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The Influence of Reliability on Four Rules 
for Determining the Number of Components to Retain 

 
Gibbs Y. Kanyongo 
Duquesne University 

 
 
Imperfectly reliable scores impact the performance of factor analytic procedures. A series of Monte Carlo 
studies was conducted to generate scores with known component structure from population matrices with 
varying levels of reliability. The scores were submitted to four procedures: Kaiser rule, scree plot, parallel 
analysis, and modified Horn’s parallel analysis to find if each procedure accurately determines the 
number of components at the different reliability levels. The performance of each procedure was judged 
by the percentage of the number of times that the procedure was correct and the mean components that 
each procedure extracted in each cell. Generally, the results show that when component loading was high, 
an increase in reliability resulted in an improvement of the accuracy of parallel analysis and modified 
horn’s parallel analysis. 
 
Key words: Monte Carlo, principal components analysis, factor analysis, parallel analysis, modified 
Horn’s parallel analysis, scree plot, Kaiser rule. 
 
 
 

Introduction 
 

When dealing with a large number of variables, 
it is possible that some of those variables are 
highly correlated with one another such that they 
account for the same variance in the dependent 
variable. In such cases it may be possible to 
combine several variables into one factor 
without any substantial loss of information. This 
reduces the number of variables thereby 
facilitating the interpretation of the data and is 
achieved through several factor analytic 
procedures. 
 Factor analysis is a term used to refer to 
statistical procedures used in summarizing 
relationships among variables in a parsimonious 
but accurate manner. It is a generic term that 
includes   several   types  of  analyses,  including  
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(a) common factor analysis, (b) principal 
component analysis (PCA), and (c) confirmatory 
factor analysis (CFA). Common factor analysis 
may be used when a primary goal of the research 
is to investigate how well a new set of data fits a 
particular well-established model (Merenda, 
1997). Principal component analysis is usually 
used to identify the factor structure or model for 
a set of variables (Stevens, 2002). In contrast, 
confirmatory factor analysis is based on a strong 
theoretical foundation that allows the researcher 
to specify an exact model in advance. In this 
study, PCA will be of primary interest. Under 
PCA, the focus is going to be on procedures by 
which the number of components is determined. 
Specifically, two forms of parallel analysis, 
Horn’s (1965) parallel analysis (HPA) and 
modified Horn’s parallel analysis (MHPA), are 
going to be compared to the Kaiser (1960) rule 
and scree plot procedures under systematically 
varied conditions of reliability, component 
loading and variable-to-component loading. 

Users of PCA are required to make 
decisions on a number of technical issues, 
including the number of components to retain, 
method of extraction and rotation techniques. 
Perhaps, the most important decision is that of 
determining how many components to retain 
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(Merenda, 1997). Problems emerge when non-
optimal numbers of components are extracted. 
Under-extraction compresses variables into a 
smaller number of components than what 
actually exists in the data, resulting in loss of 
important information, a neglect of potentially 
important components, a distorted fusing of two 
or more components, and an increase in error 
loadings (O’Connor, 2000). Over-extraction 
diffuses variables into a larger number of 
components than what actually exists in the data, 
potentially resulting in components with few 
components loadings and researchers’ 
attributing excessive substantive importance to 
trivial components (O’Connor). Fava and 
Velicer (1992) emphasize that researchers 
should employ the most accurate procedures for 
determining the correct number of components 
in order to minimize such problems.  
 
Methods for Determining the Number of 
Components 
 The four methods covered in this study 
are Kaiser rule, scree plot, Horn’s parallel 
analysis procedure and modified Horn’s parallel 
analysis procedure. Each of these methods is 
covered in detail below.  
 
