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Simulation of Non-normal Autocorrelated Variables 

 
H.E.T. Holgersson 

Department of Economics and Statistics 
Jönköping International Business School 

 
 
 
All statistical methods rely on assumptions to some extent. Two assumptions frequently met in statistical 
analyses are those of normal distribution and independence. When examining robustness properties of 
such assumptions by Monte Carlo simulations it is therefore crucial that the possible effects of 
autocorrelation and non-normality are not confounded so that their separate effects may be investigated. 
This article presents a number of non-normal variables with non-confounded autocorrelation, thus 
allowing the analyst to specify autocorrelation or shape properties while keeping the other effect fixed.  
 
Key words: Autocorrelation, non-normality, confounding, robustness. 
 

 
Introduction 

 
All statistical methods rely on assumptions to 
some extent. These assumptions, for example, 
may be that some moments are finite or that the 
variance is homogenous at all data points. Other 
assumptions involve normal distribution or 
independence. If some of the assumptions are 
violated then the expected properties of the 
method may no longer hold. For example, a 
statistical hypothesis test that requires 
independence of the data may seriously over 
reject under the null hypothesis if the data 
possess autocorrelation.  

It is therefore important to investigate 
the robustness properties of statistical methods 
before they are applied to real data. Although 
modern computers are developing   at   a   rapid   
pace,  it   has    become  increasingly   popular to 
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perform robustness studies of such assumptions 
by Monte Carlo simulations. However, when 
examining robustness to autocorrelation and 
non-normality, some technical problems arise.  

Because autocorrelation usually is 
generated by a recursive sequence of random 
numbers, the central limit theorem will force the 
autocorrelated variable to be more normal when 
compared to the variable used to generate the 
sequence. For example, imagine the problem of 
investigating the robustness of a non-normality 
test to autocorrelation. If a skewed variable is 
used to recursively generate a skewed and 
autocorrelated variable, then this new variable 
will be more symmetric than the original one 
and will be more symmetric the larger the 
autocorrelation is. Thus, the simulation study 
will not reveal the separate effects of 
autocorrelation and non-normality as was 
intended.  

Several such examples are to be found 
in the literature. For example, Shukur (2000) 
examined the robustness of an autocorrelation 
test to non-normality by generating a first order 
autoregressive process with non-normal 
disturbances and Bai and Ng (2005) applied the 
first order autoregressive process with non-
normal disturbances to investigate the robustness 
of a non-normality test to autocorrelation. Such 
effects of confounding can be avoided by using 
alternative methods of generating the variables. 
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A number of variables are proposed that are 
non-normal but autocorrelated and allow for 
separate control of the shape properties 
(skewness/kurtosis) and autocorrelation.  All 
proposed variables are easy to generate in 
standard software packages.  
 
Non-Normal And Autocorrelated Variables 

The question of how to simulate random 
variables with given distributional properties 
have been given a great deal of attention (see 
Johnson (1987) for a general description). One 
of the most frequently used methods is the so-
called inverse method. Assume the problem 
consists of generating a variate X  whose 
distribution is specified by F  and that F  is 
strictly increasing with inverse function 1F − . 
Then, the inverse method consists of first 
generating a uniformly distributed variate U  
and then calculating the variable of interest by 

( )1X F U−= . This method is fast and simple 
because all statistical software provides facilities 
for generating uniformly distributed variates.  

Unfortunately, the issue becomes much 
more complicated when generating 
autocorrelated variables with given distribution 
because the mapping U X  usually will 
change the autocorrelation pattern of U  
drastically. Furthermore, it is not an easy task to 
generate autocorrelated variates which are 
uniformly distributed. This suggests that the 
inverse method is not very useful for the 
problem of generating autocorrelated variates 
with given marginal distribution, and so other 
methods are usually applied for that purpose. In 
particular, such variates are frequently generated 
by finite order ARMA models, often the AR(1) 
process, with given distribution of the 
disturbances. Unfortunately, this method will not 
result in the distribution aimed at. This can be 
seen from the following: Consider the linear 
process defined by 
 

