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Variance Estimation and Construction of Confidence Intervals for GEE Estimator

Shenghai Zhang

Centre for Infectious Disease Prevention and Control

Public Health Agency of Canada

Mary E. Thompson
Department of Statistics & Actuarial Sciences
University of Waterloo

The sandwich estimator, also known as the robust covariance matrix estimator, has achieved increasing
use in the statistical literature as well as with the growing popularity of generalized estimating equations
(GEE). A modified sandwich variance estimator is proposed, and its consistency and efficiency are
studied. It is compared with other variance estimators, such as a model based estimator, the sandwich
estimator and a corrected sandwich estimator. Confidence intervals for regression parameters based on
these estimators are discussed. Simulation studies using clustered data to compare the performance of

variance estimators are reported.

Key words: Generalized estimating equation, sandwich estimator, bias corrected estimator, variance-

covariance matrix

Introduction

Once the estimators of regression parameters are
obtained from a generalized estimating equation
(GEE) (see Diggle, Liang & Zeger,1994; Liang
& Zeger,1986), one needs the variance estimator
to conduct inferences about the parameters. The
sandwich estimator, also known as the robust
covariance matrix estimator, has been used to
achieve this goal. Its virtue is that it provides
consistent estimates of the covariance matrix for
parameter estimates even if the correlation
structure in the parametric model is mis-
specified. However, the properties of the
sandwich method, other than consistency, had
been little discussed until Kauermann and
Carroll (2001). Further discussion about the
properties will be provided, as well as a new
variance estimator. This will be compared with
other variance estimators: (a) a model based
estimator, (b) the sandwich estimator, and (c) a
corrected sandwich estimator.

Dr. Shenghai Zhang is Senior Biostatistician.
Email:  s.zhang@rogers.com. Mary  E.
Thompson is Professor of Statistics. The authors
thank Professors J. F. Lawless, V. P.
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Waterloo for their valuable suggestions.
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Estimation of cov(Y;) will be discussed

first, where Y, = (y,,,---,y,.)" is a vector of

repeated measurements taken on the ith
subject; associated with each measurement y;

N
ijp
The mean of the

is a vector of covariates X; = (X, "+, X
@<j<m 1<i<n).
marginal distribution of 'y, is denoted by g . It

is assumed that Y

. and Y, are independent
vectors for all i k. A bias reduced variance
estimator will be provided next, and its
consistency and efficiency will be discussed.
Also, methods of constructing confidence
intervals based on the variance estimators will
be discussed. The simulation studies using
clustered data to compare the performance of

variance estimators will be reported.

Estimating Covariance
The main parameter of interest

is B= (B, B,)", where 5, covariates X;
and the mean g of the marginal distribution
function h(.). The
variance var(y;) = ¢_1V(ﬂij), where Vv(.) is a

are connected by a link

known function, and where ¢ is a dispersion
scalar that is either unknown or a known
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constant. Let R(a) be a mxm symmetric

matrix which is a ‘working’ correlation matrix.
The estimation of the nuisance parameter «
will not be discussed and will be assumed to be
known. The results could be generalized to the

estimated & of the « . Let

;= X.T:B
Then
i =h(ny),

and

Xi=(Xg ' %)

A= diag(h'(ﬂij )

I = diag(v(h(7; )))

oy

are matrices with order mx p, mxm and

mxm respectively. It is well known that the
general estimating function is defined as the
following (Liang & Zeger, 1986):

0.(8.0) == > DIMI'S,
@
where

V,=V(.2) =T 2R (@2 ;

D, :Di(ﬂ):_aalBSIT =AX;;

and

§ =Y = (h(x;" B), -+ h(x;" B))
=(Sy . Sa)"-

¢V was used to replace the true

covariance cov(Y;) in the optimal estimating

function linear in S. Because cov(Y;) is
usually unknown, the estimation of cov(Y;) is
first discussed. Typically, the residual estimator
(Y — )Y, — i2,)" is used to estimate cov(Y,),
where i, = (iL,,,--+, iL,.,) is the vector of fitted
values based on the estimated parameters ,BGEE

obtained by solving equation g, (8,2)=0.

Because the fitted values tend to be closer to the
observed values than the true values are, the
residuals tend to be too small. Therefore,

cov(Y;) tends to be underestimated by this
method. To reduce the bias in general, another
estimator of cov(Y;) will be proposed.