Kaiser rule.  
 The easiest and most commonly used 
method is to retain all components with 
eigenvalues greater than 1.0 procedure, which is 
known as the Kaiser rule. This method only 
provides a rough estimate of the optimal number 
of components that can be used to describe the 
data (Hutcheson & Sofroniou, 1999). The 
suggestion by Kaiser (1960) was based on a 
commonly used formula for the reliability of a 
total score (Cliff, 1988). This formula was first 
suggested by Kuder and Richardson (1937), and 
is called Kuder-Richardson formula 20 (K-R 
20). The formula estimates the parallel form 
reliability of a total score from the internal 
consistency among subscores or items. The 
Kaiser rule uses the rationale that there are as 
many reliable components as there are 
eigenvalues greater than one. The reasoning is 
that an eigenvalue less than one implies that the 
scores on the component would have negative 
reliability. 

      Cliff (1988) argued that Kaiser’s 
rationale for relating the reliability of 
components to the number of eigenvalues 
greater than one was based on a misapplication 
of a common formula for the reliability of a 
composite. The reliability of a principal 
component depends on the reliability of the 
measures. He pointed out that reliability of 
components cannot be deduced from the size of 
the eigenvalues, and that the Kaiser rationale for 
retaining as many components as there are 
eigenvalues greater than one does not have any 
logical basis. 

        The Kaiser rule continues to be one of 
the most widely employed, largely because the 
most widely used statistical packages (i.e., 
SPSS, SAS) continue to include this method as 
the default option. While this method continues 
to be widely used, several studies have shown it 
to be highly inaccurate and to tend to 
overestimate the number of components to retain 
(Velicer et al., 2000; Zwick & Velicer 1986). 
Linn (1968) performed a Monte Carlo study of 
the Kaiser rule and the degree of overestimation 
observed was extreme. On average the Kaiser 
rule overestimated the correct number of 
components by 66 percent. 

     In a simulation study conducted by 
Zwick and Velicer (1986) to compare different 
component extraction procedures, the Kaiser 
rule showed the poorest performance, indicating 
the correct number of components only 22 
percent of the time. In some cases the Kaiser 
rule may sometimes lead to the extraction of 
fewer components than should have been 
extracted (Guttman 1954). 
  Cattell and Jaspers (1967) conducted a 
study to evaluate the accuracy of the Kaiser rule. 
In that study, the Kaiser rule was accurate when 
the number of variables was small (10 to 15) or 
moderate (20 to 30) and the communalities are 
high (.80).  The communality of a variable is the 
amount of variance on a variable accounted for 
by the set of factors. However, the rule showed 
overestimation with a large number of variables 
(40) and low communalities (about .40). Stevens 
(2002) recommended that the Kaiser rule be 
used only when the number of variables is less 
than 30, sample size is more than 250, and when 
the mean communality is about .60. In summary, 
the Kaiser rule, although commonly used, is 
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believed by many researchers to overestimate 
(e.g., Velicer et al., 2000; Zwick & Velicer 
1986) and by others to sometimes underestimate 
(e.g., Guttman 1954). 
 
Cattell’s scree plot  
 This procedure was proposed by Cattell 
(1966). With this procedure eigenvalues are 
plotted against their ordinal numbers and one 
examines to find where the break or a leveling of 
the slope of the plotted line occurs. Tabachnick 
and Fidell (2001) referred to the break point as 
the point where a line drawn through the points 
changes direction. The number of components is 
indicated by the number of eigenvalues above 
the point of the break. The eigenvalues below 
the break indicate error variance (Velicer et al., 
2000). The graph for scree plot is available as an 
option in SPSS, and most other statistical 
programs. 
 Many studies have found this method to 
be reasonably effective in suggesting the correct 
number of components to retain (Catell & 
Jaspers, 1967; Catell & Vogelmann, 1977; Cliff, 
1970; Linn, 1968; Tucker, Koopman & Linn, 
1969; Velicer et al., 2000; Zwick & Velicer, 
1982). Hakstian, Rogers and Cattell (1982) 
noted that when sample size is more than 250 
and mean communality is .60, the scree plot 
extracts the correct number of components. 
However, Hakstian et al. found that the scree 
plot is less accurate with low communality data 
that resulted in the overestimation of the number 
of components to retain. 