                                                   

0t Y i t ii
Y μ ψ δ∞

−=
− =∑                                              

                                                                      (2.1) 
where tδ  are some zero mean independently 
identically distributed variables and the iψ ´s are 

constants such that 
0 ii
ψ∞

=
< ∞∑ . Without loss 

of generality, assume that 0Yμ =  and 

( ) 20tVar δδ σ= < < ∞ . The sequence (2.1) is 
known as the infinite order moving average 
process, also referred to as a linear process, and 
encompasses all stationary variables according 
to Wold´s decomposition theorem. It is seen 
directly from (2.1) that because the right hand is 
the sum of a (possible infinite) number of 
variables, The left hand side will in general be at 
least as normally distributed as the tδ  due to the 
central limit theorem. For example, the AR(1) 
process defined by  
 

1t t tY Yφ δ−= +                                                      
                                                                     (2.2) 
 
is a special case of (2.1) where i

iψ φ= . Then it 
follows that the distribution of tY  will be more 
normal when compared to tδ  for 0φ ≠ . Now, it 

is not generally true that 0 i iψ > ∀ . An 
example is the finite order MA(q) model.  

However, it is readily seen that already 
the skewness of an MA(1) process is closer to 
that of a normal distribution when compared to 
the skewness of δ . In fact, it may be shown that 
for a process defined by  
 

1t t tY δ θδ −= +                                                       
                                                                      (2.3) 
 
the skewness of tY  is given by  
 

[ ] [ ]( )
( )

( )

3 23 2
1,

3

1, 3 22

:

1

1

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

+
=

+

Y E Y E Y E Y E Y

δ

β

θ
β

θ

 

 
where 1,δβ  is the skewness coefficient of δ  

(see Appendix). Hence, if for example 1, 5δβ =  
and 0.7θ = −  the skewness becomes 



SIMULATION OF NON-NORMAL AUTOCORRELATED VARIABLES 

 

410 

( ) ( )3 23 2
1, 5 1 0.7 1 0.7 1.8Yβ = − + ≈ , which is 

less than half that of 1,δβ . Thus, if one wishes to 
investigate the power properties of an 
autocorrelation test when applied to non-normal 
data, and applies model (2.3) for different values 
of θ , then  the effect of non-normality will be 
confounded with the power properties because 
the skewness is a direct function of the 
autocorrelation.  

In light of the above discussion, one 
may wonder how autocorrelated and non-normal 
variables should be generated then. The fact that 
autocorrelation in general will smooth out non-
normality suggests that autocorrelated normally 
distributed variables should be generated at a 
first step, and the non-normality should be 
imposed in the second step. Furthermore, the 
transformation to non-normality should result in 
a simple relation between the autocorrelation of 
the original variable and that of the transformed, 
thus allowing for total control of the 
autocorrelation pattern. In the following, that 
principle will be applied in a series of theorems 
that describe the generation of the variables and 
its properties. 

 
Theorem 1.  

Let 1t t tY Yφ δ−= +   where ( )~ 0,1
iid

t Nδ , 

1φ < , and define 2:t t YY Y σ=  where 

( ) ( )2 21 1Y V Yσ φ= = − . Then ( )
2 2

1~tY χ  

independently of the value of φ , and the 
autocorrelations of 2

tY  is given by 

( )2
2k

Y
kρ φ= . 

