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Second-Order Accurate Inference on Simple, Partial, and
Multiple Correlations

Robert J. Boik Ben Haaland
Mathematical Sciences Statistics

Montana State University–Bozeman University of Wisconsin–Madison

This article develops confidence interval procedures for functions of simple, partial, and
squared multiple correlation coefficients. It is assumed that the observed multivariate data
represent a random sample from a distribution that possesses finite moments, but there is no
requirement that the distribution be normal. The coverage error of conventional one-sided
large sample intervals decreases at rate 1/

√
n as n increases, where n is an index of sample

size. The coverage error of the proposed intervals decreases at rate 1/n as n increases. The
results of a simulation study that evaluates the performance of the proposed intervals is
reported and the intervals are illustrated on a real data set.

Key words: bootstrap, confidence intervals, Cornish-Fisher expansion, Edgeworth expansion,
second-order accuracy

Introduction

Accurate inference procedures for sim-
ple, partial, and multiple correlation coeffi-
cients depend on accurate approximations
to the distributions of estimators of these
coefficients. In this article, Edgeworth ex-
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ate analysis, and large sample methods.
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Ph.D. student. His research interests in-
clude multivariate analysis, rates of conver-
gence, and nonparametric techniques.

pansions for these distributions are derived.
The Edgeworth expansions, in turn, are
used to construct confidence intervals that
are more accurate than conventional large
sample intervals.

Denote the p × p sample correlation
matrix based on a random sample of size
N from a p-variate distribution by R and
denote the corresponding population corre-
lation matrix by ∆. The p2 × 1 vectors ob-
tained by stacking the columns of R and
∆ are denoted by r and ρ, and are ob-
tained by applying the vec operator. That

is, r
def
= vec R and ρ

def
= vec ∆. The exact

joint distribution of the components of r,
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284 SECOND-ORDER ACCURATE INFERENCE

when sampling from a multivariate normal
distribution, was derived by Fisher (1962),
but the distribution is very difficult to use
in practice because it is expressed in inte-
gral form unless p = 2. If sample size is suf-
ficiently large, however, then one may sub-
stitute the asymptotic distribution of r, but
with some loss of accuracy.

In this article, the big O (pronounced
oh) notation (Bishop, Fienberg, & Holland,
1975, §14.2) is used to index the magnitude
of a quantity. Let un be a quantity that de-
pends on n = N − rx, where rx is a fixed
constant and N is sample size. Then, un =
O(n−k) if nk|un| is bounded as n → ∞.
Note that if un = O(n−k) and k > 0, then
un converges to zero as n → ∞. Also, the
rate of convergence to zero is faster for large
k than for small k. An approximation to the
distribution of a random variable is said to
be jth-order accurate if the difference be-
tween the approximating cumulative distri-
bution function (cdf) and the exact cdf has
magnitude O(n−j/2). For example, the cdf
of a sample correlation coefficient, rij, is

Frij (t)
def
= P (rij ≤ t). Suppose that F̂rij is

an estimator of Frij . Then, F̂rij is first-order

accurate if |Frij(t)− F̂rij (t)| = O(n−1/2), for
all t.

Pearson and Filon (1898) showed that
the first-order accurate asymptotic joint
distribution of the components of

√
n(r −

ρ), when sampling from a multivariate
normal distribution, is itself multivariate
normal with mean zero and finite covari-
ance matrix. Pearson and Filon also de-
rived expressions for the components of
the asymptotic covariance matrix. A ma-
trix expression for the asymptotic covari-
ance matrix was derived by Nell (1985).
Niki and Konishi (1984) derived the Edge-
worth and Cornish-Fisher expansions for√
n [Z(r) − Z(ρ)] with error only O(n−9/2)

when sampling from a bivariate normal

distribution, where Z is Fisher’s (1921)
Z transformation. If the requirement of
multivariate normality is relaxed, then the
distributions of r and r are substantially
more complicated. Fortunately, the asymp-
totic distribution of

√
n(r − ρ) still is mul-

tivariate normal with mean zero and fi-
nite covariance matrix whenever the par-
ent distribution has finite fourth-order mo-
ments. Expressions for the scalar compo-
nents of the asymptotic covariance matrix
of

√
n(r − ρ) when sampling from non-

normal distributions were derived by Hsu
(1949) and Steiger and Hakstian (1982,
1983). Corresponding matrix expressions
were derived by Browne and Shapiro (1986)
and Neudecker and Wesselman (1990). The
asymptotic bias of r when sampling from
non-normal distributions was obtained by
Boik (1998).

In the bivariate case, Cook (1951) ob-
tained scalar expressions for the moments
of r with error O(n−5/2). These moments
could be used to compute the first three
cumulants of

√
n(r − ρ). The first four cu-

mulants and the corresponding Edgeworth
expansion for the distribution of of

√
n(r−

ρ) were obtained by Nakagawa and Niki
(1992).

Some distributional results for
√
n(r−

ρ) have been obtained under special non-
normal conditions. Neudecker (1996), for
example, obtained a matrix expression for
the asymptotic covariance matrix in the
special case of elliptical parent distribu-
tions. Also, Yuan and Bentler (1999) gave
the asymptotic distribution of correlation
and multiple correlation coefficients when
the p-vector of random variables can be
written as a linear function of zv, where
z is a p-vector of independent components
and v is a scalar that is independent of z.

This article focuses on confidence in-
tervals for functions of ∆. Specifically,
second-order accurate interval estimators
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for simple, partial, and squared multiple
correlation coefficients as well as for differ-
ences among simple, partial, and squared
multiple correlation coefficients are con-
structed. A confidence interval is said to
be jth-order accurate if the difference be-
tween the actual coverage and the stated
nominal coverage has magnitude O(n−j/2).
In general, large sample confidence intervals
are first-order accurate under mild validity
conditions.

First-order accurate confidence inter-
vals for correlation functions are not new.
Olkin and Siotani (1976) and Hedges and
Olkin (1983) used the delta method (Rao,
1973, §6a.2) together with the asymptotic
distribution of

√
n(r − ρ) when sampling

from a multivariate normal distribution to
derive the asymptotic distribution of par-
tial and multiple correlation coefficient es-
timators. Olkin and Finn (1995) used
these results to obtain explicit expressions
for asymptotic standard errors of estima-
tors of simple, partial, and squared mul-
tiple correlation coefficients as well as ex-
pressions for standard errors of differences
among these coefficients. The major contri-
bution of Olkin and Finn (1995) was that
they demonstrated how to use existing mo-
ment expressions to compute first-order ac-
curate confidence intervals for correlation
functions when sampling from multivariate
normal distributions.

To avoid complicated expressions for
derivatives, Olkin and Finn (1995) gave
confidence intervals for partial correlations
and their differences only in the special case
when the effects of a single variable are par-
tialed out. Similarly, confidence intervals
for differences among squared multiple cor-
relation coefficients (estimated using a sin-
gle sample) are given only for the special
cases when either one or two explanatory
variables are employed. Graf and Alf (1999)
used numerical derivatives to extend the re-

sults of Olkin and Finn to allow condition-
ing on any set of variables rather than a
single variable and to allow squared multi-
ple correlations to be based on an arbitrary
number of explanatory variables. Alf and
Graf (1999) gave scalar equations for the
standard error of the difference between two
squared sample multiple correlations. This
article also extends the results of Olkin and
Finn (1995), but does so using relatively
simple and easily computed (with a com-
puter) matrix expressions for the required
derivatives. As in the previous articles, this
article relies on derivatives of correlation
functions. Unlike Olkin and Finn, how-
ever, simple, partial, and multiple correla-
tions are treated as functions of the covari-
ance matrix, Σ, instead of the correlation
matrix, ∆. The advantage of the current
approach is simplicity of the resulting ex-
pansions.

This article also extends the results of
Olkin and Finn (1995), Graf and Alf (1999),
and Alf and Graf (1999) to be applicable
to to non-normal as well as normal distri-
butions. This extension is straightforward.
Denote the sample covariance based on a
random sample of size N by S. Then, one
needs only to replace the asymptotic covari-
ance of vec S derived under normality with
the asymptotic covariance matrix derived
under general conditions.

In summary, the contributions of this
article are as follows: (a) easily computed
matrix expressions for the required deriva-
tives are given (see Theorems 2 and 3), (b)
the proposed intervals are asymptotically
distribution free (ADF); and (c) the accu-
racy of the confidence intervals is extended
from first-order to second-order. In addi-
tion, the proposed interval estimators are
illustrated on a real data set and a small
simulation study that evaluates the per-
formance of the proposed intervals is con-
ducted.
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Before describing the new results, the
Olkin and Finn (1995) article will be briefly
revisited. It appears that the methods de-
scribed in Olkin and Finn have begun to
be incorporated into statistical practice (34
citations from 1997 to June 2005, most of
which are reports of empirical studies). Un-
fortunately, the derivatives reported in the
article contain several errors. The effects of
these errors on the examples given by Olkin
and Finn are minimal, but their effects in
practice are unknown. A list of corrections
to these derivatives is given in the next sec-
tion.