      Zwick and Velicer (1982) found that the 
scree plot was especially effective with large 
sample sizes and with strong components. 
Stevens (2002) suggested that with this 
procedure, sample sizes greater than 200 are 
reasonable provided most of the communalities 
are large. Cliff (1970) and Linn (1968) found the 
method to be less accurate with small sample 
sizes.  

      Zwick and Velicer (1986) conducted a 
later study in which they found that the scree test 
was less accurate than several other methods 
they investigated. The visual rationale has 
potential to avoid some of the over-extraction 
problems because the trivial factors will not be 
visually compelling (Velicer et al., 2000). The 
scree procedure is recommended for use with 

other procedures, not as a stand-alone procedure. 
In their studies Velicer et al. evaluated this 
procedure to be easy to implement because 
computer programs typically produce the 
eigenvalues. On accuracy of the procedure, they 
found mixed results; that is, some results 
indicated that the procedure extracted the correct 
number of components and others showed the 
procedure to over-extract.   

 
Horn’s parallel analysis. 

Horn (1965) introduced HPA method for 
determining the number of components as an 
alternative to the Kaiser procedure. Horn’s 
parallel analysis procedure involves the 
generation of a set of random data correlation 
matrices with the same number of variables and 
participants as the observed data (Velicer et al., 
2000). Horn (1965) proposed that a number, say 
50, of correlation matrices of p uncorrelated 
random normal variables and a sample size 
equal to n, where p and n are the same as the 
corresponding entries in the data set under study, 
be constructed and their mean eigenvalues 
across all the replications be determined. The 
eigenvalues of the observed data are then 
compared to the mean eigenvalues of the 
random data across the replications. The 
components with eigenvalues of the observed 
data that exceed the mean eigenvalues of the 
corresponding components of random data are 
retained because the observed eigenvalue is 
considered a real effect that is not likely to be 
due to chance sampling variability. Actual 
eigenvalues less than or equal to the mean 
random eigenvalues would be considered as due 
to random sampling variability (Glorfeld, 1995). 
Horn’s parallel analysis can be taken to be a way 
of simulating the scree plot, while on the other 
hand the Kaiser rule is the theoretical scree plot.  

Previous simulation studies have shown 
that Horn’s parallel analysis procedure is 
accurate in determining the number of 
components to retain in PCA (Glorfeld, 1995; 
O’Connor, 2000; Velicer et al. 2000; Zwick & 
Velicer, 1986). Since this procedure makes use 
of mean eigenvalues, it requires a comparison of 
observed eigenvalues and mean eigenvalues of 
random data (Horn, 1965). 
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Modified Horn’s parallel analysis 
Glorfeld (1995) suggested a 

modification of Horn’s parallel analysis 
procedure to come up with another procedure; 
modified Horn’s parallel analysis which allows 
identification of any desired upper (1- 
α) percentile, such as the 95th percentile of the 
set of distribution (Glorfeld, 1995). This 
percentile is then used to determine whether the 
eigenvalue obtained is larger than what could be 
expected by chance.  

Glorfeld (1995) argued that the use of 
mean eigenvalues is equivalent to conducting 
the analysis at the 50 percent significance level 
in conventional hypothesis testing. At this 
significance level, Horn’s parallel analysis tends 
to over-extract by including minor components 
in the extraction. He noted that although Horn’s 
parallel analysis is relatively accurate; it still 
tends to extract one or two more factors than is 
actually warranted and therefore sometimes 
retains poorly defined components. The 
modified Horn’s parallel analysis compares real 
data eigenvalues to the eigenvalues at the 
desired percentile (typically the 95th) of the 
distribution of random data eigenvalues (Cota, 
Longman, Holden, Fekken & Xinaris, 1993; 
Glorfeld, 1995). 

Buja and Eyuboglu (1992) advanced the 
same argument as Glorfeld (1995) when they 
pointed out, “the use of null averages as 
thresholds implies that the classical version of 
parallel analysis performs approximately at the 
.5 significance level” (p. 511). They suggested 
that a higher percentile be used rather than the 
mean. Buja and Eyuboglu’s (1992) suggestion 
was also in line with the findings by Harshman 
and Reddon (1983), who pointed out that using 
the mean eigenvalue represented a potential flaw 
in the HPA procedure.  
 