 
Proof of Theorem 1:  

The variance of the AR(1) process is 
well known to be given by ( )2 21 1Yσ φ= −  and 

hence ( )~ 0,1tY N  and the chi-square 

distribution of 2
tY  follows directly. The 

autocovariances ( )2Y
kγ  of 2Y  are given by:  

 
 

( )

( )
( )

2
2 2 2 2

2 2 2 2

22 2 2
1

2 2 2 2 2 2
1 1

2 2 2 2 2
1

2 2 2 2 2 2 2
1

1 1

1

2 1

2

− −

− ⋅
−

− ⋅
− −

− ⋅
− − −

− −
− −

− − − −
− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤= − ⋅⎣ ⎦
⎡ ⎤= + −⎢ ⎥⎣ ⎦
⎡ ⎤= + + −⎣ ⎦

⎡
= ⎢

+ +⎢⎣

t t k t t kY

Y t t k

Y t t t k

Y t t t t t k

Y t Y t k
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k E Y Y E Y E Y

E Y Y

E Y Y

E Y Y Y

Y Y
E

Y Y Y

γ

σ
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φ σ σ
φσ ε σ σ ε σ
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( )

( ) ( )( )
( )

2

2

2 2 2
1

2 2 2 2 2 2
1 1

2

2 2 2 2 2
1 1

2 2 2 2
1

2 2
2

2

1
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1
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+ + −
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−

= −

t t k
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σ
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Furthermore,  
 

( )2
2 2 2 20

3 1 1
2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= − ⋅
=

t t t tY
E Y Y E Y E Yγ

 

 
By using recursion, it follows that that 

( )2
22 .k

Y
kγ φ ⋅=  The autocorrelation function of 

2
tY  is thus determined by 

( ) ( ) ( )2 2 2
20 k

Y Y Y
k kρ γ γ φ= =  and Theorem 1 

follows. In other words, the autocorrelation 
behaves like that of an AR(1) process with 
autoregressive parameter 2φ  while the 
distribution is ( )

2
1χ . Also note that the shape 

property is independent of the autoregressive 
parameter.  

Now, this variable is highly skewed and 
may not be appropriate in situations where near-
normal distributions are required. The next 
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theorem proposes a general ( )
2
rχ   distributed 

variable (which limits a normal distribution as r  
increases) with non-confounded autocorrelation: 
 
Theorem 2.  

Let 2
1

: r
t jtj

Z Y
=

=∑  where 

,  1, 2,...,jtY j r=   are mutually independent 
variables defined as in Theorem 1 with common 
autocorrelation parameter φ . Then the skewness 

and kurtosis of tZ  are given by 1, 8Z rβ =  

and 2, 3 12Z rβ = +  respectively, independently 

of φ , and the autocorrelation of tZ  is given by 

( ) 2k
Z kρ φ= , independently of r . 

 
Proof of Theorem 2:  

The chi-square distribution follows 
directly from the fact that a sum of r 
independent ( )

2
1χ  variates is distributed as ( )

2
rχ . 

The skewness and kurtosis of such variates are 
well known and can be found in Johnson et al 
(1994). The autocovariance is obtained by using 
the property ( )2

2 2 1t t k Y
E Y Y kγ−⎡ ⎤ − =⎣ ⎦  (given in 

the derivation of Theorem 1):  
( ) [ ] [ ] [ ]

2 2
, , , ,1 1 1 1

2 2 2 2
, , , ,1

2 2 2 2
, , , ,1

2

: − −

− −= = = =

− −= ≠

− −= ≠

−

= −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤= + − ⋅⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

∑ ∑ ∑ ∑

∑ ∑
∑ ∑

Z t t k t t k

r r r r
i t i t k i t i t ki i i i

r r
i t i t k i t j t ki i j

r r
i t i t k i t j t ki i j

t t k

k E Z Z E Z E Z

E Y Y E Y E Y

E Y Y Y Y r r

E Y Y E Y E Y

rE Y Y

γ

( )

( )
( )2

2 2

2 2

2

1

1

2 .

−

⎡ ⎤ + − −⎣ ⎦

⎡ ⎤= −⎣ ⎦
=

=

t t k

Y
k

r r r

r E Y Y

r k

r

γ

φ
 

In particular, ( ) 00 2Z rγ φ=  and so 

( ) 2k
Z kρ φ=  as was to be shown. In other 

words, the shape-part of the distribution of tZ  is 

( )
2
rχ  and the autocorrelation-part of the 

distribution is ( ) 2k
Z kρ φ= , and none of the 

effects is confounded to the other. Thus, the 
skewness and kurtosis can be determined over 
an arbitrary (though discrete) range of values 
independently of the autocorrelation. The next 
theorem proposes a symmetric non-normal 
variable with non-confounded autocorrelation: 
 
Theorem 3.  

