DeRouen (2001) that is intended to 
compensate for the bias  of the residual 

estimator in hypothesis testing: )cov( iY could 

be estimated by  
 

1111 )ˆ(]ˆ[ˆ)ˆ( −−−− −− iii
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(8) 

 
under the assumption that  
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is negligible. Let ),ˆ(ˆ αβGEEiiii hh =  and 

)ˆ(ˆ
GEEii SS β= . It is hard to tell whether (8) is a 

good estimator, because the assumption is not 
always reasonable. If R(α) correctly specifies the 
correlation structure, the expectation of the 
estimator defined by (8) has the following 
expression: 
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and the estimator is biased upwards with order 

)( 1−nO . This makes it more conservative than 
the residual estimation. For the residual 
estimator of )cov( iY , 
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Because  
 

T
ini DgDn )]([)],()[( 0

1
00,0

1 βαββ −−
�  

                         
is positively definite, the residual estimator 
appears to be biased downward with order 

)( 1−nO . 
          If the parameter values were known, one 
could use the following covariance estimator of 
the )cov( iY :  
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The notation )(v̂co iY  in (10) means an 

estimation of the )cov( iY . In this case, the first 

order asymptotic bias disappears, because  
 

)()cov(])(v̂[co 2

3−
+=Ε nOYY ici . 

 
Therefore, if the covariance estimator (10) was 
able to be used, the first order bias reduction 
would hold even if the correlation structure were 
not correctly specified. In practice, plug-in 
estimates are proposed 
 

),ˆ(ˆ αβGEEikik hh =  

 
and  
 

)ˆ(ˆ GEEii βµµ =  

 
to get ciY )(v̂co .  

         If there is a common correlation structure 
)()()( ii YcorrRR == αα , observations are 

pooled across different clusters to estimate 
)(αR  by 
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where ciY )(v̂co  and iΓ  are the same as before.  

The estimator R̂  is similar to Liang and Zeger’s 
suggestion for estimation of correlation structure 
(see Zeger & Liang, 1992; Zhao & Prentice, 

1990; Fahrmeir & Tutz, 2001). Once estimation 
of the correlation matrix R  is obtained, then, 
the )cov( iY   may be estimated by another way 

(also see Pan, 2001): 
 

.])(v̂co
1

[

ˆ)(v̂co

2

1

2

1

1

2

1

2

1

2

1

2

1
1

ikck

n

k
ki

iinewi

Y
n

RY

ΓΓΓΓ=

ΓΓ=

−

=

−

−

∑

φ
 

                                                                (12) 
 

The newiY )(v̂co  is a consistent estimator of  

)cov( iY  . 

If there is not a common correlation 
structure )(αR  across all clusters, one may 
classify clusters into several groups such that all 
subjects in the same group have the same 
correlation structure, and then apply (12) to 
obtain a correlation matrix for that group.  
 
Estimating Covariance Matrix Of GEE 
Estimator 
 It is known that the covariance matrix of 

the estimator GEEβ̂  has the following 

approximation:  
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If the  )(αR   is correctly specified, that is, if  
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1
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then the first order approximation to )ˆcov( GEEβ  

is ),(
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11

0
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ngn � .  So, one can estimate 

)ˆcov( GEEβ   by  
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                                                                       (14) 
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The estimate  φ̂   may be obtained by  
 

i
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where )ˆ(ˆ 2
1

iiii YZ µ−Γ= −
. It was suggested 

(see Chaganty, 1997) that  the  φ̂ can be replaced 

by  )/(ˆˆ pnmnmbc −= φφ  if a bias-corrected 

estimate for φ  is preferable.  However, the 
correlation structure could be mis-specified,  that 
is  
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because the correlation matrix may not be 
known in practice. In this case, it is well known 

that the variance )ˆcov( GEEβ  can be estimated 

consistently by the sandwich formula  
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where T
imimiii yy ),,( 11 µµε −−= � are the 

residuals. As previously discussed, estimating  

)cov( iY  by fitted 
T

iiεε ˆˆ  (
),ˆ(

ˆ
αβεε

GEE
ii = ) could 

be biased downward. Thus, the sandwich 

estimate sandGEE )ˆ(v̂co β  will be biased 

downward for estimating ).ˆcov( GEEβ  Recently, 

the bias corrected sandwich estimators have  
been provided by  Mancl  and DeRouen (2001) 
and Kauermann and Carroll (2001), where the 

estimation of )ˆcov( GEEβ  is obtained by 

replacing  
T

iiεε ˆˆ  by  ciY )(v̂co  defined by   (10),  

that is  
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(16) 
 