The Effects of Extracting the Wrong Number of 
Components 
Over-extraction 
 Over-extraction is a situation where 
more components are extracted than the actual 
number of components in the data. Fava and 
Velicer (1992) noted, “A primary example of 
misspecification occurs as a result of employing 
Kaiser rule, it is likely to over-extract 
components …” (p. 388).  Moiser (1939) 

conducted a simulation study to investigate the 
impact of over-extraction on the overall 
component structure. His findings provided 
some empirical evidence that supports the notion 
that the error of over-extraction is less harmful 
than the error of under-extraction (Gorsuch, 
1983, Fava & Velicer, 1992). 
 There are two theoretical justifications 
that support the idea that over-extraction may 
not be as serious problem as under-extraction 
(Fava & Velicer, 1992). The first concerns the 
fact that the amount of variance explained by a 
component decreases for each succeeding 
component extracted (Cattell, 1958, Comrey, 
1973), for example, the fifth extracted 
component will account for less variance than 
the fourth. This means if a true solution were a 
four component solution, it would a more 
serious error to only extract three components 
than to over-extract five, because the 
information lost by the fourth component will be 
greater than the error added by the fifth 
component (Fava & Velicer, 1992). The second 
theoretical justification concerns the idea that, 
upon rotation, it is relatively easy to discard 
extra components that have been retained as 
trivial components without changing the 
substantive components (Cattell, 1958, Comrey, 
1973).  
 The work by Fava and Velicer (1992) 
indicated that over-extraction does have negative 
effect, especially if component loading is low or 
sample size is low. They found that the worst 
effects occurred for cases of combined low 
component loading and low sample size during 
maximal over-extraction. In their results, they 
also noted, “there was also strong support for the 
hypothesis that over-extraction of a few (one or 
two) components will not cause major negative 
effects” (p. 413).  

 
Under-extraction  
 Retaining too few components is 
another form of misspecification that occurs in 
PCA. Researchers point that logical arguments 
generally support the idea that under-extraction 
is a more serious problem than over-extraction. 
One argument is that the amount of explained 
variance decreases for each succeeding 
component extracted (Cattell, 1958, Comrey, 
1973).  This suggests that increasing the 
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dimensionality of a correct solution by one 
would result in less error variance relative to the 
amount of true variance that would be removed 
by decreasing the dimensionality by one (Fava 
& Velicer, 1996). It appears the general notion is 
that under-extraction is a more serious problem 
than over-extraction (Cattell, 1958, Comrey, 
1973, Fava & Velicer, 1996). Although under-
extraction is generally considered a worse 
problem than over-extraction, it has been studied 
less than over-extraction (Fava & Velicer, 
1996). This means there is not much evidence to 
support the opinions that under-extraction is 
more serious. 
 
Reliability 

The decision to include reliability in this 
study is mainly because previous Monte Carlo 
studies to compare PCA procedures did not take 
reliability into account (e.g., Glorfeld, 1995, 
Velicer et al., 2000, Zwick & Velicer, 1986). 
These Monte Carlo studies generated the scores 
with the implicit assumption that the scores had 
perfect reliability. However, in this study, the 
scores were generated at varying levels of 
reliability to see whether the PCA procedures 
performed differently at each level of reliability. 

Reliability is one of the most important 
considerations when selecting variables for 
analyses (Tabachnick & Fidell, 2001). 
Tabachnick and Fidell pointed out that 
unreliable variables degrade an analysis while 
reliable variables enhance the analysis. If 
variables are unreliable, the entire solution may 
not be trusted as it may contain a lot of 
measurement error. Gorsuch (1983) noted that if 
the variables have low reliabilities, then many 
more individuals would be needed for PCA. It is 
important that reliability be considered in studies 
dealing with PCA because in real world 
phenomenon perfectly reliable data rarely exist. 
 Reliability is important in principal 
components analysis because PCA studies 
correlations among variables and these 
correlations are impacted by reliability. When 
reliability is low, these correlations are reduced 
and consequently the magnitude of the 
components is also diminished. Also, PCA 
assumes perfect reliability, since it has 1.0 on 
the diagonal of the population correlation 
matrix. On the other hand, principal axis 

factoring accommodates reliability and does not 
get impacted that much by a change in 
reliability. 