Let tZ  be defined as in Theorem 2. 

Also, let 1t t tc cφ ε−= +   where ( )~ 0,1
iid

t Nε , 

and define ( )2: 1 1t tc c φ= −  and 

( ):t t tW c Z r= − . Then the skewness and 

kurtosis of tW  are given by 1, 0Wβ =  and 

( )2, 3 3 12W rβ = +  independently of φ  while 

the autocorrelations are given by 3kφ , 
independently of r . 
 
Proof of Theorem 3:   

Firstly, note that tc  and ( )tZ r−  are 

mutually independent and that [ ] 0tE W = . 

Hence, the skewness and kurtosis of tW  are 
given by: 
 

 

[ ] [ ]
( ) [ ]

3 3 2
1,

3 233

0,

=

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦
=

W t t

t t

E W E W

E c E Z r E W

β

 

 
and 

 

( )
( )

( ){ } ( ){ }
{ }

24 2
,2

24 4 2 2

2 24 2 4 2

3 3 12 .

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= +

W t t

t t t t

t t t t

E W E W

E c E Z E c E Z

E c E c E Z E Z

r

β
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Hence, the W  variable is symmetric with 
kurtosis determined by r  with range 

2,9 45Wβ< ≤ . Furthermore, by using the 
results of the proofs of Theorem 2 and Theorem 
3, the autocovariances may be obtained: 
 

( ) [ ]
[ ]
[ ] ( )( )

( ){ }
( ){ }

( ){ }
{ }

( )2

1

2
1

2

2 2 2

2 2

2

0

1

1

2 .

−

− −

− −

− −

−

−

−

= −

=

= − −⎡ ⎤⎣ ⎦

= − − +

= −

⎡ ⎤= + − −⎣ ⎦

⎡ ⎤= −⎣ ⎦

=

=

W t t

t t t k t k

t t k t t k

k
t t k t t

k
t t k

k
t t k

k
t t k

k
Y

k k

k E WW

E c Z c Z

E c c E Z r Z r

E Z Z rZ rZ r

E Z Z r

rE Y Y r r r

r E Y Y

r k

r

γ

φ

φ

φ

φ

φ γ

φ φ

 

 
Hence, ( ) 32 k

W k rγ φ=  and in particular 

( )0 2W rγ = . Thus, the autocorrelations are 

given by ( ) 3 32 2k k
W k r rρ φ φ= =  

independently of r as was to be shown. Thus, 
Theorem 3 provides a symmetric but non-
normal variable where the autocorrelations can 
be identical to those of an AR(1) process by 
putting the autocorrelation parameter of the 
original variable equal to 1 3φ .  

In general, the variables presented in 
Theorems 1-3 share the property that they all 
have autocorrelations that decay slowly in the 
sense that they are non zero at all lags if 0φ ≠ . 
In many instances it is of interest to generate 
autocorrelations that are zero above a certain 
lag. Therefore, some short memory processes of 
MA(1) type will also be proposed. These are 
presented below:  
 
Theorem 4.  

Let 1t t tY δ θδ −= −   where ( )~ 0,1
iid

t Nδ  

and define 2:t t YY Y σ=  where 2 21Yσ θ= + . 

Then, ( )
2 2

1~tY χ  independently of φ   and the 

autocorrelations are given by  

( ) ( )2

22 21 1  1
tY

kρ θ θ= + =  and 

( )2 0 1
tY

k kρ = >  independently of r . 

 
Proof of Theorem 4.  

The chi-square distribution follows 
trivially as Y  is a standard normally distributed 
variate. The second order moments are given by 
 

( ) ( )2
20 2tY

V Yγ = = . 