Finally, if newiY )(v̂co  is used, a more efficient 

sandwich estimator could be obtained:  
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Consider the following:  
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where nΩ is nonnegative definite, nδ has higher 

order than nΩ and the operator “ vec ’’  is used 

to  stack the columns of a matrix together to 
obtain a vector.  
 

Proof: Because GEEβ̂  is n -consistent, expand 
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Then, the following expansions are obtained: 
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By Theorem 7.16 in Schott (1997), 
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The covariance matrices of  
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Notice that )( T
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independent and free of n . It is clear that ikB ,  

is bounded when ∞→n . Hence, under some 
regularity conditions (see details in Zhang, 
2003), there is the following result: 
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as ∞→n .  Finally,  
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is a non-negative definite matrix and the nδ  has 

higher order of convergence to zero than nΩ .  

Thus, it has been proven that  
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asymptotically. The proof of the Theorem is 
completed.  
            In summary, the estimator of the 
covariance matrix of regression parameters 
could gain some efficiency. Also it is expected 
that the method is more plausible for small 
sample sizes n  than other estimators of the 
covariance.  
              For construction of confidence 

intervals, inference about βTL  is of interest, 
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Based on (20), a symmetric confidence interval 
is given by  
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GEELθ β=

� �

. 

   

 Based on the estimation of the 
covariance matrix (17), if the ( )iR α  is mis-

specified, the variance var( )T
GEEL β
�

 can be 

estimated consistently by the sandwich formula 
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�
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where the iε ’s are the same as before. Then, 

based on (22), the symmetric confidence interval 
is given by  
 

( )q sandzθ σ±
�

�

. 

(23) 
 

It follows from the discussion that the sandwich 
estimate appears to be biased downward. 
Therefore, the bias corrected sandwich 

estimation of  ˆvar( )T
GEEL β   can be obtained by 

replacing T
i iε ε  by cov( )i cY  defined by (10). 

Thus, the bias reduced sandwich estimate of the 

variance var( )T
GEEL β
�

 is obtained by 
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Corresponding to this estimate, another 
symmetric confidence interval is obtained 
 

( )
uq sandzθ σ±

�

�

. 

(25) 
 
 

2 var( )

cov( ) .

T
new GEE new

T
GEE new

L

L L

σ β
β
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�

��

�
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(26) 
 

Then, a confidence interval is obtained: 
 

( )q newzθ σ±
�

�

. 

(27) 
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Simulation Study and Discussions 
 Suppose that ijy  has marginally a 

negative binomial distribution, that is, 
),1(~ ijij NBy µ , i =1,...,n and j =1,...,m. The 

link function is log, i.e. log( ) ,T
ij ijxµ β=  where 

0 1 2( , , )Tβ β β β=  and   1 2(1, , )T
ij ij ijx x x=  

 

are 

the covariates: )1,0(~2 Nxij and 1ijx  are 

constants. The correlation structure among  

1 , ,i imy y�  is assumed to be given as an AR(1) 

with ρ =0.8. Now, the procedures developed in 
the last two sections are applied to the model 

( )
T

ijx

ijy e
βΕ = . The simulation study is 

completed for the number n of clusters as 10, 20, 
30, � , 90, 100 respectively. 
             A comparison of the performance of the 
estimators of the asymptotic variances is 

required. The estimators, 2
mod ( )el GEEσ β

�

�

, 
2 ( )sand GEEσ β

�

�

, 2 ( )
usand GEEσ β

�

�

, and 2 ( )new GEEσ β
�

�

, 

are defined by taking the vector L in an 
appropriate form in (20), (22), (24) and (26).  
Each of these variance estimators is related to a 
specified correlation structure ( )iR α . 