Corrections to Olkin and Finn
Below is a list of corrections to the

derivatives reported in Olkin and Finn
(1995).

Model B. Components a1 and a3 in
model B on page 159 should be the follow-
ing:

a1 = 2
[
ρ01

(
ρ2

12 − ρ2
13

)
+ ρ03ρ13 − ρ02ρ12

+ρ12ρ13 (ρ02ρ13 − ρ03ρ12)
]

÷
[(

1 − ρ2
12

) (
1 − ρ2

13

)]

and a3 = −2

(
ρ03 − ρ01ρ13

1 − ρ2
13

)
.

The nominal 95% confidence interval for
ρ2

0(12)−ρ2
0(13) should be [−0.19, 0.015] rather

than [−0.22, 0.018].
Model C. Components a1 and a3 in

model C on page 160 should be the follow-
ing:

a1 =
√

(1 − ρ2
02) (1 − ρ2

12) − 1 and

a3 =
ρ02 − ρ01ρ12

1 − ρ2
12

.

The nominal 95% confidence interval for
ρ01−ρ01·2 should be [−0.0018, 0.0073] rather
than [−0.0017, 0.0080].

Model D. Components a1, a3, and a5

in model D on page 161 should be the fol-
lowing:

a1 =
1√

(1 − ρ2
02) (1 − ρ2

12)

− 1√
(1 − ρ2

03) (1 − ρ2
13)
,

a3 =
ρ13 − ρ01ρ03

(1 − ρ2
03)

3/2
(1 − ρ2

13)
1/2
, and

a5 =
ρ03 − ρ01ρ13

(1 − ρ2
03)

1/2
(1 − ρ2

13)
3/2
.

The nominal 95% confidence interval for
ρ01·2 − ρ01·3 should be [0.020, 0.054] rather
than [0.017, 0.057].

Notation and Preliminary Remarks

In some applications, an investigator
may have one or more fixed explanatory
variables (e.g., group or treatment vari-
ables) whose effects must be removed before
estimating the correlation matrix. A linear
model that is suitable for this purpose is de-
scribed in this section. The sample covari-
ance matrix, S, is based on the residuals
from the fitted model. The confidence in-
terval procedures that are constructed later
in this article require estimates of second
and third-order moments of S. Expressions
for the population moments as well as con-
sistent estimators of these moments are de-
scribed in this article. Sufficient validity
conditions were described in Boik (2005,
§5.1).

Linear Model

Denote the response vector for the ith

subject by yi and let Y be the N × p re-
sponse matrix whose ith row is y′

i. That is,
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Y =
(
y1 y2 · · · yN

)′
. The joint model

for the N subjects is

Y = XB + E, (1)

where X is anN×q matrix of fixed explana-
tory variables, and E is an N × p random
matrix. Denote the ith row of E by ε′i. It is
assumed that εi for i = 1, . . . , N are inde-
pendently and identically distributed with
mean E(εi) = 0 and Var(εi) = Σ.

The components of Σ are denoted by
σij for i = 1, . . . , p and j = 1, . . . , p. Note
that the variance of the ith variable is σii,
not σ2

ii, and the correlation between the
ith and jth variables is ρij = σij/

√
σiiσjj.

To represent the matrix of correlations as
a function of Σ, a notation for diagonal
matrices is needed. Suppose that M is a
q× q matrix with positive diagonal compo-
nents m11, m22, . . . , mqq and that b is a real
number. Then the diagonal matrix with di-
agonal components mb

11, m
b
22, . . . , m

b
qq is de-

noted by (M)b
D
. That is,

(M)b
D

=

q∑

i=1

e
q
im

b
iie

q′
i , (2)

where e
q
i is the ith column of Iq. Using this

notation, the p× p correlation matrix is

∆ = (Σ)−
1
2

D
Σ (Σ)−

1
2

D
.

Estimators of simple, partial, and mul-
tiple correlation coefficients will be based
on the sample covariance matrix, namely

S = n−1Y′AY, (3)

where A = IN − X(X′X)−X′, ( )− de-
notes an arbitrary generalized inverse, n =
N − rx, and rx = rank(X). It is readily
shown that if the rows of Y have finite vari-
ance, then S is unbiased for Σ.

Moments of the Sample Covariance Matrix

If fourth-order moments of Y are fi-
nite, then the central limit theorem ensures
that

√
n(s − σ)

dist−→ N(0,Ω22,∞), where (4)

Ω22,∞ = Υ22 − σσ′, Υ22 = E(εiε
′

i ⊗ εiε′i),

s
def
= vec S, σ

def
= vec Σ, and εi is the ith

row of E in (1). Boik (1998, 2005, eq. 12)
showed that if fourth-order moments of Y

are finite, then the finite-sample variance of√
n(s − σ) is

Ω22,n
def
= Var

[√
n(s − σ)

]
(5)

=
c1
n

(Υ22 − σσ′) +
(
1 − c1

n

)
2Np(Σ ⊗ Σ),

where c1 =
∑N

i=1 a
2
ii, aij is the ijth compo-

nent of A in (3), Υ22 is defined in (4), Np =(
Ip2 + I(p,p)

)
/2, and I(a,b) is the commuta-

tion matrix (MacRae, 1974). Magnus and
Neudecker (1979, 1999 §3.7) denoted I(a,b)

by Kb,a. If data are sampled from a multi-
variate normal distribution, then the finite-
sample variance and an unbiased estimator
of the finite-sample variance of

√
n(s − σ)

are

Ω22,n = 2Np (Σ ⊗ Σ) and

Ω̂22,n =
n2

(n− 1)(n+ 2)
2Np (S ⊗ S)

− 2n

(n− 1)(n+ 2)
ss′,

respectively. From Boik (1998, 2005,
eq. 13), an unbiased estimator of Ω22,n un-
der general conditions is

Ω̂22,n = a1Υ̃22 + a22Np (S ⊗ S) (6)

+a3ss
′, where
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a1 =
n2c1
d
, a2 = −n

2(c21 − nc2)

(n− 1)d
,

a3 = −n [2nc2 + (n− 3)c21]

(n− 1)d
,

c2 =

N∑

i=1

N∑

j=1

a4
ij, d = n(n+ 2)c2 − 3c21,

Υ̃22 = n−1

N∑

i=1

(
ε̃iε̃

′

i ⊗ ε̃iε̃′i
)
,

c1 is defined in (5), and ε̃i = Y′AeNi is the
p-vector of residuals from the fitted model
for subject i.

Two additional covariance-related
quantities are needed in this article, namely

Ω42,n (7)

def
= Cov

[√
n (ω̂ − ω),

√
n(s − σ)

]

= nE [(ω̂ − ω)(s − σ)′] and

Ω222,n
def
= n

3
2 E [(s − σ)(s − σ)′ ⊗ (s − σ)] ,

where ω̂ = vec Ω̂22,n and ω = vec Ω22,n.
Using the results of Boik (2005), it can be
shown that if sixth order moments are fi-
nite and the column space generated by X

in (1) contains the n-vector of ones, then
Ω42,n and

√
nΩ222,n can be written as fol-

lows:

Ω42,n (8)

= Υ42 − 2Np2 (Ω22,n ⊗ σ) − (Υ22 ⊗ σ)

−4Np2 (Np ⊗ Ip2) (Υ′

21 ⊗ vec Υ21)

+O
(
n−1
)

and
√
nΩ222,n

= Ω42,n − (Υ21 ⊗ Υ21) 2Np +O
(
n−1
)
,

where Υ42 = E (εi ⊗ εi ⊗ εiε′i ⊗ εiε′i) ,

and Υ21 = E (εi ⊗ εiε′i) .

If the data are a random sample from a mul-
tivariate normal distribution, then to order
O(n−1), Ω42,n and

√
nΩ222,n simplify to

Ω42,n (9)

= (2Np ⊗ 2Np) (Σ ⊗ σ ⊗ Σ) 2Np

and
√
nΩ222,n = Ω42,n.

It will be seen later in this arti-
cle that the proposed inference proce-
dures depend on Ω222,n and Ω42,n only
through functions that can be writ-

ten as
(
ψ̇

σ
⊗ ψ̇

σ
⊗ ψ̇

σ

)′
vec Ω222,n and

(
ψ̇

σ
⊗ ψ̇

σ
⊗ ψ̇

σ

)′
vec Ω42,n, where ψ̇

σ
is a

p2 × 1 vector that satisfies ψ̇
′

σ
σ = 0. Theo-

rem 1 gives consistent estimators of the re-
quired quantities. The results in Theorem
1 follow from the consistency of Ω̂42,n and

Ω̂222,n described by Boik (2005).