( )

( )( )
( )( ) ( ) ( )

( )( )
( ) ( )

2
2 2 2 2

1 1

22 2 2
1

2 2 22
1 1 2

2 2 2 2 2
2 1 22

2 4 4 2 2
1 1 2

22 4 2

2

1

1 1 1 1

1 1 1

1 1 1

1 4 1 1

2 1

− −

−

− − −

− −

− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= + − ⋅⎣ ⎦

⎡ ⎤= + − − −⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤+⎪ ⎣ ⎦ ⎣ ⎦ ⎪= + −⎨ ⎬
⎡ ⎤ ⎡ ⎤+ +⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

= + + + −

=

t t t tY

t t

t t t t

t t t t

t t t

E Y Y E Y E Y

E Y Y

E

E E

E E

γ

θ

θ δ θδ δ θδ

δ δ δ θ δ
θ

θ δ θ δ δ

θ θ θ

θ ( )22 .+θ
 

An analogous proof reveals that 
( )2 0 if  1.

Y
k kγ = >  Hence the 

autocorrelations of 2
tY  are given by 

( ) ( ) ( )2

2 22 2 2 21 2 2 1 1  1
tY

kρ θ θ θ θ= + = + =  

and ( )2 0 1
tY

k kρ = >  as was to be shown. 

Thus, the autocorrelations of 2
tY  are those of an 

MA(1) process where the autocorrelation at lag 

1 equals the root of ( )22 21θ θ+  which, in 

turn, is bounded between 0 and 0.25 (the 
maximum being reached at 1θ = ). This variable 
may also be extended to an arbitrary ( )

2
rχ  

distribution: 
 
 
 
 



H.E.T. HOLGERSSON 
 

413

Theorem 5.   
Let 2

1
: r

t jtj
Z Y

=
=∑  where 

,  1, 2,...,jtY j r=   are mutually independent 
variables defined as in Theorem 4 with common 
autoregressive parameter θ . Then the skewness 
and kurtosis of tZ  are given by 1, 8Z rβ =  

and 2, 3 12Z rβ = +  independently of θ , and 
the autocorrelations of Z  are given by   

( ) ( )2

22 21 1  1
tY

kρ θ θ= + =  and 

( )2 0 1
tY

k kρ = > , independently of r . 

 
Proof of Theorem 5.  

The skewness and kurtosis are 
motivated in Theorem 2. Analogous to the proof 
of Theorem 2, ( ) ( )2 2 1Z t t kk r E Y Yγ −⎡ ⎤= −⎣ ⎦ , and 

as the variance is given by 
( ) [ ]0 2

tZ tVar Z rγ = =  it follows that the 
autocorrelations are given by  

 

( ) ( ){ }
( )

2

22 2

22 2

1 2 1 2

1  1

= +

= + =

tY
r r

k

ρ θ θ

θ θ
  

 
and ( )2 0 1

tY
k kρ = >  as was to be shown. The 

Z  variable may also be symmetrized according 
to the following: 
 
Theorem 6.   

Let tZ  be defined as in Theorem 5. 

Also, let 1t t tc ε θε −= −   where ( )~ 0,1t Nε , 

and define ( )2: 1t tc c θ= +  and 

( ):t t tW c Z r= − . Then, the skewness and 

kurtosis of tW  are given by 1, 0Wβ =  and 

( )2, 3 3 12W rβ = +  independently of θ  and 

the autocorrelations of tW  are given by  

( ) ( ) ( )23 21 1 ,   0  1W W k kρ θ θ ρ= − + = >  

independently of r . 
 

Proof of Theorem 6. 
The skewness and kurtosis are given in 

the proof of Theorem 3. The autocovariance of 
tW  is  

 
( ) [ ]
[ ] ( )( )

( )
[ ]( )( )
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( )2
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1 1

2
1

2 2
1

2 2

1

1
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−
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−

−

−

=

= − −⎡ ⎤⎣ ⎦
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= − + −

⎡ ⎤= − −⎣ ⎦
= −

W t t

t t t t

t t

t t

t t k

Y

E WW

E c c E Z r Z r

E Z Z r

Cov Z Z r r

r E Y Y

r k

γ

θ

θ

θ

θ γ

 

 
Hence,  
 

( ) ( ) ( ){ }22 20 2 ,  1 2 1W Wr rγ γ θ θ θ= = − + , 

 
( ) 0 1W k kγ = >  and the theorem follows. 