Considering a first-order Taylor series
expansion of [, =4, (,3GEE) at the true
parameter #,, one has the following
expressions:

Sl(BGEE)EYi_ﬂi

=Y - _% R _RBY_ -
=Y, - u;(B,) aﬂT (Beee — Bo) Op(n)
=S (8) = D, (Bo)(Boge — By) O, (7).

3)

Based on an expansion for ,3GEE— B, (see
Zhang , 2003),

(Y| _ﬂi )(Y| _ﬂi )T = S (,50)[3 (;Bo)]T
_3 (;Bo)Hi (;Bo’ 05) _[Hi (;Bo’ a)]T [S (;Bo)]T
+[H, (B, ) Hi (B, )

3
+0,(n ?)
(4)

where
H, (8, )

12 _ . _
:_ZSkTVk 1Dk(gn,o) 1DiT
N

(Bo. )

©)
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and

1S 1 a
gn,O(ﬂ’“):EZDi V.17 D (Bout) "
(6)

f‘(ﬁ'a) is used to denote the value of a

function f at (£, ) . For example,
1& AT -1
Eizzl:Di [\/I] Di‘(ﬂo,a)
=3[0, (B)I M (B, 1D (5,

Taking expectation on both sides of (4), under
certain integral conditions,

E[(Y, = 2)(Y; = )"]
={cov(Y,) —n"cov(Y,)h, —nh," cov(Y,)
+n72h," cov(Y,)h,

" ]
+n? > h," cov(Y )Y 4, ) +O(N ?)

k=1,k=#i

:{(Ii - n_lh“T)COV(Yi )(Ii - n_lhi)

" 3
+n7? 3 h" cov(Y )Y 5, +ON ?)

k=1 k=i
where
hki = [Vk]_l Dk[gn,o]_l DiT '
(7
for i,k=1,---,n,and |, isan identity matrix

of the same dimension as that of h.. An alter-

native estimator for cov(Y,) was proposed by
Mancl and DeRouen (2001) that is intended to
compensate for the bias  of the residual

estimator in hypothesis testing: cov(Y;) could
be estimated by

(I, -n?h") ' SIST (1 -n*hy) ™,
©))

under the assumption that

2 3 h," cov(Y,)h,

k=1,k#i

is negligible. Let ﬁ“=h“(ﬁGEE,a) and

é, =S (:8655)- It is hard to tell whether (8) is a

good estimator, because the assumption is not
always reasonable. If R(a) correctly specifies the
correlation structure, the expectation of the
estimator defined by (8) has the following
expression:

cov(Y,)| g.cp +{(1; =0 7*H,T) 0
D[9,,17D, (I, =n*h) ™Y 4.0
3
+0(n 2)
and the estimator is biased upwards with order
O(n™). This makes it more conservative than

the residual estimation. For the residual
estimator of cov(Y;),

EI(Y, -2 )(Y, - it)']
= COV(Yi)‘ (o) — n D, [gn,O]_l DiT

(Bo2) *

3
+0,(n 2)
9)

Because

™D, (B6)[9n0(Bo. @)1 [D; ()]

is positively definite, the residual estimator
appears to be biased downward with order
o(n™).

If the parameter values were known, one
could use the following covariance estimator of
the cov(Y;) :
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cov(Y;), ={(l; - n_lhiiT)_l

Suc(l i n_lhii )_l}{ (Bo.)
(10)

where
S° =Y — )Y, — 1)

-n”’ thiT(Yk — 1, )Y, _ﬂk)T hy.

k=1,k#i

The notation cov(Y;) in (10) means an

estimation of the cov(Y;) . In this case, the first
order asymptotic bias disappears, because

ELco¥(Y,),] = cov(Y,) + O(n 2).

Therefore, if the covariance estimator (10) was
able to be used, the first order bias reduction
would hold even if the correlation structure were
not correctly specified. In practice, plug-in
estimates are proposed

ﬁik = hy (BGEE!“)

and
ﬂi =4 (ﬁAGEE)

to get cov(Y,)..

If there is a common correlation structure
R(a) =R (e) =corr(Y;), observations are
pooled across different clusters to estimate
R(«) by

1

1
I} s cof(Y). ' 2,

R=

S|

n
i=1

(11)

where coV(Y;), and T’ are the same as before.