Theorem 1. Suppose that ψ̇
σ

is a p2 × 1

vector function of Σ that satisfies ψ̇
′

σ
σ =

0. Then, the required sixth-order quantities
can be consistently estimated as

(
ψ̇s ⊗ ψ̇s ⊗ ψ̇s

)′
vec Ω̂42,n =

n−1

N∑

i=1

[
ψ̇

′

s
(ε̃i ⊗ ε̃i)

]3
− 4ψ̇

′

s
Υ̂21Ψ̇sΥ̂

′

21ψ̇s

and
√
n
(
ψ̇s ⊗ ψ̇s ⊗ ψ̇s

)′
vec Ω̂222,n

=
(
ψ̇s ⊗ ψ̇s ⊗ ψ̇s

)′
vec Ω̂42,n

−2ψ̇
′

s
Υ̂21Ψ̇sΥ̂

′

21ψ̇s,
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where Υ̂21 = n−1

N∑

i=1

(
ε̃i ⊗ ε̃iε̃′i

)
,

ψ̇s is a consistent estimator of ψ̇
σ
, Ψ̇s is a

p× p matrix that satisfies vec Ψ̇s = ψ̇
s
, and

ε̃i is defined in (6). If the rows of Y have a
multivariate normal distribution, then the
required sixth-order quantities can be con-
sistently estimated as

(
ψ̇s ⊗ ψ̇s ⊗ ψ̇s

)′
vec Ω̂42,n (10)

=
√
n
(
ψ̇

s
⊗ ψ̇

s
⊗ ψ̇

s

)′
vec Ω̂222,n

= 8 trace

[(
SΨ̇s

)3
]
.

Specific structures for ψ̇
σ

and ψ̇s are de-
scribed below.

Derivatives
The main theoretical tool used in this

article is the Taylor series expansion of ran-
dom quantities. The first-order linear ex-
pansion is the basis of the delta method.
To construct second-order accurate inter-
val estimators, it is necessary to include the
quadratic term in the expansion as well.
Accordingly, both first and second deriva-
tives of correlation functions are required.
Derivatives of partial correlations as well as
squared multiple correlations are given in
this article.

Partial Correlations
Suppose that an investigator is inter-

ested in the correlation between variables i
and j, controlling for a subset of variables
indexed by k =

(
k1 k2 · · · kq

)′
. This

partial correlation, denoted as ρij·k, is the
off diagonal component in the correlation
matrix ∆ij·k, where

∆ij·k =

(
1 ρij·k
ρij·k 1

)
(11)

= (Σij·k)
−

1
2

D
Σij·k (Σij·k)

−
1
2

D
, where

Σij·k =

(
σii·k σij·k
σij·k σjj·k

)

= E′

ij [Σ − ΣHkΣ]Eij, Eij =
(
e
p
i e

p
j

)
,

Ek =
(
e
p
k1

e
p
k2

· · · e
p
kq

)
,

Hk = Ek (E′

k
ΣEk)

−1
E′

k
,

and the remaining terms are defined in (2).
It is required that neither i nor j be a com-
ponent of k; otherwise ρij·k = 0 and no in-
ference is necessary. The parameter ρij·k
can be estimated by rij·k, where rij·k is ob-
tained by substituting S for Σ in (11).

Theorem 2 gives first and second
derivatives of ρij·k with respect to σ. The
derivatives are given without proof because
they follow from established matrix calcu-
lus results (Graham, 1981).

Theorem 2. The first two derivatives of
ρij·k with respect to σ are

ρ̇ij·k
def
=
∂ ρij·k
∂ σ

= Np(γi·k ⊗ γj·k)

−
[
(γi·k ⊗ γi·k) + (γj·k ⊗ γj·k)

]
ρij·k/2 and

ρ̈ij·k
def
=

∂2ρij·k
∂ σ ⊗ ∂ σ

= Np2
(
γi·k ⊗ γi·k ⊗ γj·k ⊗ γj·k

)
ρij·k/2

+
[
(γi·k ⊗ γi·k ⊗ γi·k ⊗ γi·k)

+
(
γj·k ⊗ γj·k ⊗ γj·k ⊗ γj·k

)]
3ρij·k/4

− (Np ⊗ Np)Np2

[(
γi·k ⊗ γj·k ⊗ γj·k ⊗ γj·k

)
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+
(
γj·k ⊗ γi·k ⊗ γi·k ⊗ γi·k

)]

−2 (Np ⊗ Np) (Ip ⊗ hk ⊗ Ip) ρ̇ij·k, where

γi·k = [Ip − HkΣ] epi /
√
σii·k,

hk = vec (Hk) ,

Hk is defined in (11), Np is defined in (5),
and σii·k is defined in (11). If k is empty,
then ρij·k becomes the simple correlation ρij
and γi·k becomes γi = e

p
i /
√
σii.

Multiple Correlations
Suppose that an investigator has in-

terest in the multiple correlation between
variable i and variables indexed by k =(
k1 k2 · · · kq

)′
. The squared multiple

correlation, denoted as ρ2
i(k), can be writ-

ten as

ρ2
i(k) = e

p′
i ΣHkΣe

p
i /σii, (12)

where e
p
i is defined in (2), and Hk is de-

fined in (11). It is required that i not be
a component of k; otherwise ρ2

i(k) = 1 and
no inference is necessary. The parameter
ρ2
i(k) can be estimated by r2

i(k), where r2
i(k)

is obtained by substituting S for Σ in (12).
Theorem 3 gives first and second

derivatives of ρ2
i(k) with respect to σ. The

derivatives are given without proof because
they follow from established matrix calcu-
lus results (Graham, 1981).

Theorem 3. The first two derivatives of
ρ2
i(k) with respect to σ are

ρ̇2
i(k)

def
=
∂ ρ2

i(k)

∂ σ
= (γi ⊗ γi)

(
1 − ρ2

i(k)

)

−
(
γi(k) ⊗ γi(k)

)
and

ρ̈2
i(k)

def
=

∂2ρ2
i(k)

∂ σ ⊗ ∂ σ

= 2Np2
(
γi(k) ⊗ γi(k) ⊗ γi ⊗ γi

)

+2 (Np ⊗ Np)
(
γi(k) ⊗ hk ⊗ γi(k)

)

−2 (γi ⊗ γi ⊗ γi ⊗ γi)
(
1 − ρ2

i(k)

)
,

where γi = e
p
i /
√
σii,

γi(k) = (Ip − HkΣ) e
p
i /
√
σii,

Hk is defined in (11), and hk is defined in
Theorem 2.

Derivatives of Differences

In practice, a linear function of corre-
lation coefficients rather than a correlation
coefficient itself could be of interest. Let
ψ be a linear function of simple, partial,
and/or squared multiple correlation coeffi-
cients. For example, if the difference be-
tween a simple and a partial correlation is
of interest, then ψ = ρij − ρij·k, where k

is a non-empty vector of index values. By
properties of derivatives, the derivative of
a linear function is the the linear function
of the derivatives. Accordingly, Theorems
2 and 3 can be used to obtain the first two
derivatives of any linear function, ψ, with
respect to σ.

Denote the first two derivatives of ψ
with respect to σ by ψ̇

σ
and ψ̈

σ
. That is,

ψ̇
σ

def
=

∂ ψ

∂ σ
and ψ̈

σ

def
=

∂2ψ

∂ σ ⊗ ∂ σ
, (13)

where ψ is a linear function of simple, par-
tial, and/or squared multiple correlation co-
efficients. The specific structure of these
derivatives for individual correlation coef-
ficients as well as for linear functions that
correspond to extensions of the first four
models in Olkin and Finn (1995) are listed
below. The fifth model in Olkin and Finn
is discussed separately later in this article.
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1. Single Partial Correlation Coefficient.
If ψ = ρij·k, then ψ̇

σ
= ρ̇ij·k, and

ψ̈
σ

= ρ̈ij·k, where the derivatives are
given in Theorem 2. If k is empty,
then ψ becomes ψ = ρij.

2. Difference Between Partial Correla-
tion Coefficients. Denote the set that
consists of the components of k by
{k}. If ψ = ρij·k1 − ρtu·k0, then ψ̇

σ
=

ρ̇ij·k1
−ρ̇tu·k0

, and ψ̈
σ

= ρ̈ij·k1
−ρ̈tu·k0

,
where k1 and/or k0 could be empty,
{i, j} = {t, u} =⇒ {k0} 6= {k1}, and
the derivatives are given in Theorem
2. This difference is an extension of
Olkin and Finn’s Models C and D.
Examples include ψ = ρij·k1 − ρij·k0,
ψ = ρij − ρij·k, ψ = ρij·k − ρtu·k, and
ψ = ρij − ρtu.