Hence, the autocorrelations behave like those of 
an MA(1) process with MA parameter 

determined by the root of ( )23 21θ θ− +  which 

is bounded in the interval ( )0.32,0.32−  with 
maximum at 1.73θ = ± . 

The variables proposed above are all 
univariate. It will sometimes be of interest to 
generate multivariate variables with cross 
correlation between pairwise marginal variables. 
When imposing such cross correlation one wish 
to do that in a manner that does not alter the 
marginal distributions. This can be achieved by 
letting one or several variables used to form the 
marginal variables be identical (fixed) in all 
marginal variables. The next theorem describes 
such variables and its main properties:  
 
Theorem 7. 

Let   ,  1, 2,..., ,   1, 2,...,ijtY i P j r= =  be 
mutually independent variables defined as in 
Theorem 1 or Theorem 4, depending on whether 
the AR(1) or MA(1) process have been used to 
generate the autocorrelation, with common 
autocorrelation parameter φ  (or θ ). Then 
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define 2 2
, 1, , , ,1 1

: ,h r
i t j t i j tj j h

Z Y Y
= = +

= +∑ ∑  

Pi ,...,2,1=  and let 1, ,, ...,t t P tZ Z⎡ ⎤= ⎣ ⎦Z  be a 

random vector of the marginal variables tiZ , . 
Then, the cross correlations between two 
marginal variables of tZ  are given by  

 
( ), ,, ,   i t i tCorr Z Z h r i i′ ′= ≠ . 

 
Proof of Theorem 7. 

Assume for the moment that 1h = . 
Then, on observing that each tiZ ,  is a chi square 
variate, the covariance becomes:  
 

( )

( )( )
( )

( )

, ,

, , , ,

2 2 2 2 2
1,1, , , 1,1, , ,2 2

22 2 2
1,1, 1,1, , ,2

2 2 2 2
,2, 1,1, ,2, , ,2

2 2
, , 1,1,

,

...

′

′ ′

′= =

′=

′=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤= + + −⎢ ⎥⎣ ⎦

+

= + + +

+ +

∑ ∑

∑
∑

i t i t

i t i t i t i t

r r
t i j t t i j tj j

r
t t i j tj

r
i t t i t i j tj

i r t t

Cov Z Z

E Z Z E Z E Z

E Y Y Y Y r

Y Y Y

E Y Y Y Y

Y Y( )
( ) ( )( )

( )( )
( )

2

2 2
, , , ,2

2

2

3 1 1 1 1 1 1

... 1 1 1 1

3 1 ...
2.

′=

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= + ⋅ − + ⋅ + − +

+ ⋅ + − −

= + − + + + −
=

∑ r
i r t i j tj

r

Y Y

r r

r r

r r r r

 
Because the marginal tiZ ,  variables are 

distributed as ( )
2
rχ  it follows that the correlation 

is given by ( ), ,, 2 2 1i t i tCorr Z Z r r′ = = . By 

applying an analogous proof for a general 
0 h r≤ ≤  it is seen that ( ), ,, 2i t i tCov Z Z h′ =  

and hence the cross correlation is given by 
( ), ,, 2 / 2i t i tCorr Z Z h r h r′ = =  which 

completes the proof.  
In other words, Theorem 7 proposes a 

random vector with marginal variables of the 

kind described in Theorem 2 (or Theorem 5) 
though with cross correlations given by h r . It 
is also possible to generate symmetric 
multivariate variables as shown in the next 
theorem:  
 
Theorem 8.  

Let tZ  be defined as in Theorem 7 and 

let ( ):t t tW c Z r= −  where tc  is defined as in 
Theorem 3 (or Theorem 6). Then the cross 
correlation between ,i tW  and ,i tW ′  is given by 

( ), ,,i t i tCorr W W h r′ =  independently of φ  (or 

θ ). 
 
