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Restricted Quasi-Independent Model Resolves Paradoxical  
Behaviors of Cohen’s Kappa 

 
Vicki Stover Hertzberg  Frank Xu  Michael Haber 

Department of Biostatistics 
Emory University 

 
 

Cohen’s kappa, an index of inter-rater agreement, behaves paradoxically in 2×2 tables. λA is derived, an 
index from the restricted quasi-independent model for 2×2 tables. Simulation studies are used to 
demonstrate λA has superior performance compared to Scott’s pi. Moreover, λA does not show paradoxical 
behavior for 2×2 tables.  
 
Keywords: Quasi-independent model; Cohen’s kappa; Scott’s pi; inter-rater agreement 
 

 
Introduction 

 
In clinical trials and epidemiology studies, 
agreement studies are often conducted in order 
to assess and characterize the extent to which 
two sets of measurements on the same unit of 
observation agree. Examples of such studies 
include when raters examine a group of subjects 
to determine the presence or absence of a trait, 
sort them into previously arranged categories, or 
rate them according to a previously defined 
scale. Examples of areas in which rater 
variability is of concern include the 
interpretations of image results in radiology, 
diagnoses made on the basis of laboratory 
measurements, or psychiatric evaluations. Data 
from a study in which raters A and B classify N.. 
subjects into k categories are the counts {Nij: 
i=1,…,k; j=1,…,k}   where   Nij is the number of  
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subjects that are simultaneously classified as 
category i by rater A and category j by rater B. 
 A variety of measures are available to 
assess the extent of agreement between ratings. 
Because  some agreement can be expected 
merely due to chance, an important 
consideration in selecting such a measure is 
whether or not it is a chance-corrected index. 
The more popular indices that are chance-
corrected include the S statistic (Bennett, et al., 
1954), Scott’s pi (Scott, 1955), and Cohen’s 
kappa (Cohen, 1960). Among these measures, 
Cohen’s kappa is a popular choice, due to its 
intuitive means for correcting for chance. The 
population value for Cohen’s kappa can be 
written as  
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where π0 is the proportion of observed 
agreement and πe is the proportion of agreement 
expected by chance alone. Cohen’s kappa, κ, is 
estimated in the k×k table as  
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There are a variety of generalizations of Cohen’s 
kappa, such as versions that are weighted for 
ordinal scale assessments as well as versions for 
use in the assessment of multi-rater agreement. 
In this article, the discussion is confined to the 
assessment of the agreement and disagreement 
between two raters in a simple square 
contingency table. 

Despite its popularity as an index of 
agreement, Cohen’s kappa exhibits paradoxical 
behaviors in 2×2 tables (Feinstein & Cicchetti, 
1990). For a given 2×2 table, the marginal 
probabilities are called symmetrical if either 
(N1./N.. ≥ 0.5 and N.1/N..  ≥ 0.5) or (N1./N.. ≤ 0.5 
and N.1/N..  ≤ 0.5). The marginal probabilities 
are called balanced if both N1./N.. and N.1/N.. are 
close to 0.5. One such paradox is that κ 
estimated for a table with symmetrical 
unbalanced marginal probabilities can be 
substantially less than κ estimated for a table 
with symmetrical balanced marginal 
probabilities although both tables have the same 
amount of observed agreement. In addition, a 
table with asymmetrical unbalanced marginal 
probabilities will have larger estimated κ than a 
table with symmetrical unbalanced marginal 
probabilities even though the observed 
agreement is the same, the second paradox.  

Several authors (Brennan, et al., 1981, 
Cicchetti & Feinstein, 1990, Lantz & Nebenzahl, 
1996, Byrt, et al., 1993) investigated this 
problematic behavior. They have suggested 
companion statistics to be reported along with 
Cohen’s kappa; however these companion 
statistics are not model-based and are arbitrary 
in the treatment of the correction for chance.  

Thus an alternative index which does 
not exhibit such paradoxical behaviors is 
desirable. The use of a measure of agreement is 

explored; λA, derived from the quasi-
independent (QI) model (Goodman, 1968). The 
QI model was developed for application to k×k 
tables, specifically for the analysis of truncated 
tables (i.e., tables with missing entries due to 
study design or data collection). One limitation 
of the QI model is that it is not directly 
applicable to 2×2 tables. This limitation is due to 
lack of degrees of freedom. In this article, a 
restricted QI model for interrater agreement that 
allows for rater bias in 2×2 tables is examined. 
The introduction of the restriction allows us to 
overcome the problem with degrees of freedom.  

The notion of quasi-independence 
assumes that a sub-table, which is part of the 
whole table, is independent (Bishop, et al., 1975, 
Agresti, 1990). A two-dimensional table is said 
to be QI if for a subset of cells U there exist 
constants pri and pcj such that the probability of 
cell (i,j) given it is in U equals pripcj. The 
remaining cells are in U*. 
 Guggermoos-Holzman and Vonk (1998) 
showed that the QI model is related to latent 
class models. This relationship is exploited to 
apply the QI concept to the context of rater 
agreement studies. Suppose that there are two 
groups of subjects (latent classes) to be 
classified into k categories. Group 1 is 
systematically classified by all raters. If the 
raters agree on the classification then systematic 
agreement is said to have occurred; otherwise 
systematic disagreement has resulted due to the 
use of different classification rules by the raters. 
 For Group 1 subjects the classifications 
by the raters are not made independently, thus 
they contribute only to U*, the set of cells with 
systematic agreement or disagreement. Group 2 
comprises subjects for whom at least one rater 
randomly classifies according to a multinomial 
distribution, that is, the raters classify these 
subjects with independent marginal probabilities 
pri and pcj respectively. Group 2 subjects 
contribute to the frequencies of all cells in the 
table. To illustrate this concept, consider Table 
1. In this scenario, raters A and B classify 100 
subjects into three categories. Unbeknownst to A 
and B there are 80 subjects in Group 1 and 20 in  
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Group 2. Group 2 classifications are made using 
independent marginal probabilities of (0.5, 0.25, 
0.25) for categories 1, 2, and 3 respectively by 
rater A and (0.4, 0.4, and 0.2) by rater B. The set 
U* comprises cells (1,1), (1,2), (2,2), and (3,3). 
In U*, the cells (1,1), (2,2), and (3,3) represent 
systematic agreement, while the cell (1,2) 
represents systematic disagreement. Systematic 
disagreement may arise when the raters use 
slightly different rules for classification. In the 
case of Table 1, the rules used by rater A are 
such that s/he tends to over-read category 2 
subjects versus category 1 in comparison to rater 
B. 