3. Single Squared Multiple Correlation
Coefficient. If ψ = ρ2

i(k), then ψ̇
σ

=

ρ̇2
i(k), and ψ̈

σ
= ρ̈2

i(k), where the
derivatives are given in Theorem 3.

4. Difference Between Squared Multi-
ple Correlation Coefficients. If ψ =
ρ2
i(k1)−ρ2

j(k0), then ψ̇
σ

= ρ̇2
i(k1)−ρ̇2

j(k0)

and ψ̈
σ

= ρ̈2
i(k1) − ρ̈2

j(k0), where i =
j =⇒ {k0} 6= {k1}, and the deriva-
tives are given in Theorem 3. This
difference is an extension Olkin and
Finn’s Models A and B.

Second-Order Accurate Confidence Intervals

Let ψ be a linear function of simple,
partial, or squared multiple correlation co-
efficients and denote the estimator obtained
by substituting S for Σ by ψ̂. Define σ2

ψ as

σ2
ψ

def
= nVar(ψ̂). An application of the delta

method reveals that

σ2
ψ = ψ̇

′

σ
Ω22,nψ̇σ

+O
(
n−1
)
, (14)

where ψ̇
σ

is defined in (13) and Ω22,n is de-
fined in (5). The central limit theorem en-
sures that

P
(
ψ̂ ≤ u

)
= Φ

(√
n (u− ψ)

σψ

)
+O

(
n−

1
2

)
,

where Φ( · ) is the cdf of the standard nor-
mal distribution.

The proposed confidence intervals are
based on the asymptotically pivotal quan-
tity

T =

√
n
(
ψ̂ − ψ

)

σ̂ψ
, (15)

where σ̂2
ψ is a consistent estimator of σ2

ψ.

The quantity, ψ̇
′

s
Ω̂22,nψ̇s, for example, is

consistent for σ2
ψ, where Ω̂22,n is defined in

(6) and ψ̇
s

is ψ̇
σ

after substituting S for Σ.
It follows from the central limit Theorem
and Slutsky’s Theorem (Casella & Berger,
2002, Theorem 5.5.17) that T ∼ N(0, 1) to
first-order accuracy. Inverting the cdf of T
yields first-order accurate one-sided lower
and upper intervals:

(ψ̂−σ̂ψz1−α/
√
n, ∞) and (−∞, ψ̂−σ̂ψzα/

√
n)

respectively, where zα is the 100α percentile
of the standard normal distribution. The
standard normal critical value zα can be re-
placed by the t critical value, tα,n, without
affecting the asymptotic properties of the
intervals.

Edgeworth Expansion of the Distribution of
T

To construct a second-order accurate
approximation to the distribution of T , it is
necessary to obtain the mean (bias), vari-
ance, and skewness of T . These quantities
and estimators of these quantities are sum-
marized in Theorem 4. A proof is sketched
in the Appendix.
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Theorem 4. If ψ is a function of a single
covariance matrix, Σ, and ψ̂ is the same
function of a single sample covariance ma-
trix, S, then the first three cumulants of T
in (15) can be written as follows:

E(T ) =
κ1√
n

+O
(
n−

3
2

)
,

Var(T ) = 1 +O
(
n−1
)
,

and E

[(
T − κ1√

n

)3
]

=
κ3√
n

+O
(
n−

3
2

)
,

where κ1 =
m1

σψ
− m11

2σ3
ψ

,

κ3 =
m3

σ3
ψ

− 3
m11

σ3
ψ

,

m1√
n

= E
[√

n
(
ψ̂ − ψ

)]
+O

(
n−

3
2

)
,

m3√
n

= E

{[√
n
(
ψ̂ − ψ

)
− m1√

n

]3
}

+O
(
n−

3
2

)
,

and m11

= nCov
(
ψ̂ − ψ, σ̂2

ψ − σ2
ψ

)
+O

(
n−1
)
.

Specific solutions for m1, m3, and m11 are

m1 =
1

2
ψ̈

′

σ
vec Ω22,n,

m3 =
√
n
(
ψ̇

σ
⊗ ψ̇

σ
⊗ ψ̇

σ

)′
vec Ω222,n

+3
(
ψ̇

′

σ
Ω22,n ⊗ ψ̇

′

σ
Ω22,n

)
ψ̈

σ
, and

m11 =
(
ψ̇

σ
⊗ ψ̇

σ
⊗ ψ̇

σ

)′
vec Ω42,n

+2
(
ψ̇

′

σ
Ω22,n ⊗ ψ̇

′

σ
Ω22,n

)
ψ̈

σ
,

where Ω42,n and Ω222,n are described in (7)
and (8), and ψ̇

σ
and ψ̈

σ
are defined in (13).

Furthermore, ψ̇
′

σ
σ = 0 as required in The-

orem 1 and κ1 and κ2 can be estimated con-
sistently by

κ̂1 =
m̂1

σ̂ψ
− m̂11

2σ̂3
ψ

, and κ̂3 =
m̂3

σ̂3
ψ

− 3
m̂11

σ̂3
ψ

,

where σ̂2
ψ = ψ̇

′

s
Ω̂22,nψ̇s +

U

n
,

m̂1 =
1

2
ψ̈

′

s
vec Ω̂22,n,

m̂3 = n−1
N∑

i=1

[
ψ̇

′

s
(ε̃i ⊗ ε̃i)

]3

−6ψ̇
′

s
Υ̂21Ψ̇sΥ̂

′

21ψ̇s

+3
(
ψ̇

′

s
Ω̂22,n ⊗ ψ̇

′

s
Ω̂22,n

)
ψ̈s,

m̂11 = n−1

N∑

i=1

[
ψ̇

′

s
(ε̃i ⊗ ε̃i)

]3

−4ψ̇
′

s
Υ̂21Ψ̇sΥ̂

′

21ψ̇s

+2
(
ψ̇

′

s
Ω̂22,n ⊗ ψ̇

′

s
Ω̂22,n

)
ψ̈

s
,

ψ̇
s
and ψ̈

s
are ψ̇

σ
and ψ̈

σ
after substituting

S for Σ, U is any Op(1) random variable,
and the remaining terms are defined in The-
orem 1.

Asymptotically, the choice of U in The-
orem 4 is arbitrary, because limn→0 U/n = 0
and the asymptotic properties of the inter-
vals are not affected by U/n. Nonetheless,
the finite-sample properties of the intervals
are affected by the choice of U . From ex-

perience, it appears that ψ̇
′

s
Ω̂22,nψ̇s often
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underestimates the variance of
√
n(ψ̂ − ψ).

Accordingly, choosing U to be a positive
quantity might be beneficial. In this article,
the quantity U will be chosen by using the
second order Taylor series expansion of ψ̂
under the condition that ψ̇

σ
= 0. Specifi-

cally, the second-order Taylor series expan-
sion of ψ̂ is

√
n
(
ψ̂ − ψ

)
= ψ̇

′

σ

√
n(s − σ)

+
1

2
√
n
ψ̈

′

σ

[√
n(s − σ) ⊗

√
n(s − σ)

]

+Op

(
n−1
)
.

If ψ̇
σ

= 0, then the variance of
√
n(ψ̂ − ψ)

is

Var
[√

n
(
ψ̂ − ψ

)]

=
1

2n
ψ̈

′

σ
(Ω22,n ⊗ Ω22,n) ψ̈σ

+O
(
n−2
)
.

Accordingly, U will be chosen as U =

ψ̈
′

s

(
Ω̂22,n ⊗ Ω̂22,n

)
ψ̈s/2. For this choice,

the quantity U/n represents an estimate of
one of the two leading terms in the O(n−1)
component of (14).

The primary device for constructing
the interval estimator is a second-order
Edgeworth expansion of the distribution of
T . This expansion is summarized in Theo-
rem 5. A proof is sketched in the Appendix.

Theorem 5. The probability density func-
tion (pdf) and the cdf of T in (15) can be
written as

fT (t) =

ϕ(t)

[
1 +

κ1 t√
n

+
κ3 (t3 − 3t)

6
√
n

]
+O

(
n−1
)

and FT (t)
def
= P (T ≤ t) = Φ(t)

−ϕ(t)

[
κ1√
n

+
κ3 (t2 − 1)

6
√
n

]
+O

(
n−1
)

respectively, where κ1/
√
n and κ3/

√
n are

the mean and skewness of T (see Theorem
4), and ϕ(t) and Φ(t) are the standard nor-
mal pdf and cdf.