Proof of Theorem 8. 

The cross covariance is given by  
( )
( )

( ) ( )( )
( )( )( )

( )
( )

, ,

, ,

, ,

2
, ,

2
, ,

2 2

,

, 0

2

2 .

′

′

′

′

′

= −

= − −

⎡ ⎤= − −⎣ ⎦

= −

= + −

=

i t i t

i t i t

t i t t i t

t i t i t

i t i t

Cov W W

E W W

E c Z r c Z r

E c E Z r Z r

E Z Z r

h r r

h

 

 
Finally,  
 

( )
( ) ( )

( )( )
( ) ( )

( )

,

2 2
, ,

22
,

22
,

,

0

1

2 .

= −

= − −

= −

= ⋅

=

i t

i t i t

t i t

t i t

i t

Var W

E W E W

E c Z r

E c E Z r

Var Z

r

 

 
This completes the proof. 

The variables proposed above allow for 
separate control of shape properties and 
autocorrelations. In particular, the variables 
formed by transformations of AR(1) processes 
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(those of Theorems 1-3) behave like AR(1) 
processes and the domain of the autoregressive 
parameter remains 1 1φ− < < . In other words 
these variables provide a tool for generating 
AR(1) processes with non-normal distributions. 
On the other hand, the domains of the 
autoregressive parameter (which is equal to the 
whole real line though usually kept in the span 

1 1θ− < < ) of the MA(1) type variables (those 
of Theorems 4-6) do not remain when 
transformed to non-normality.  

This might be a drawback in some 
instances though they do provide a tool for 
investigating the effect of non-normal short 
memory processes. In general, the proposed 
variables should cover most robustness problems 
met in practice. Further research in the matter 
could involve the development of generating 
non-normal processes with long memory of 
ARFIMA   type    with    autocorrelations    non- 
confounded with shape properties. Other 
relevant issues involve non- stationary processes 
with given shape properties. This, however, is 
beyond the scope of this article and is left for 
future studies. 
 

Conclusion 
 

In this article, it is argued that care must be 
taken when simulating autocorrelated and non- 
normal variables so that the autocorrelation is 
not a function of the shape property and vice 
versa. Furthermore, a number of random 
variables specially designed for simulation 
studies concerning shape properties and 
autocorrelation are proposed. The variables 
involve univariate or multivariate distributions, 
which are symmetric or skewed and have short 
memory or long memory. Thus, they cover a 
fairly wide range of applications. Furthermore, 
all variables are easily generated in any standard 
statistical software packages that have facilities 
to generate AR or MA processes. 
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Appendix 
 
Let  , : h

X h tE Xμ ⎡ ⎤= ⎣ ⎦  , : h
h tEεμ ε⎡ ⎤= ⎣ ⎦  for 

1, 2,3.h =  Then, if tε  is a sequence of iid (zero 
mean) uniformly integrable variables, the 
following holds: 
 

( )

[ ]

2

,2 0

2 2
0

2
0

2
,2 0

.

∞
−=

∞
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( )4

,4 0
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Hence, if an MA(1) process is determined by 
  
                        
   1t t tX ε θε −= +                                                               
                                                                      (A1) 
 
 
it follows that the skewness  is given by 
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                                                                      (A2) 
 

Because 
( )

( )
3

3 22

1

1

θ

θ

+

+
 is bounded in the span 

( )1,1−  it follows that 1, 1,X εβ β≤ . 

  
Furthermore, the kurtosis of the MA(1) 

process is given by 
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+ +
ε
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                                                                      (A3) 
 
Note that (A3) is 3 if 2, 3εβ = . Furthermore, it 

may be shown that the kurtosis of 2,Xβ   is 
always closer to the kurtosis of the normal 
distribution when compared to 2,εβ , i.e. 

2, 2,3 3X εβ β− ≤ − . 
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