McMillan and Schumacher (2001) 
advised that in any study, the reliability of scores 
should be established before the research is 
undertaken, and the type of reliability should be 
consistent with the use of the results. Reliability 
is a function of the trait being measured. This 
means some variables, such as most measures of 
achievement, provide highly reliable scores; 
whereas scores from measures of personality 
traits have lower reliability. It is common to 
have reliability values of .80 or above for 
achievement tests, whereas values of .70 may be 
acceptable for measuring personality traits 
(McMillan & Schumacher, 2001). What this 
means is that an achievement test with a 
reliability of .70 may be seen to be weak 
whereas a personality instrument with a 
reliability coefficient of .90 is considered 
excellent. 

Tuckman (1999) provided the following 
factors that affect reliability of a measurement 
instrument, (a) familiarity with the particular 
measurement instrument, (b) participant fatigue, 
(c) emotional strain, (d) physical conditions of 
the room in which the test is administered, (e) 
participant’s health, (f) participant’s practice or 
experience in the specific skill being measured, 
and (g) specific knowledge gained outside the 
experience being evaluated by the measurement 
instrument. McMillan and Schumacher (2001) 
noted that to enhance reliability, it is best to 
establish standard conditions of data collection. 
For example, all participants should be given the 
same directions and have the same time frame in 
which to answer questions at the same time 
during the day. Error is often increased if 
different people administer the instrument. 
 

Methodology 
 

Monte Carlo Procedure 
 Monte Carlo simulations perform 
functions empirically through the analysis of 
random samples from populations whose 
characteristics are known to the researcher 
(Brooks, Barcikowski & Robey, 1999). That is, 
Monte Carlo methods use computer assisted 
simulations to provide evidence for problems 
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that cannot be solved mathematically, such as 
when the sampling distribution is unknown or 
hypothesis is not true. 
 The principle behind Monte Carlo 
simulation is that the behavior of a statistic in a 
random sample can be assessed by the empirical 
process of actually drawing many random 
samples and observing this behavior (Mooney, 
1997). The idea is to create a pseudo-population 
through mathematical procedures for generating 
sets of numbers that resemble samples of data 
drawn from the population. 

Mooney (1997) noted that other difficult 
aspects of the Monte Carlo design are writing 
the computer code to simulate the desired data 
conditions and interpreting the estimated 
sampling plan, data collection, and data analysis. 
An important point to note is that a Monte Carlo 
design takes the same format as a standard 
research design. This was noted by Brooks, 
Barcikowski, and Robey, (1999) when they 
wrote “It should be noted that Monte Carlo 
design is not very different from more standard 
research design, which typically includes 
identification of the population, description of 
the sampling plan, data collection and data 
analysis” (p. 3). 

Like any methodology, Monte Carlo 
studies are not without disadvantages. Their 
usefulness depends in large part on the realism 
of the conditions that are modeled (Hutchinson 
& Bandalos, 1997). This means in setting up a 
Monte Carlo design, conditions set should 
resemble those found in practice otherwise 
results obtained will be of less utility. In this 
study, the conditions that are modeled are those 
that are encountered in real life situations 
(Zwick & Velicer, 1986). Another factor 
influencing results in a Monte Carlo study is the 
number of replications. This means in order to 
have a good model of a sampling distribution 
several replications should be performed.  
 
Pseudo-Population 

The conditions in the pseudo-population 
that were manipulated in this study are sample 
size, reliability, number of components, and 
variable-to-component ratio. These independent 
variables were selected on the basis of their 
importance in applied research and their ability 
to distinguish the accuracy of the PCA 

procedures (Velicer et al., 2000, Zwick & 
Velicer, 1986). The conditions used in this study 
and the levels within them are given below:  
 
Conditions Investigated 
Component loading (aij).  