Proposed Interval Estimators
The expansion of FT in Theorem 5 can

be used to express the percentiles of T in
terms of those of a standard normal random
variable and to obtain a polynomial trans-
formation of T that has distribution N(0, 1)
up to O(n−1). These results, known as
Cornish-Fisher expansions (Pace and Sal-
van, 1997, §10.6), are summarized in Corol-
lary 5.1.

Corollary 5.1. Denote the 100α percentile
of T by tα. Then,

tα = zα +
κ1√
n

+
κ3(z

2
α − 1)

6
√
n

+O
(
n−1
)

and

tα = t̂α +Op

(
n−1
)
,

where zα is the 100α percentile of the
N(0, 1) distribution,

t̂α = zα + κ̂1/
√
n+ κ̂3(z

2
α − 1)/(6

√
n),

and κ̂1 and κ̂3 are consistent estimators of
κ1 and κ3 in Theorem 4. The normal criti-
cal value, zα, can be replaced by the t criti-
cal value, tα,n, without affecting the second-

order property of t̂α. Also, define T1 and T̂1

as

T1
def
= T − κ1√

n
− κ3(T

2 − 1)

6
√
n

and

T̂1
def
= T − κ̂1√

n
− κ̂3(T

2 − 1)

6
√
n

.

Then, P (T1 ≤ t) = Φ(t) + O (n−1) and
P (T̂1 ≤ t) = Φ(t) +O (n−1).
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A straightforward application of Corol-
lary 5.1 yields second-order accurate in-
tervals for ψ. Note that t̂α in Corollary
5.1 is a second-order accurate percentile of
the distribution of T . Accordingly, (ψ̂ −
t̂1−ασ̂ψ/

√
n, ∞) is a second-order accurate

100(1−α)% lower confidence interval for ψ
and (−∞, ψ̂ − t̂ασ̂ψ/

√
n) is a second-order

accurate 100(1 − α)% upper confidence in-
terval for ψ. One drawback of these inter-
vals, however, is that t̂α is a quadratic func-
tion of zα and, therefore, is not monotonic
in α. The same issue exists if T̂1 is used
as an asymptotic pivotal quantity. It is not
monotone in T and, therefore, its cdf can-
not be inverted for arbitrary α. Methods for
correcting this non-monotone deficiency are
summarized in Corollaries 5.2 and 5.3. The
method in Corollary 5.2 is based on Hall’s
(1992) cubic transformation, whereas the
method in Corollary 5.3 is based on the ex-
ponential transformation described by Boik
(2006).

Corollary 5.2. Define T̂2 as

T̂2
def
= T − κ̂1√

n
− κ̂3(T

2 − 1)

6
√
n

+
κ̂2

3T
3

108n
.

Then, T̂2 = T̂1 + Op(n
−1) and T̂2 is mono-

tone in T . Inverting the cdf of T̂2 yields
the following lower and upper 100(1 − α)%
second-order accurate confidence intervals:

(
ψ̂ − σ̂ψ t̂2,1−α√

n
, ∞

)
and

(
−∞, ψ̂ − σ̂ψ t̂2,α√

n

)
,

where t̂2,α =
κ̂1√
n

+
6
√
n

κ̂3
×

{
1 −

[
1 +

κ̂3

2
√
n

(
κ̂3

6
√
n
− zα

)] 1
3

}
.

Corollary 5.3. Define T̂3 as

T̂3
def
= T − κ̂1√

n
−
κ̂3

(
T 2e−

d̂ T2

2 − 1
)

6
√
n

, where

d̂ =
κ̂2

3

(
31 − 7

√
17
)

72n
e−

(5−
√

17)
2 .

Then, T̂3 = T̂1 + Op(n
−3/2), and is mono-

tone in T . Inverting the cdf of T̂3 yields
the following lower and upper 100(1 − α)%
second-order accurate confidence intervals:

(
ψ̂ − σ̂ψ t̂3,1−α√

n
, ∞

)
and

(
−∞, ψ̂ − σ̂ψ t̂3,α√

n

)
,

where t̂3,α is the solution to T̂3 = zα or

T̂3 = tα,n for T . The solution can be com-
puted using the modified Newton method de-
scribed in the Appendix.

The intervals described in Corollaries
5.2 and 5.3 require consistent estimators of
κ1 and κ3, the mean and skewness of T . If
ψ is a function of a single covariance ma-
trix, then the estimators described in The-
orem 4 can be used. In some situations, in-
vestigators are interested in comparing cor-
relation functions based on two covariance
matrices. For example, if a comparison be-
tween squared multiple correlation coeffi-
cients from two populations is of interest,
then one could define ψ as ψ = ρ2

i(k)(Σ1) −
ρ2
i(k)(Σ2), where ρ2

i(k)(Σu) is ρ2
i(k) computed

on Σu, for u = 1, 2. Of course, the com-
parison need not be restricted to squared
multiple correlations. One could, for exam-
ple, define ψ as ψ = ρij·k(Σ1) − ρij·k(Σ2)
or ψ = ρij·k(Σ1) − ρtu·k0(Σ2). These com-
parisons are extensions of Olkin and Finn’s
(1995) Model E. The mean and skewness
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as well as estimators of the mean and skew-
ness of T for comparisons such as these are
given in Theorem 6. A proof is sketched in
the Appendix.

Theorem 6. Let ψi be a correlation func-
tion computed on Σi for i = 1, 2 and let ψ̂i
be ψi computed on Si, where Si is a sam-
ple covariance matrix based on ni degrees of
freedom from sample i, and samples 1 and
2 are independent. Define T as

T =

√
n1n2

(
ψ̂ − ψ

)

√
δ̂

, where

ψ̂ = ψ̂1 − ψ̂2, ψ = ψ1 − ψ2,

δ̂ = n2σ̂
2
1 + n1σ̂

2
2 , and σ̂2

i , ψ̇si
, and ψ̈

si
are

σ̂2
ψ, ψ̇s, and ψ̈s based on sample i. Let m1;i,
m3;i, and m11;i be m1, m3, and m11 of Theo-
rem 4 for population i. Then, the first three
cumulants of T are

E(T ) =
κ∗1√
δ

+O
(
n−

3
2

)
,

Var(T ) = 1 +O
(
n−1
)
, and

E [T − E(T )]3 =
κ∗3√
δ

+O
(
n−

3
2

)
,

where δ = n2σ
2
1 + n1σ

2
2,

κ∗1 =
n2m1;1 − n1m1;2√

n1n2
− n

3/2
2 m11;1

2δ
√
n1

+
n

3/2
1 m11;2

2δ
√
n2

,

κ∗3 =
n

3/2
2 m3;1

δ
√
n1

− n
3/2
1 m3;2

δ
√
n2

− 3
n

5/2
2 σ2

1m11;1

δ2
√
n1

+3
n

5/2
1 σ2

2m11;2

δ2
√
n2

,

and n = min(n1, n2). Furthermore, consis-
tent estimators of κ∗1 and κ∗3 are obtained
by substituting σ̂2

i , m̂1;i, m̂3;i, and m̂11;i for
σ2
i , m1;i, m3;i, and m11;i, respectively. Esti-

mators of m1;i, m3;i, and m11;i are given by
m̂1, m̂3, and m̂11 in Theorem 4 computed
on sample i.

Second-order accurate confidence in-
tervals for ψ in Theorem 6 can be com-

puted by substituting κ̂∗1/
√
δ̂ and κ̂∗3/

√
δ̂

for κ̂1/
√
n and κ̂3/

√
n in Corollaries 5.2 and

5.3.

Simulation Studies

The finite sample properties of the pro-
posed intervals were evaluated by comput-
ing the intervals on samples from normal,
normal mixture, and affine lognormal dis-
tributions. Let C be a p × p nonsingular
matrix and denote a randomly selected p-
vector from the N(0, Ip) distribution as z.
Denote a randomly selected p-vector from
a normal, normal mixture, or affine lognor-
mal distribution with mean 0 and covari-
ance Σ = CC′ as y. Then z can be trans-
formed to y by

y = Cz, y = Cz
[U + k(1 − U)]√
θ + k2(1 − θ)

, and

y = C
(
e�zm − 1pe

m2/2
) 1√

em2 (em2 − 1)

for the normal, normal mixture, and
affine lognormal distributions, respectively;
where U is a Bernoulli(θ) random variable
distributed independently of z, k and m
are scalar constants, and e�zm is a p-vector
whose ith component is ezim.

The parameter values for the normal
mixture were θ = 0.7 and k = 3. For
this choice, marginal kurtosis is 3.488 and
multivariate kurtosis (Bilodeau and Bren-
ner, 1999, §13.2) is 1.1626. The normal
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mixture is a member of the class of el-
liptically contoured distributions. Accord-
ingly, asymptotic standard errors based on
normal theory are smaller than the correct
standard errors by a factor of 1/

√
2.1626

and coverage of one-sided nominal 100(1 −
α)% normal theory intervals converges to
Φ(z1−α/

√
2.1626), where z1−α is the 100(1−

α) percentile of the standard normal distri-
bution. For α = 0.05, coverage of normal
theory intervals converges to 0.868 rather
than 0.95.