The estimator R is similar to Liang and Zeger’s
suggestion for estimation of correlation structure
(see Zeger & Liang, 1992; Zhao & Prentice,

1990; Fahrmeir & Tutz, 2001). Once estimation
of the correlation matrix R is obtained, then,
the cov(Y;) may be estimated by another way

(also see Pan, 2001):

1.1
Cov(Yi)new = ¢_11—‘iER1—‘iE
11t 11
=l—‘i2[—z:l—‘k 2 cov(Y,) I, 2]I;2.
N
(12)

The cow(Y,),, is a consistent estimator of
cov(Y;) .

If there is not a common correlation
structure R(er) across all clusters, one may

classify clusters into several groups such that all
subjects in the same group have the same
correlation structure, and then apply (12) to
obtain a correlation matrix for that group.

Estimating Covariance Matrix Of GEE
Estimator
It is known that the covariance matrix of

the estimator ,BGEE has the following
approximation:

Cov(ﬁGEE) =
1 I\ Ty, -1
SAl8,01* 2DV, ov(y)
\/i_1 Di [gn,O]_l}{ (By.)"
(13)

If the R(cx) is correctly specified, that is, if

cov(Y,) = 9" T}2R (@)

then the first order approximation to COV(,@GEE)

is n‘1¢‘1[gnvo]‘1‘(ﬁw). So, one can estimate
coV(Boee) by

Cov(ﬁAGEE ) model — n_lé_l{[gnvo ]_1 (ﬁGEEva)} '
(14)
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The estimate ¢3 may be obtained by

where Z, =l"i_% (Y, —4). 1t was suggested
(see Chaganty, 1997) that the ¢?can be replaced
by q;bc :nmq;/(nm— p) if a bias-corrected

estimate for ¢ is preferable. However, the

correlation structure could be mis-specified, that
is

cov(Y,) # 6T2R (@),

because the correlation matrix may not be
known in practice. In this case, it is well known

that the variance COV(,@GEE) can be estimated
consistently by the sandwich formula

COV(Soee ) sn :{[gn,O]_l

13 - Al s 1

FgDiTVi gV, 1Di[gn,o] ' oe )
(15)

where & = (Y, — iy, " Yim — i) " are  the
residuals. As previously discussed, estimating

cov(Y,) by fitted £&" (& =&/ ) could

(ﬁGEEv
be biased downward. Thus, the sandwich

estimate  COV(fyee)q Will be  biased

downward for estimating cov(ﬁGEE). Recently,

the bias corrected sandwich estimators have
been provided by Mancl and DeRouen (2001)
and Kauermann and Carroll (2001), where the

estimation of COV(,@GEE) is obtained by
replacing £&" by coU(Y,), defined by (10),
that is

Cov(ﬁGEE )sandu = [gn,O]_l
13 1. - . 1=
D3 D"V, co¥(Y,).V, "Dy 60017 5o )
(16)

Finally, if coV(Y,) ., is used, a more efficient
sandwich estimator could be obtained:

00V Boce ) new = L[Gno]™
1 _ ~
FZ:; DiTVi ' COV(Yi)new

1 . -1
Vi Di[gn,O] (Boee @)

A7)
Consider the following:
Theorem:

cov(vec(co¥( Buee ) ana))

— coV(vec(CoU( Bece ) pen)) = 2 = 6,

where € is nonnegative definite, &, has higher

order than €2_and the operator “vec’’ is used

to stack the columns of a matrix together to
obtain a vector.

Proof: Because S is +/n -consistent, expand

Cov(ﬂGEE ) new and COQ(ﬂGEE )sand at (ﬂO ' a)
Then, the following expansions are obtained:

Cov(ﬂGEE ) new

n 1
= {[gn,O]_l n_lzz DiTVi_lriE
i=1

n 1 1
EZFK‘E H,"e.e,"H,T, 2
nia

1o -
L2V, " Di[000] Y g + Op (0 2)

where H, = (I —n~*h,)™". Similarly,
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Coo(ﬂGEE ) sand
.o 1 -
={[9,.] 1_ZZDiTVi 18i
n" iz
3
Ty -1 N — Py

&V, 10,01 Y g0 +Op (N 2)

By Theorem 7.16 in Schott (1997),

vec(coV( Baee ) ang)