The component loading is the Pearson 
correlation between a component and a variable. 
It is a measure of the degree of generalizability 
found between each variable and each 
component. This condition had two levels; a 
moderate coefficient of .50 and a very strong 
coefficient of .80 to represent small and large 
component loading respectively. These values 
were used by Zwick and Velicer (1986) because 
they generally bridge the range found in applied 
research situations and were shown to 
differentially affect the accuracy of the 
component extraction procedures. Component 
loading has been found to be one of the factors 
having the greatest effect on the accuracy of 
PCA procedures (Guadagnoli & Velicer, 1988, 
Velicer et al., 2000, Zwick & Velicer, 1986).  

      
Reliability (ρxx).  

Three levels of this variable were 
included. These levels are .60, .80 and 1.0. The 
value of .60 was included because it represents 
the near minimum acceptable reliability in 
applied research. The value of .80 was included 
because a reliability of .80 is generally 
considered good for most measures (McMillan 
& Schumacher, 2001). Previous Monte Carlo 
studies on PCA have assumed a reliability of 
1.0. So this value was included in this study for 
comparison purposes with earlier studies. In this 
study each of the 24 variables had uniform 
reliability. That is they all had either reliability 
of .6, .8 or 1.0. 
 
Variable-to-Component Ratio (p:m).  

The number of components chosen was 
three and six, but because the number of 
variables was chosen to be constant at 24, this 
leads directly to the variable-to-component 
ratios of 8:1 and 4:1, respectively. These values 
were chosen to reflect those reported in literature 
(Velicer, Eaton, & Fava 2000; Zwick & Velicer, 
1986). The number of variables was taken as a 
constant at a value of p = 24 across all the 
conditions. This value represents a moderately 
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sized data set (Stevens, 2002). It should be noted 
that other studies on principal component 
analysis (PCA) regard a value of p = 36 to be a 
small- to moderate-sized data set (e.g., Fava & 
Velicer, 1996, Zwick & Velicer, 1982, 1986).  
 
Generation of Population Correlation Matrices      
             The underlying population correlation 
matrices were generated for each possible p, p:m 
and aij combination in the following manner 
using RANCORR program by Hong (1999): 
 

1. The component pattern matrix was 
specified based on the combination of 
values for p:m and aij.  

2. The population correlation matrix was 
produced from the pattern matrix.  

3. The program was executed four times to 
yield four different population 
correlation matrices, one correlation 
matrix for each combination of 
conditions. 

 
Generation of samples 

     After the population correlation matrices 
were generated as described in the above 
section, the MNDG program (Brooks, 2002) was 
then used to generate samples from the 
population correlation matrices. This program 
generated multivariate normally distributed data, 
and reliability was systematically varied in the 
program to create unreliable scores based on the 
classical test theory. That is, reliability is defined 
as the proportion of raw score variance 
explained by true score variance, σΤ

2/σX
2

, or 
equivalently 1- σΕ

2
 /σX

2, with each raw score 
generated taken to be a total score.  

In the program, the reliability estimate 
was entered and was set to be the same for all 
the variables. For example, the value for 
reliability for .80 was provided as input to the 
program and was set to be the same for all the 24 
variables. The population mean and standard 
deviation were set to be equal to 0.0 and 1.0 
respectively. The data sets were generated for 
each of the combinations of the 3 x 2 x 2 design 
representing three levels of reliability, two levels 
of component loading and two levels of 
variable-to-component ratio yielding 12 
different cells.  