The parameter value for the affine log-
normal distribution was m = 0.8326. For
this choice, the marginal skewness and kur-
tosis for each component of the lognormal
random vector e�zm is 4.00 and 38. This
distribution is not a member of the class of
elliptically contoured distributions.

Generation of Covariance Matrices
To examine the performance of inter-

vals for ψ = ρij − ρij·k, ten 4-dimensional
covariance matrices were constructed such
that ρij ∈ L1, ρij·k ∈ L1, and ρij ≤ ρij·k,

where L1 = {
√

1/6,
√

1/3,
√

2/3,
√

5/6}.
The covariance matrices were constructed
as follows:

Σ = CC′, where C =




1 0 0 0
0 1 0 0
1 1 1 1
1 v w 1


 ,

w =
−1 ±

√
ρ2
ij·k

(
1 − ρ2

ij·k

)

1 − 2ρ2
ij·k

,

v =
−(2 + w) ± 2

√
h

1 − 4ρ2
ij

h = 2ρ2
ij(3 + 2w + w2 − 4ρ2

ij − 2ρ2
ijw

2),

i = 3, j = 4, and k =
(
1 2

)′
.

To examine the performance of inter-
vals for ψ = ρ2

i(k) − ρ2
j(k), ten 4-dimensional

covariance matrices were constructed such
that ρ2

i(k) ∈ L2, ρ
2
j(k) ∈ L2, and ρ2

j(k) ≤ ρ2
i(k),

where L2 = {0.2, 0.4, 0.6, 0.8}. The covari-
ance matrices were constructed as follows:

Σ = CC′, where C =




1 0 0 0
0 1 0 0
v v 1 0
w w 1 1


 ,

v =

√√√√
ρ2
i(k)

2
(
1 − ρ2

i(k)

) , w =

√√√√ ρ2
j(k)

1 − ρ2
j(k)

,

i = 3, j = 4, and k =
(
1 2

)′
.

For each covariance matrix, 5,000 real-
izations of the N × 4 matrix Y were sam-
pled from each of the three distributions
(normal, normal mixture, affine lognormal)
and one-sided nominal 95% confidence in-
tervals for ψ were computed. The simu-
lation study was repeated for sample sizes
N ∈ {25, 50, 100, 200}.

Results
Each of Figures 1–3 displays four pan-

els of 16 plots each. The upper two panels
display the coverage of normal theory and
ADF confidence intervals for ψ = ρij−ρij·k.
Coverage of one-sided intervals for ψ =
ρ2
i(k) − ρ2

j(k) is displayed in the lower two
panels. The 10 plots in the upper triangle
of each panel display the coverage of upper
one-sided intervals and the 10 plots in the
lower triangle display the coverage of lower
one-sided intervals. The four plots on the
diagonal in each panel display coverage for
both lower and upper intervals.

In the upper two panels, row and col-
umn labels correspond to ρ2

ij and ρ2
ij·k, re-

spectively, for upper intervals and to ρ2
ij·k

and ρ2
ij, respectively, for lower intervals. In

the lower two panels, row and column la-
bels correspond to ρ2

j(k) and ρ2
i(k), respec-

tively, for upper intervals and to ρ2
i(k) and
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ρ2
j(k), respectively, for lower intervals. In all

panels, plot symbols are assigned as follows:

Interval Symbol
First-Order Lower ×
First-Order Upper ∗
Second-Order Lower �

Second-Order Upper ©

Second-order intervals were based on
the exponential method described in Corol-
lary 5.3. Within each plot, the coverage of
intervals based on sample sizes of 25, 50,
100, and 200 is plotted from left to right.
Figures 2 and 3 display coverage of inter-
vals when sampling from normal mixtures
and from affine lognormal distributions.

Figure 1: Coverage when Sampling from Normal Distributions

Normal Theory: ψ = ρij − ρij·k ADF: ψ = ρij − ρij·k
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Figure 2: Coverage when Sampling from Normal Mixture Distributions

Normal Theory: ψ = ρij − ρij·k ADF: ψ = ρij − ρij·k
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It is apparent in Figure 1 that the
coverage of second-order intervals is supe-
rior to that of first-order intervals when
sampling from multivariate normal distri-
butions. Furthermore, the second-order
ADF intervals perform nearly as well as do
the second-order intervals that are explic-
itly based on normal theory.

Figure 2 confirms that normal theory
based intervals perform poorly when sam-
pling from normal mixtures. As expected
from theory, coverage approaches 0.86 as
N increases in each plot. The ADF inter-
vals fare much better. Also, the coverage
of second-order accurate ADF intervals is
equal to or superior to that of first-order
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Figure 3: Coverage when Sampling from Affine Lognormal Distributions

Normal Theory: ψ = ρij − ρij·k ADF: ψ = ρij − ρij·k
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accurate ADF intervals whenever the cover-
age of first-order accurate intervals departs
substantially from 0.95. See, for example,
plot (4, 1) in the upper right-hand panel of
Figure 2. First-order accurate ADF inter-
vals perform well if the bias of ψ̂ is small
and the distribution of ψ̂ is nearly sym-
metric. In these cases, second-order accu-

rate intervals cannot improve on first-order
accurate intervals and can even perform
slightly worse if sample size is small. The
performance degradation is due to the dif-
ficulty of estimating higher-order moments
from small samples. Variability in these es-
timates induces variability in the interval
endpoints. Nonetheless, Figure 2 reveals
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that the second-order ADF intervals never
performed much worse and sometimes per-
formed much better than first-order accu-
rate intervals.

Figure 3 displays coverage of one-sided
intervals when sampling from affine lognor-
mal distributions. The performance of nor-
mal theory intervals is quite poor. The per-
formance of first-order ADF intervals varies
depending on the covariance matrix and
coverage is as low as 0.78; see plot (3, 4)
in the lower right-hand panel. Figure 3
also reveals that second-order ADF inter-
vals never performed much worse and some-

times performed much better than first-
order accurate intervals.

Illustration
Heller, Judge, and Watson (2002) con-

ducted a survey of university employees
to examine relationships among personal-
ity traits, job satisfaction, and life satisfac-
tion. They obtained six broad personality
trait measures, three job satisfaction mea-
sures, and three life satisfaction measures
on each of N = 134 subjects. A subset of
their data from a random sample of 15 sub-
jects is listed in Table 1.

Table 1: Sample of Size N = 15 from Heller

Variable
1 2 3 4 5 6 7 8

Case N E C CSE PA NA LSO JSO
1 2.75 2.50 3.92 2.44 3.80 2.30 3.00 3.25
1 1.83 4.42 4.25 2.55 4.10 1.30 4.20 4.63
3 2.00 3.25 4.83 2.92 4.00 1.40 2.60 3.88
4 2.17 2.50 4.17 2.53 3.80 1.50 3.60 3.88
5 2.92 3.50 4.08 1.96 3.10 2.20 4.00 3.25
6 1.58 3.67 3.67 2.89 4.00 1.30 4.00 4.00
7 2.00 3.67 4.00 2.68 4.20 1.50 4.00 4.38
8 1.58 4.17 4.75 2.90 4.00 1.30 2.20 2.38
9 2.58 3.17 4.08 2.34 2.80 1.30 3.40 4.38

10 2.92 3.00 3.92 2.21 3.40 1.50 3.60 3.13
11 2.33 2.08 4.67 2.17 2.40 1.70 3.00 3.88
12 2.25 3.67 4.92 2.74 3.90 1.60 3.80 3.00
13 2.08 3.33 3.50 2.39 3.30 1.60 4.00 3.88
14 3.92 2.42 3.00 1.60 2.50 3.10 3.60 4.13
15 1.67 4.17 4.58 2.93 4.30 1.60 4.00 3.63

Notes: N = Neuroticism, E = Extroversion,
C = Conscientiousness, CSE = Core Self-Evaluations,
PA = Positive Affectivity, NA = Negative Affectivity,
LSO = Life Satisfaction—Significant Other Report
JSO = Job Satisfaction—Significant Other Report.

Appreciation is expressed to Danny Heller
who provided the raw data for this exam-
ple. They expected that job and life sat-
isfaction would be positively related, and

that this relationship, in part, would be
due to the influence of stable personality
traits. Specifically, they hypothesized that
(a) zero-order correlation coefficients be-
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tween job and life satisfaction would be pos-
itive, and that (b) partial correlation co-
efficients between job and life satisfaction,

controlling for personality traits, would be
smaller than the zero-order coefficients.

