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Inference for P(Y<X) for Exponential and Related Distributions 

Vee Ming Ng 
School of Engineering  Sciences, 
Murdoch University, Australia 

 
 
Some tests and confidence bounds for the reliability parameter R=P(Y<X) are proposed, where X and Y 
are independent random variables from a two-parameter exponential distribution. The results are based on 
missing or incomplete data and are applicable to some related distributions. 
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Introduction 

 
The problem of estimating and testing the 
reliability parameter R=P(Y<X) has been widely 
researched in the literature. The problem 
originated in the context of reliability of a 
component of strength X subjected to a stress Y, 
the component failing if and only if at any time 
the applied stress is greater than its strength. 
Other applications for the reliability parameter 
exists when X and Y have different 
interpretation, such as when Y is the response 
for a control group and X is the response for the 
treatment group. Inference on R shall be 
considered when X and Y are random variables 
from a two-parameter exponential distribution. 
Inference on R for the one-parameter 
exponential distribution can be found in Enis 
and Geisser (1971), Tong (1977), and Chao 
(1982) among others. 

Gupta and Gupta (1988) derived and 
compared some point estimators for R in the 
case of two independent exponential variables 
having a common scale parameter. For the case 
in which the location parameter is common, Bai  
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and Hong (1992) discussed point and interval 
estimation of R and Baklizi (2003) compared the 
performance of several types of asymptotic, 
approximate, and bootstraps confidence 
intervals. Ali, Woo, and Pal (2004) considered 
test and estimation of R when the scale 
parameters are equal and known and also 
inference procedures for R which are based on 
likelihood ratio tests for equality of scale and 
equality of location parameters. 

This article considers some tests and 
confidence bounds for P{Y<X} for the two-
parameter exponential distribution with a 
common but unknown scale parameter and also 
with a common but unknown location 
parameter. Exact tests and confidence bounds 
are derived in situations where data may be 
missing or incomplete, the situation with 
complete data being a special case. These results 
are extended to some related distributions. 

 
Methodology and Results 

 
A two-parameter exponential 

distribution with parameters ),( σμ is defined 
by the probability density function: 

 

,1),;( /)( σμ

σ
σμ −−= xexf  ,μ>x  0>σ  

 
Suppose X and Y are independent 

exponential random variables with parameters 
),( xx σμ  and ),( yy σμ  and probability density 
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functions ),;( xxxf σμ and ),;( yyyf σμ  
respectively. Then  
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where xy μμδ −= . Inference on R is 
considered for two cases: (a) scale parameters 
are equal and unknown and (b) location 
parameters are equal and unknown. 

Assuming two independent samples of 
size n and m from the exponential distributions 
with parameters ),( xx σμ  and ),( yy σμ  

respectively, let rqq XXX <<< + ...1  and 

pll YYY <<< + ...1  denote the ordered 
observations; some of these could be missing 
where nrq == ,1 , and mpl == ,1  would 
correspond to all observations being available.  
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, yx vvv += .  It is well known 

that: 
• qX , lY , xS , yS , pS  are statistically 

independent (see Tanis (1964), Likes 
(1974)). 

• xxS σ/2 , yyS σ/2 , σ/2 pS  when 

σσσ == yx , have chi-square 

distributions with xv2 , yv2 , v2  
degrees of freedom respectively. 

• The probability density functions  of the 
ordered statistics qX  and lY  can be 
written, respectively, as 
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Test of hypothesis when σσσ == yx  

Suppose that  σσσ == yx  but σ is 
unknown, then 
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where  
 

σμμλ /)( xy −= . 
 
A test procedure is now derived for 

testing hypotheses about the reliability 
parameter R; a similar procedure is considered 
in Ranganathan and Kale (1979) for a 1-sample 
reliability problem. Because P(X<Y)=1-R, it 
suffices to consider  the problem of testing the 

null hypothesis 00 2
1: peH ≥−λ , against the 
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alternative 01 2
1: peH <−λ , 0p  being a 

specified value less than 0.5. As these 
hypotheses are equivalent to )2ln(: 00 pH −≥λ  
against )2ln(: 01 pH −<λ , consider the test 
statistic pql SXYT /)( −= . T is a maximal 
invariant and its distribution depends only on λ . 
A large value of T would be evidence against 

0H . Hence, for an observed value t of T, P(T > 
t) for t ≥ 0, λ  ≥  0  is the P-value of the test, a 
small value of which would indicate sufficient 
evidence against 0H . In order to get an 
expression for the P-value, one must first obtain, 
from the joint of density function of plq SYX ,, , 
the joint probability density function of 

ql XYD −=  and pS , ),;,( σδsdf , which 
then yields the joint of density function 

);,( λwtf  of pSDT /=  and σ/pSW = : 
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The P-value, P(T>t} is obtained 
from );,( λwtf , 0, ≥≥ wtw λ as 
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Integration by parts yields 
 