 First, the situation is observed, where 
the ( )iR α  in the estimators of variances are 

correctly specified to a constant. Figure 1 shows 

the comparisons of 2
mod 1( )elσ β

�

�

, 2
1( )sandσ β
�

�

, 
2

1( )
usandσ β

�

�

, and 2
1( )newσ β
�

�

  and the true variance 

(empirical variance) 1var( )β
�

 over 1000 

simulations, when the regression parameters are 
estimated by the GEE estimator. From Figure 1, 

it is found that the estimator 2
newσ�  of the 

variance is better than other three, since the 
biases are smaller, even for the clusters with 
small sample size. 
 The curves shown in Figure 1 are 
consistent with the property that all four 
estimators are asymptotically unbiased. Notice 
that, in all these plots, the sandwich estimator 

2
1( )sandσ β
�

�

 has the biggest bias when the sample 

size is small. It corresponds to the fact that the 
sandwich estimator would be expected to 

underestimate the variance of 1β
�

. It is not 

surprising that the model based estimator 
2
mod 1( )elσ β

�

�

 performs better than the sandwich 

estimator because the model is correct (the 
( )iR α  is correctly specified except for the 

constant α).  
               When the model is mis-specified, for 
example, if  ( )iR α  is an identity matrix, the 

model based estimator 2
mod 1( )elσ β

�

�

  is the worst 

one.  Figure 2 shows that (i) estimators     
2 ( )sand GEEσ β

�

�

, 2 ( )
usand GEEσ β

�

�

, and 2 ( )new GEEσ β
�

�

 

are asymptotically unbiased; (ii) the 
2
mod ( )el GEEσ β

�

�

 is significantly biased;  (iii) the 

new estimator 2
1( )newσ β
�

�

 of the variance is the 

best one to estimate the 1var( )β
�

.  

 Now, the efficiency of the variance 
estimators is compared. For Figure 3,   the study 
is based on 1000 simulations for each number of 
clusters being 10, 20, �  , 100 respectively. The 
variances are calculated by  
 

2 2var( )estimator estimatorsσ =�

 , 

 

where 2
estimators  is sample variance of values of  

2
estimatorσ�   

 
which is obtained from the  formula in 

the last section for each simulation. The 
estimator can be “model”, “sand”, “sand u  ” and 

“new” respectively. Figure 3 illustrates that the 
corrected sandwich variance estimator 

2
1( )sandσ β
�

�

  has the biggest
 
standard error even 

for large sample size. 
 When the correlation structure is 
correctly specified, the model based estimator 

2
mod 1( )elσ β

�

�

 could be better than the corrected 

sandwich variance estimator, especially, when 
the sample size is small. When the number of 
clusters is greater than 30, the simulation shows 
that new variance estimator is the most stable 
one. It follows from Figure 4 that these facts still 
hold when the correlation structure is mis-
specified in the variance estimators in the 
manner of the example. Of course, the model 
based variance estimator should not be used in 
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this case because it is biased, although its 
variance is the smallest one. If the sample size is 
small, the sandwich estimator performs well. 
 With variance estimators at hand, 
confidence intervals could be constructed with 
different variance estimators. It will be seen that 
the confidence intervals obtained by the new 
variance estimator perform better than the other 
three   in   terms   of   coverage   probability. The 
problem of testing a null hypothesis 0 0:H β ϑ∈  

will be considered.  Essentially, confidence 
intervals are closely related with tests. The aim 
is to compare CI’s which are related to the 
various estimators introduced in the third 
sections of this article.  In the simulation study, 
the CI for 1β  corresponds to a test that 

0 1 10:H β β= . The test statistic could be  

1 10 1( ) / ( )new newT β β σ β= −
� �

�

 or other ones 

obtained by different variance estimators. It 
follows from Figure 5 that the coverage 
percentages with the new variance estimator are 
bigger; therefore, the confidence interval based 
on the new variance estimator is accurate for 
smaller sample sizes than other ones with the 
variance estimators ‘model’, ‘sand’ or ‘sand u ’ . 

 It appears to be better to use the new 
variance estimator to construct confidence 
intervals, especially when the sample size is 
small.  In the example of a mis-specified 
correlation structure in the variance estimators, 
the new and adjusted sandwich estimators both 
give accurate confidence intervals (see Figure 
6). Again, the model based variance estimator 
should not be used in this case. 
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