Table 2: Confidence Intervals Computed on Heller’s Data

Normal Theory ADF
ψ Quantity N = 15 N = 134 N = 15 N = 134

r7,8 0.476 0.477 0.476 0.477
r7,8·k 0.410 0.398 0.410 0.398
σ̂ψ 0.889 0.473 0.966 0.562
ω̂1 −0.086 −0.821 −0.281 −1.597
ω̂3 −0.183 −2.171 −0.082 −3.597

ρ7,8 − ρ7,8·k t̂3,0.05 −1.803 −1.797 −1.845 −1.937
t̂3,0.95 1.722 1.543 1.679 1.459
L(1) −0.353 0.110 −0.389 −0.001
U(1) 0.484 0.147 0.520 0.160
L(2) −0.344 0.016 −0.368 0.008
U(2) 0.494 0.153 0.542 0.174
t0.05,n −1.761 −1.656 −1.761 −1.656
t0.95,n 1.761 1.656 1.761 1.656
r2
7(k) 0.468 0.249 0.468 0.249

r2
8(k) 0.263 0.109 0.263 0.109

σ̂ψ 1.191 0.818 1.343 0.822
ω̂1 −0.269 −0.110 −0.347 −0.212
ω̂3 0.095 −0.010 −0.147 −0.124

ρ2
7(k) − ρ2

8(k) t̂3,0.05 −1.984 −1.771 −2.203 −1.924

t̂3,0.95 1.512 1.543 1.392 1.423
L(1) −0.355 0.023 −0.426 0.023
U(1) 0.766 0.258 0.838 0.259
L(2) −0.276 0.031 −0.294 0.039
U(2) 0.837 0.266 0.996 0.278

L(1) and U(1) are lower and upper limits of first-order
accurate intervals.
L(2) and U(2) are lower and upper limits of second-order
accurate intervals.

One way to test hypothesis (b) is to
compute a confidence interval for the dif-
ference between the simple and partial cor-
relation coefficients. The upper portion of
Table 2 displays first- and second-order ac-
curate intervals for ρ7,8 − ρ7,8·k, where k

consists of indices 1, . . . , 6. This interval
was not examined by Heller, Judge, and

Watson, but is comparable to intervals that
were examined. Intervals based on the sub-
sample of N = 15 cases and intervals based
on the full sample of N = 134 cases are
reported in Table 2. Results of interme-
diate calculations also are given to aid in-
vestigators who wish to verify accuracy of
computer routines. Endpoints of second-
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order accurate ADF intervals are somewhat
shifted to the right compared to first-order
accurate ADF intervals both for N = 15
and forN = 134. Notice that the first-order
accurate interval based on N=134 contains
zero whereas the second-order accurate in-
terval does not contain zero.

The lower portion of Table 2 displays
intermediate computations and intervals for
ρ2

7(k) − ρ2
8(k) both for the subsample and for

the full sample. Again, the second-order in-
tervals are shifted to the right compared to
the first-order accurate intervals.

Concluding Remarks

Some caution must be exercised when
interpreting the proposed intervals com-
puted on nonnormal data. If the popu-
lation is multivariate normal, then all re-
lationships among variables are linear and
the traditional correlation coefficients ad-
equately summarize the existing relation-
ships. If the population is nonnormal, how-
ever, then relationships among variables
need not be linear. Traditional correlation
coefficients still summarize the linear rela-
tionships, but they do not reflect nonlinear
components of the existing relationships.

In some cases, confidence interval pro-
cedures can be improved by applying a
normalizing transformation of the correla-
tion estimator. Let Wn be a statistic com-
puted on a random sample of size N , where
n = N − r and r is a fixed positive inte-
ger. It is assumed that the moments of Wn

are finite at least to order three. Denote
the mean and variance of Wn by µW and
σ2
W , respectively. A normalizing transfor-

mation of Wn, if it exists, is a function of
Wn, say g(Wn), chosen such that the skew-
ness of

√
n [g(Wn) − g(µW )] has magnitude

O(n−3/2). Konishi (1981) showed that if
data are sampled from a multivariate nor-

mal distribution, then

Zρij
(rij) =

1

2
ln

(
1 + rij
1 − rij

)
and

Zρ2
i(k)

(r2
i(k)) =

1

2
ln




1 +
√
r2
i(k)

1 −
√
r2
i(k)




are normalizing transformations for rij and
r2
i(k), respectively. Also,

Zρij·k(rij·k) =
1

2
ln

(
1 + rij·k
1 − rij·k

)

is a normalizing transformation for rij·k. If
data are sampled from multivariate normal
distributions, then conventional confidence
intervals for ρij·k or ρ2

i(k) that are based on
the above normalizing transformations are
only first-order accurate, however, because
the normalizing transformation corrects for
skewness but not for bias.

Derivatives of functions of ρij·k or ρ2
i(k)

are readily obtained by one or more appli-
cations of the chain rule. For simple and
partial correlations,

∂ Zρij·k(ρij·k)

∂ σ
=

ρ̇ij·k

1 − ρ2
ij·k

and

∂2Zρij·k(ρij·k)

∂ σ ⊗ ∂ σ
=

ρ̈ij·k

1 − ρ2
ij·k

+

(
ρ̇ij·k ⊗ ρ̇ij·k

)
2ρij·k(

1 − ρ2
ij·k

)2 .

Also, for squared multiple correlation coef-
ficients,

∂ Zρ2
i(k)

(ρ2
i(k))

∂ σ
=

ρ̇2
i(k)

2
√
ρ2
i(k)

(
1 − ρ2

i(k)

) and

∂2Zρ2
i(k)

(ρ2
i(k))

∂ σ ⊗ ∂ σ
=

ρ̈2
i(k)

2
√
ρ2
i(k)

(
1 − ρ2

i(k)

)
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+

(
ρ̇2
i(k) ⊗ ρ̇2

i(k)

) (
3ρ2

i(k) − 1
)

4
(
ρ2
i(k)

) 3
2
(
1 − ρ2

i(k)

)2
.

Employing the above transformations
when data have not been sampled from
multivariate normal distributions does not
necessarily reduce skewness. Nonetheless,
their use can be advantageous because the
endpoints of the confidence intervals ob-
tained by back-transforming the intervals
for Zρij·k are guaranteed to be in (−1, 1) and
endpoints obtained by back-transforming
the intervals for Zρ2

i(k)
are guaranteed to be

in (0, 1). Intervals computed directly on the
correlation coefficients need not satisfy this
property. In small samples, it might be bet-
ter to transform r2

i(k) as

Z∗(r2
i(k)) =

1

2
ln




√
r2
i(k)

1 −
√
r2
i(k)




because this transformation maps (0, 1) to
(−∞,∞), whereas the normalizing trans-
formation for r2

i(k) maps (0, 1) to (0,∞).
Fisher’s Z transformation also can be

employed when ψ is a difference between
correlation coefficients. For example, sup-
pose that ψ = (ρij − ρij·k)/2. The divisor

2 is used so that ψ ∈ (−1, 1). Then, ψ̂ can
be transformed by

Zψ(ψ̂) =
1

2
ln

(
1 + ψ̂

1 − ψ̂

)
.

Even if skewness is not reduced by this
transformation, the endpoints of the back-
transformed interval will be in (−1, 1). The
derivatives of this function are

∂ Zψ(ψ)

∂ σ
=

ψ̇
σ

1 − ψ2
and

∂2Zψ(ψ)

∂ σ ⊗ ∂ σ
=

ψ̈
σ

1 − ψ2
+

(
ψ̇

σ
⊗ ψ̇

σ

)
2ψ

(1 − ψ2)2 .

The simulation study also examined
properties of first- and second- order in-
tervals that are based on Fisher’s Z trans-
formation. The results are very similar to
those displayed in Figures 1–3. The per-
formance of the second-order intervals was
comparable to that of first-order intervals
whenever the first-order intervals did not
perform too badly. The second-order inter-
vals improved on the first-order intervals in
cases where coverage of the first-order in-
tervals deviated substantially from 1 − α.