12 T
= Fé{AmveC(gl gi )}{ (Bo.@)
(18)

and

VeC(CO\A/(ﬂGEE ) new)
1< 11& B
= _zz{A,nveC{Fiz _Zrk 2H; g,
n" iz N
T 11
g H;I 2Fi2}}{ (Bo.0)
1 n 1 n T
= Fg{An{E; B, vec(e, &, )}}{ (o) !
19)
where
Ai,n = ([gn,o]_1 DI\/I _1) ® ([gn,o]_1 DiVi_l)
and
1 1 1 1
Bk,i = (Fiir‘k_i H i ) ® (EEFk_E H ii ) .
The covariance matrices of

vec(co¥( Bece ) new)

and

vec(coV(Boee ) an)

can be obtained from (19) and (18):

cov(vec(co¥( Boge ) ana))

1 n
~ FE{A'” cov(vec(e &' )A,nT}{ (o)
and

COV(V&(COV(ﬁGEE Jnew))

i=1 k=1

B A}

(Bo.e)

Notice that vec(ge')  (i=1,---,n) are

independent and free of n. It is clear that HBk'i H

is bounded whenn — o, Hence, under some
regularity conditions (see details in Zhang,
2003), there is the following result:

l n
Fé{Bk,i cov(vec(e, & ) Bk,iT}{ (Bor?)
=0(n™),

as N — oo, Finally,

COV(VeC(COO(BGEE )sana))
- COV(VeC(CO\A/(BGEE Jnew))
= %Zn: A, (cov(vec(g ")

-0,(nNM)A,
= (Qn - 5n)

(Bo.@)

(Bya)
where

Q, =203 A, covlvec(ee A,

i=1

is a non-negative definite matrix and the &, has

higher order of convergence to zero than €2 .
Thus, it has been proven that
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cov(vec(co¥( Beee ) ana )

— coV(vec(coV(Bege ) o)) = 0

asymptotically. The proof of the Theorem is
completed.

In summary, the estimator of the
covariance matrix of regression parameters
could gain some efficiency. Also it is expected
that the method is more plausible for small
sample sizes n than other estimators of the
covariance.

For  construction of confidence

intervals, inference about L'/ is of interest,
where L' is a 1xp dimensional contrast

vector of unit length, that is, L'L =1. If the
R(e) is correctly specified, then the first-order

var(L léGEE ) s

¢ L' [9,,0]" L‘ oty - THUS, var(LTﬁeEE) can
be estimated by

of approximation of

o ﬁwdd =Va?(LTBGEE)mode|
1~ o
:E¢ 1I-T[gn,o] 1L (Boge @)
(20)

Based on (20), a symmetric confidence interval
is given by

(‘§i Z,0 o )
(21)
where 7, is the g quantile of the standard

normal distribution and 6 = L' B .

Corresponding to this estimate, another
symmetric confidence interval is obtained

(0 £2,60g,) -
(25)

Based on the estimation of the
covariance matrix (17), if the R () is mis-

specified, the variance var(L'B..) can be
estimated consistently by the sandwich formula

6-;1nd = Va?( L' ;EGEE)sand
1 n
=L [gn,O]_l F{Z DiT\/i_lgi
i=1

gV "D g, 1L

(ﬁGEE &)
(22)

where the & ’s are the same as before. Then,

based on (22), the symmetric confidence interval
is given by

(23)
It follows from the discussion that the sandwich

estimate appears to be biased downward.
Therefore, the bias corrected sandwich

estimation of Var(LT,BGEE) can be obtained by

replacing £¢&' by cov(Y), defined by (10).
Thus, the bias reduced sandwich estimate of the
variance var(L B, ) is obtained by

6-;1ndu = var( L' BGEE)sandu
~U[g,0] X DV
i=1

cov(¥)V, "D }Hg, 0" L

(ﬁGEE )
(24)

~2 =T
O-new = Var(L ﬂGEE)neW

=L Cov(BGEE)neW L.
(26)

Then, a confidence interval is obtained:

(02,6,
(27)
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Simulation Study and Discussions

Suppose that Y, has marginally a
negative binomial distribution, that s,
Yi ~ NB(L ), i=1,..,nand j =1,.,m The

link function is log, i.e. log(y;) = )gJ.T,B, where
,B:(:Bo’ﬂpﬂz)T and  X; = )§j1’)§j2)T are

the covariates: X;, ~ N(0,))and X, are
constants. The correlation structure among
Vi Yiy 1S assumed to be given as an AR(1)
with p =0.8. Now, the procedures developed in
the last two sections are applied to the model
E(y;) —e%”. The simulation study s

completed for the number n of clusters as 10, 20,
30, ---, 90, 100 respectively.