Data Analysis  
 One of the decisions in Monte Carlo 

studies is determining the number of replications 
to be run to obtain individual samples from the 
pseudo-population. There seem to be no clear 
guidelines on how to select the optimum number 
of replications. The specific number depends on 
the type of phenomenon being studied, the 
extent to which the steps of the simulation can 
be automated, as well as available computer 
resources (Hutchinson & Bandalos, 1997). 
Guadagnoli and Velicer (1991) recommended 
that five replications per cell are adequate for 
PCA studies. This was also supported by Velicer 
et al. (2000) who used five replications in their 
study to compare various PCA procedures. 
However, this study used 10 replications 
(samples) per cell since this was feasible given 
the computer capabilities available. This yielded 
a total of 120 samples for the 12 cells.  

Each of the samples was submitted to 
the four procedures to determine the number of 
components extracted. The number of times that 
each procedure was correct in determining the 
number of components was recorded. The 
accuracy was then measured by the percentage 
of the correct components extracted by each 
procedure. This was done by counting the 
number of times each procedure extracted the 
exact number of components in each cell, and 
then expressing it as a percentage of the total 
number of samples in that cell. The mean 
component extracted in each cell was calculated 
by summing the number of components across 
the 10 samples and then divide by 10. 
 

Results 
 

The issue in this study was whether reliability 
influences the accuracy of the Kaiser rule, scree 
plot, Horn’s parallel analysis and modified 
Horn’s parallel analysis procedures. This issue 
was investigated by calculating the percentage 
of times that each procedure was correct in 
determining the correct number of components. 
It became apparent in this study that reliability 
has an influence in determining the number of 
components to retain under certain conditions.  
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However, under other conditions, the influence 
of reliability on the performance of the 
procedures is not very apparent.  

Figure 1 shows the performance of each 
procedure in terms of percentages at each level 
of reliability for variable-to-component ratio of 
4:1 when the cells were collapsed across sample 
size and component loading. At the reliability of 
.60, all the procedures were less than 60 percent 
accurate. As reliability increased, so was the 
accuracy of the procedures. At lower reliability 
levels, Horn’s parallel analysis procedure 
performed slightly better than the all the other 
procedures. However, at a reliability of 1.0, 
modified Horn’s parallel analysis was the best 
procedure. 
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Figure 1. The overall percentage of the correct 
number of components extracted by each 
procedure collapsed across component loading 
for 4:1 variable-to-component ratio. 
 

When the information is presented 
collapsed across sample size only (as in Figure 
2) and when component loading was high, (.80), 
and variable-to-component ratio was 4:1, the 
scree plot, HPA, and MHPA were at least 70 
percent correct even at the reliability of .60. 
However, the picture is the same as in Figure 1 
that as reliability increased, so does the 
performance of the procedures as measured by 
the percentage correct. The performance of the  

 
 
 

Kaiser rule is something that stood out in these 
results especially considering that in most 
previous studies; the Kaiser rule demonstrated 
poor performance. In this study, generally the 
procedure was poor as well, but a look at Figure 
2 shows that when variable-to-component ratio 
was 4:1, and component loading was .80, the 
Kaiser rule did very well especially at reliability 
of 1.00. At this reliability level, the Kaiser rule 
was about 90 percent correct in determining the 
number of components. 
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Figure 2. Percentage of the correct number of 
components extracted by each procedure when 
the variable-to-component ratio is 4:1, 
component loading is .80. 
 
 

Figure 3 shows that when variable-to-
component ratio was 8:1; and component 
loading was .80, reliability did not have any 
influence on the accuracy of the scree plot, 
HPA, and MHPA. These three procedures were 
100 percent accurate at all the reliability levels. 
However, reliability had a slight influence on the 
performance of the Kaiser rule. Under these 
conditions (with few variables per component), 
the Kaiser was very poor even though the other 
procedures were very accurate at all the levels of 
the reliability. 
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Figure 3. Percentage of the correct number of 
components extracted by each procedure when 
the variable-to-component ratio is 8:1, 
component loading is .80. 
 