An investigator might prefer to boot-
strap correlation functions and thereby dis-
pense with the requirement of explicitly
estimating the bias, variance, and skew-
ness of the relevant sampling distributions.
One-sided percentile bootstrap intervals for
functions of simple, partial, and multiple
correlations, however, are only first-order
accurate. Often these intervals have poor
coverage and can be inferior to normal the-
ory intervals even when multivariate nor-
mality is violated (Rasmussen, 1987, 1988;
Strube, 1988). Also see Efron (1988) for a
discussion of this issue. Second-order ac-
curate confidence intervals can be obtained
by bootstrapping the asymptotic pivotal
quantity T in (15); i.e., percentile-t inter-
vals. Hall, Martin, and Schucany (1989)
examined percentile, percentile-t, trans-
formed percentile-t, and coverage-corrected
iterated bootstrap intervals for zero-order
correlation coefficients. Fisher’s transfor-
mation was employed for the transformed
percentile-t intervals. They found that in
very small samples (N ≤ 20), the iterated
intervals as well as the percentile-t intervals
worked well. Percentile-t intervals that em-
ployed the jackknife to estimate the stan-
dard error of the (transformed) sample cor-
relation coefficient were superior to those
that employed the delta method. One could
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employ jackknife estimates of bias, vari-
ance, and skewness in the proposed second-
order accurate intervals. This issue remains
to be explored.

Abramovitch and Singh (1985) and
Zhou and Gao (2000) showed that boot-
strapping corrected asymptotic pivotal
quantities such as T̂2 in Corollary 5.2 or
T̂3 in Corollary 5.3 to obtain quantiles of
their respective distributions yields third-
order accurate confidence intervals. This
bootstrap adjustment procedure was exam-
ined for the conditions corresponding to
plot (3, 4) in the lower right-hand panel of
Figure 3. A sample size of N = 25 was
employed. The results are summarized in

Table 3. The coverage values in the first
two lines of Table 3 are those plotted in
Figure 3. The remaining lines are based
on an additional 2,000 samples. For each
of these samples, 1,000 bootstrap samples
were drawn and the bootstrap sampling dis-
tributions of T and T̂3 were approximated.
Quantiles of these distributions were substi-
tuted for tα,n in the computation of confi-
dence intervals. Table 3 demonstrates that
bootstrapping T yields second-order accu-
rate confidence intervals with coverage sim-
ilar to those based on T̂3. Bootstrapping T̂3

slightly improved the coverage of the upper
interval, but over adjusted the endpoint of
the lower interval.

Table 3: Coverage of Bootstrap-Adjusted Confidence Intervals for

ψ = ρ2
i(k) − ρ2

i(k) when Sampling from a Lognormal Distribution

Pivotal Bootstrap Coverage Number of
Quantity Adjusted Lower Intervals Upper Intervals Samples

T No 0.972 0.781 5000

T̂3 No 0.966 0.869 5000
T No 0.968 0.786 2000

T̂3 No 0.959 0.877 2000
T Yes 0.930 0.869 2000

T̂3 Yes 0.934 0.886 2000

The intervals constructed in this arti-
cle have reasonable coverage properties un-
der most of the conditions that were exam-
ined. In some conditions, however, the cov-
erage of the second-order accurate intervals
is less accurate than desired, even though it
represents a substantial improvement over
coverage of first-order accurate intervals. A
bootstrap adjustment to the second-order
accurate intervals might improve coverage
slightly, but this issue needs to be exam-
ined more thoroughly.
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Appendix

Proof of Theorem 4
Taylor series expansions for

√
n
(
ψ̂ − ψ

)
,

[√
n
(
ψ̂ − ψ

)]2
, and

[√
n
(
ψ̂ − ψ

)]3
around s = σ can be writ-

ten as follows.

√
n
(
ψ̂ − ψ

)
= ψ̇

′

σ

√
n(s − σ)

+
1

2
√
n
ψ̈

′

σ

[√
n(s − σ) ⊗

√
n(s − σ)

]

+Op

(
n−1
)
,

[√
n
(
ψ̂ − ψ

)]2
=
[
ψ̇

′

σ

√
n(s − σ)

]2

+Op

(
n−

1
2

)
, and

[√
n
(
ψ̂ − ψ

)]3
=
[
ψ̇

′

σ

√
n(s − σ)

]3

+
3

2
√
n

[
ψ̇

′

σ

√
n(s − σ)

]2

×ψ̈′

σ

[√
n(s − σ) ⊗

√
n(s − σ)

]
+O

(
n−1
)
.

Furthermore, expanding
√
n(σ̂2

ψ − σ2
ψ)

around s = σ reveals that

√
n(σ̂2

ψ − σ2
ψ) =

(
ψ̇

σ
⊗ ψ̇

σ

)′ √
n (ω̂ − ω)+

2
[√

n(s − σ)
′ ⊗ ψ̇′

σ
Ω22,n

]
ψ̈

σ
+Op

(
n−

1
2

)
,

where ω = vec Ω22,n. The claimed result
is obtained by taking expectations, using

ψ̇
′

σ
σ = 0, and collecting terms of like or-

der.
To verify that ψ̇

′

σ
σ = 0, note that

ρij·k and ρ2
i(k) are scale invariant functions

of Σ. That is, ρij·k(Σ) = ρij·k(αΣ) and
ρ2
i(k)(Σ) = ρ2

i(k)(αΣ), where α is any pos-
itive scalar constant. It follows that the
derivatives of ρij·k(αΣ) and ρ2

i(k)(αΣ) with
respect to α each are zero. Using the chain
rule,

0 =
∂ ρij·k(αΣ)

∂ α
=

(
∂ ασ′

∂ α

)(
∂ ρij·k
∂ σα

)

= σ′ρ̇ij·k

(
1

α

)
and

0 =
∂ ρ2

i(k)(αΣ)

∂ α
=

(
∂ ασ′

∂ α

)(
∂ ρ2

i(k)

∂ σα

)

= σ′ρ̇2
i(k)

(
1

α

)
.

The result follows because ψ̇
σ

is a linear
function of ρ̇ij·k and/or ρ̈2

i(k) terms.

Proof of Theorem 5
Expand T as

T =

√
n(ψ̂ − ψ)

σψ
×

[
1 − 1

2
√
nσ2

ψ

√
n(σ̂2

ψ − σ2
ψ) +Op

(
n−1
)
]
,
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and then take expectations of T , T 2, and
T 3 to verify the claimed expressions for the
mean, variance, and skewness of T . The
sizes of the various remainder terms differ
because the expectation ofOp(1) terms that
are even-order in

√
n(s − σ) or

√
n (ω̂ − ω)

have magnitude O(1) whereas the expecta-
tion of Op(1) terms that are odd-order in√
n(s − σ) or

√
n (ω̂ − ω) have magnitude

O
(
n−1/2

)
. It follows that the cumulant

generating function of T can be expanded
as follows:

CT (u) = ln
{
E
[
eiuT

]}

=
κ1 iu√
n

− u2

2
+
κ3 (iu)3

6
√
n

+O
(
n−1
)
.

Inverting the characteristic function,
exp {CT (u)}, yields the density function,
fT , and integrating fT yields the distribu-
tion function, FT .

Inversion of Exponential Functions
This section describes a Modified New-

ton algorithm for finding the value of t̂3,α
that satisfies h(t̂3,α) = 0, where

h(t̂3,α)

= t̂3,α −
κ̂1√
n
−
κ̂3

(
t̂23,α e

−d̂ t̂23,α/2 − 1
)

6
√
n

− zα,

where d̂ is defined in Corollary 5.3. The so-
lution is unique because h(t̂3,α) is a mono-
tonic function of t̂3,α by construction. An
initial guess for t̂3,α is t̂3,α,0 = t̂α, where t̂α is
defined in Corollary 5.2. At iteration i + 1
of the algorithm, the value of t̂3,α is

t̂3,α,i+1 = t̂3,α,i − ui, where

ui =





−t̂3,α,i if
h(t̂3,α,i)

t̂3,α,i h(1)(t̂3,α,i)
< −1,

t̂3,α,i
2

if
h(t̂3,α,i)

t̂3,α,i h(1)(t̂3,α,i)
>

1

2
,

h(t̂3,α,i)

h(1)(t̂3,α,i)
otherwise,

and h(1)(t̂) = 1 − κ̂3 t̂ (2 − d̂t̂2)e−d̂t̂
2/2

6
√
n

.

Proof of Theorem 6
Define Zi as

Zi
def
=

√
ni

(
ψ̂i − ψi

)

σi
,

where all terms are defined in Theorem 6.
Then, the first-order Taylor series expan-
sion of T in Theorem 6 around σ̂2

i = σ2
i for

i = 1, 2 is

T =
g−

1
2σ1Z1 − σ2Z2

(g−1σ2
1 + σ2

2)
1
2

×

[
1 − V1

2
√
n1

+
V2

2
√
n2

+Op

(
n−1
)]
, where

g =
n1

n2

, n = min(n1, n2),

V1 =

√
n1(σ̂

2
1 − σ2

1)

σ2
1 + gσ2

2

, and

V2 =

√
n2(σ̂

2
2 − σ2

2)

g−1σ2
1 + σ2

2

.

The claimed results are obtained by us-
ing Theorem 4 to obtain expectations of T ,
[T − E(T )]2, and [T − E(T )]3.
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