A comparison of the performance of the
estimators of the asymptotic variances is

~2 3
O oga (Boee) »

O and (Boee) » 6-sandu (Bsee) » and 6-ic-,w(ﬂGEE)'
are defined by taking the wvector L in an
appropriate form in (20), (22), (24) and (26).
Each of these variance estimators is related to a
specified correlation structure R (x) .

First, the situation is observed, where
the R(«) in the estimators of variances are
correctly specified to a constant. Figure 1 shows

the comparisons of 62 ., (B), 6%.4(B.),

required. The estimators,

O g, (,Bl) , and 6'ﬁew(,31) and the true variance

(empirical  variance) Var(,Bl) over 1000

simulations, when the regression parameters are
estimated by the GEE estimator. From Figure 1,

it is found that the estimator &2, of the

variance is better than other three, since the
biases are smaller, even for the clusters with
small sample size.

The curves shown in Figure 1 are
consistent with the property that all four
estimators are asymptotically unbiased. Notice
that, in all these plots, the sandwich estimator

O wrd (,31) has the biggest bias when the sample

size is small. It corresponds to the fact that the
sandwich estimator would be expected to

underestimate the variance ofﬁl. It is not
surprising that the model based estimator
G2 4s(B) performs better than the sandwich
estimator because the model is correct (the
R () is correctly specified except for the
constant «).

When the model is mis-specified, for
example, if R (&) is an identity matrix, the

model based estimator 62, (5,) is the worst
one.  Figure 2 shows that (i) estimators

6-sand(BGEE)' 6-sandu (;BGEE)' and 5-naN(IBGEE)
are asymptotically  unbiased;  (ii) the

G2 oaa (Boge) i significantly biased; (iii) the
new estimator 6'ﬁew(,31) of the variance is the

best one to estimate the var(,Bl) :

Now, the efficiency of the variance
estimators is compared. For Figure 3, the study
is based on 1000 simulations for each number of
clusters being 10, 20, --- , 100 respectively. The
variances are calculated by

2

~ 2
Var(o-estimator) =S estimator !

2
where S° imor
2

O wsimator WhICh is obtained from the formula in
the last section for each simulation. The

estimator can be “model”, “sand”, “sand,, ” and

“new” respectively. Figure 3 illustrates that the
corrected sandwich variance estimator

0 wra (,31) has the biggest standard error even

for large sample size.
When the correlation structure is
correctly specified, the model based estimator

G2 44 (B) could be better than the corrected

sandwich variance estimator, especially, when
the sample size is small. When the number of
clusters is greater than 30, the simulation shows
that new variance estimator is the most stable
one. It follows from Figure 4 that these facts still
hold when the correlation structure is mis-
specified in the variance estimators in the
manner of the example. Of course, the model
based variance estimator should not be used in

is sample variance of values of
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this case because it is biased, although its
variance is the smallest one. If the sample size is
small, the sandwich estimator performs well.
With variance estimators at hand,
confidence intervals could be constructed with
different variance estimators. It will be seen that
the confidence intervals obtained by the new
variance estimator perform better than the other
three in terms of coverage probability. The
problem of testing a null hypothesis H, : B € ¢},

will be considered. Essentially, confidence
intervals are closely related with tests. The aim
is to compare CI’s which are related to the
various estimators introduced in the third
sections of this article. In the simulation study,

the CI for [ corresponds to a test that
H,:8,=8,. The test statistic could be

To=B—By) G, (B) or other ones

obtained by different variance estimators. It
follows from Figure 5 that the coverage
percentages with the new variance estimator are
bigger; therefore, the confidence interval based
on the new variance estimator is accurate for
smaller sample sizes than other ones with the

variance estimators ‘model’, ‘sand’ or ‘sand , * .

It appears to be better to use the new
variance estimator to construct confidence
intervals, especially when the sample size is
small. In the example of a mis-specified
correlation structure in the variance estimators,
the new and adjusted sandwich estimators both
give accurate confidence intervals (see Figure
6). Again, the model based variance estimator
should not be used in this case.
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