 
Figure 4 shows the relationship between 

the mean number of components extracted by 
each procedure and reliability. The exact number 
of components to be extracted here is six, and is 
indicated on the graph by a horizontal line. 
Under conditions of component loading of .50, 
only the Kaiser rule appeared to be responsive to 
a change in reliability.  It is clear from Figure 4 
that most of the procedures did not extract the 
correct number of components under these 
conditions. Only the scree plot was accurate at 
reliability of .60, but as reliability increased, the 
scree plot displayed a tendency to over-extract. 
On the other hand, MHPA under-extracted at 
lower reliability levels, but as reliability 
increased, it displayed a tendency to over-
extract. The bottom line is, when component 
loading is low, the pattern of the performance of 
the procedures is not clearly defined. 
 
 
 
 
 
 
 

 
 
 
 

RELIABILITY

Reliability 1.0Reliability .8Reliability .6

M
E

A
N

 C
O

M
P

O
N

E
N

TS
 E

X
TR

A
C

TE
D

11

10

9

8

7

6

5

4

PROCEDURE

Kaiser rule

Scree plot

HPA

MHPA

 
 
Figure 4.  The mean number of components 
extracted by each procedure for variable-to-
component ratio of 4:1 and component loading 
of .50. 
 

 
In Figure 5, the actual number of 

components was three and that is shown by a 
horizontal line at 3. The graph shows an almost 
similar picture as that in Figure 4 where the 
performance of the Kaiser rule improved with an 
increase in reliability. However, the pattern of 
the performance for the scree plot, HPA, and 
MHPA as reliability increased is not clearly 
defined. These results are consistent with 
previous research that found that when 
component loading is low, the component 
structure is more diffuse, and the performance of 
the different procedures cannot be clearly 
distinguished under these conditions. 
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Figure 5. The mean number of components 
extracted by each procedure for variable-to-
component ratio of 8:1 and component loading 
of .50. 
 
 
Practical implications 

It is important for practitioners to know 
that imperfect scores impact the performance of 
the procedures they use to determine the number 
of components to retain. A stronger reliability is 
mostly desirable if the results will be used to 
make decisions about individuals. Although 
most practitioners and researchers use 
instruments with high reliability (at least 
reliability of .80); sometimes instruments with 
low reliability are unavoidable. For example, 
studies of groups can tolerate a lower reliability, 
sometimes as low as .50 in exploratory research 
(McMillan & Schumacher, 2001). The same 
authors also noted that measures of young 
children are usually less reliable than those of 
older participants. This could be because of 
problems in the reading and language level, as 
well as lack of clear instructions. Under these 
conditions of low reliability, it becomes 
important for practitioners to understand how 
that might impact their decisions on retaining the 
correct number of components. 

 What also became clear in this study is 
that practitioners should be cautious in 
determining the number of components to retain 
in PCA. This is especially critical when the data 
have low component loading. Under these 
conditions, almost all procedures are inaccurate  

 
 

 
in determining the correct number of 
components. It would be best for practitioners to 
use more than one procedure and then compare 
the results. The scree plot can be a very useful 
procedure to use as an adjunct, but probably not 
as a stand-alone procedure.  

It is important to mention that the best 
way to make a decision about how many 
components to extract should be based on the 
knowledge that the practitioner or researcher has 
about the data. These various PCA procedures 
we use are just tools that help us extract 
components but should never substitute the 
knowledge that the researcher has about the 
data. In other words, components that are 
extracted should have some practical 
significance, they should have meaning to the 
researcher and the tools should not be used 
blindly to determine the number of components 
to extract.  

 
Conclusion 

 
Although this study provided some 

important insights into how reliability influences 
the number of components to extract especially 
for high component loading, what seemed 
unclear is whether the differences between the 
different procedures are large enough to 
recommend one procedure over the other at a 
given reliability level. For example, can one say 
at low reliability level, the scree plot is a better 
procedure to use than HPA or MHPA? Such a 
recommendation is not possible in this study. 
Instead, researchers are recommended to take 
into account the reliability of the scores when 
they interpret the number of components 
extracted. This is supported by Henson (2001) 
who pointed, “… for tests that consist of scales 
measuring different constructs, internal 
consistency should be assessed separately for 
each scale” (p. 181). 
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