    

1 1

0 0

( , )

( , , ) ( , , )( )
( , )[ ( , ) ( , )]

( [ ( , ) 1/ ])
(1 ( , ) )

( / )

q l

i j

m l j

v

a n q i b m l jP T t
m l j n q i m l j

e P G m l j t
m l j t

P G t

λ

λ

λ

− −

= =

> =
+

⎧ ⎫
> +⎪ ⎪+⎨ ⎬

⎪ ⎪+ <⎩ ⎭

∑∑
 

 
 
where G the Gamma random variable with shape 
parameter .1+v  

In many situations the first ordered 
statistics are available i.e. 1=q , 1=l  and the 
above simplifies to 

 
( )

( [ 1/ ])
(1 )

( / )

m

v

P T t

e P G m tn
mt

n m
P G t

λ

λ

λ

>

⎧ ⎫
> +⎪ ⎪= +⎨ ⎬+ ⎪ ⎪+ <⎩ ⎭

 

 
Point estimators of R for the case 1=q , 

1=l are considered in Gupta and Gupta (1988) 
where the maximum likelihood estimator of R is 
obtained with )/( nmT + as an estimator of 
λ in the equation for R. 
 
Inference when  μμμ == yx  

When μμμ == yx  but μ is unknown 
then R reduces to 

yx

x

σσ
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Consider the null hypothesis 

00 : qH ≥θ  or equivalently 
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where 0q  is a specified probability. xxS σ/2  
and yyS σ/2  are independently distributed as 

chi-square with xv2 and yv2  degrees of 
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  has a F distribution 

with xv  and yv  degrees of freedom. Hence, one 

can use  
0
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An estimate of θ  is 
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interval for θ is obtainable from the F 
distribution with xv  and yv  degrees of freedom 
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 where lF  and uF  

satisfies }{1 ul FFFP <<=− α . The 
confidence interval can be written, after some 
algebraic manipulation, as 
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When complete samples are available, 
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of which is slightly different from those used in 
Bai and Hong (1992). They used 
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instead of xS , yS  respectively and obtained 
approximate confidence interval based on a 
mixed beta distribution. 
 
 
 
 
 

Applications to Related Distributions 
Suppose  X and Y are independent two-

parameter exponential random variables and ϕ  

is a monotonic function  with  inverse  1−ϕ . 
Because 

 
))()(()( XYPXYP ϕϕ <=<  

 
the tests and confidence bounds developed in the 
previous sections are also applicable to the 
variables )(Xϕ  and )(Yϕ ; the results  are to be 
applied after making the transformation, ϕ , to 
the observations. The results are applicable to 
the Rayleigh distribution with XX 2)( =ϕ , 

2/)( 21 XX =−ϕ  and the Pareto distribution 
with )exp()( XX =ϕ , )ln()(1 XX =−ϕ . 
 
Numerical example 

Suppose a system has two main parts, Y 
and X, whose lifetimes are exponentially 
distributed. Suppose m=n=15 component parts 
are put on test simultaneously and the failure 
times are {106, 108, 109, 113, 116, 126, 127, 
132, 138, 141, 147, 164, 185, 202, 285} and 
{79, 82, 88, 89, 91, 107, 112, 118, 133, 149, 
165, 167, 170, 202, 222} for Y and X 
respectively. Then 1== ql , 1, =ji dc  for 

15,...,2,1== ji , 0193.0=t , 609=ys , 

789=xs , and 14== yx vv . To  test whether 
system failure may be equally likely due to 
either part,  the test of 0:0 ≥λH  )5.0( ≥R  
against 0:1 <λH  yields  a P-value of 0.0004  
which is sufficient evidence that X is more 
likely to fail before Y. If instead one is 

interested to test, say, 4.0
2
1:0 ≥= −λeRH  

against 4.0:1 <RH  then the P-value is 0.011.  
There is sufficient evidence to reject 0H ;  the 
probability that system  failure will be due to Y 
is less than 0.4. If, for example, the values 108  
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and 109 for Y are missing,  then one would set 
032 == dd  and the recalculated values for the 

test of  4.0:0 ≥RH  are 0199.0=t , 
568=ys , and 12=yv  with a P-value equal 

0.016. 
 

Conclusion 
 

Tests of hypotheses and confidence bounds for 
R have been developed for the two-parameter 
exponential distribution in two cases, namely 
one involving a common scale parameter and the 
other a common location parameter. Exact tests 
for the two cases are derived for situations in 
which data may be missing or incomplete. Exact 
confidence bounds for R in the common location 
case are also proposed and they provide an 
alternative to the approximate bounds that have 
been considered in a complete sample situation. 
Furthermore, these results are applicable to a 
larger class of distributions which includes the 
Raleigh and the Pareto distributions. 
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