Suppose that λ is the proportion of the 
population of subjects in Group 1 and 1-λ is the 
proportion in Group 2. Thus λ is the total 
proportion of systematic agreement and 
disagreement. If cell (i,j) is in U* then define dij 
= 1, and dij = 0 otherwise. When i=j, χij is the 
proportion of systematic agreement and when 
i≠j, χij is the proportion of systematic 
disagreement, defined only for cells in U*. For 

each cell (i,j) let 
λ
χ ijijd

be the conditional 

probability that a subject is classified into that 
cell given that it is in Group 1. 

Thus ∑∑
= =

=
k

i

k

j
ijijd

1 1
χλ . By the total probability  

 
 

 
 

theorem, the probability of cell (i,j) can be 
written as  
 
                ijijcrij dpp
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One may solve for λ by multiplying both sides of 
equation (3) by dij and summing over all cells 
obtaining 
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Note the similarity of λ to the formulation of a 
chance-corrected agreement index. In this 
formulation the terms dij are terms that must be 
specified before any further calculations can be 
made. There are k2-1 degrees of freedom 
available in the k×k table, of which 2(k-1) are 
the parameters for the marginal probabilities. 
Thus, at most (k-1)2 parameters of the dij can be 
set to 1 in equation (4). As a result, the QI model 
can only be used in k×k tables where k ≥ 3. 

Furthermore,  λ can be expressed as the 
sum of systematic agreement and disagreement 
as follows: 

 
Table 1. Illustrative Example of Quasi-independent Data.  

 
Easy to Classify Subjects (Group 

1) 
 
 

Difficult to 
Classify Subjects  

(Group 2) 

 Whole Table 

 Rater A category  Rater A category  Rater A category 
Rater B 
category 

1 2 3 Total  1 2 3 Total  1 2 3 Total 

1 251 5  30  4 4 2 10  29 9 2 40 
2  30  30 + 2 2 1 5 = 2 32 1 35 
3   20 20  2 2 1 5  2 2 21 25 
Total 25 35 20 80  8 8 4 20  33 43 24 100 

 
1Cells in set U* denoted with boldface. 
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The log-likelihood of the general QI model then 
is given by  
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The unknown parameters are pri, pcj, and χij, with 
λ=∑χij. 

The following iterative procedure may 
be used to derive the maximum likelihood 
estimates for the model: 
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and ⋅ip  and jp⋅ are the observed marginal 

probabilities. Initial values are )0(λ̂ =0, and )0(ˆ
ir

p  

and )0(ˆ
jcp  are set to the observed marginal 

probabilities, i, j = 1,…,k. 
To derive these estimates one must set 

dij = 1 or 0 on the basis of either a priori 
knowledge or using a data driven method. 
Agresti (1990) assumed dij = 1 for all diagonal 
cells while Bergan (1980) and Aickin (1990) 
used a trial and error method to determine dij 
from the data. 

Some illustrations are explored. 
Returning to Table 1, it may be seen that λ=0.8. 
The values of χij are 0.25, 0.05, 0.30, and 0.20 
for cells in U* and not defined otherwise.  

Next, turn to Table 2. If systematic 
agreement is assumed in every diagonal cell and 
no systematic disagreement, then λ̂ (se) = 

Aλ̂ (se) = 0.554(0.008), compared to κ̂ (se) = 
0.493(0.057), where standard errors are obtained 
by bootstrap. A goodness of fit test for this table 
results in χ2 = 11.7 with 5 degrees of freedom, 
p=0.039, giving an indication of lack of fit. 
 
 
 

 
 
 
 

 
Table 2. Diagnosis of Carcinoma for Pathologists A and B 

 
 Classification of Pathologist B 
Classification of 
Pathologist A 

1 2 3 4 & 5 Total 

1 22 2 2 0 26 
2 5 7 14 0 26 
3 0 2 36 0 38 
4 & 5 0 1 17 10 28 
Total 27 12 69 10 118 

 
Source: Derived from Landis and Koch (1977) as described in Agresti (1990) 
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Note the relatively small amount of 
agreement in cell (2,2) (5.9% of the 118 
observations versus 18.6%, 30.5%, and 8.5% in 
cells (1,1), (3,3), and (4,4) respectively) and the 
large error frequency in cell (4,3) (14.4%). 
Setting U* to contain cells (1,1), (3,3), (4,4), and 
(4,3), the following are obtained λ̂ (se) = 
0.69(0.005), with Aλ̂ (se) = 0.554(.005) and 

Dλ̂ (se) = 0.136(.003). χ2 = 2.18 with 5 degrees 
of freedom, p=0.82, may be further derived from 
this model, indicating much better fit. 
 

Methodology 
 
For the case of 2×2 tables, it is assumed that i=1 
or j=1 indicates that the prevalent condition is 
positive. Due to lack of degrees of freedom, it 
must also be assumed in this case that only 
agreement is systematic, i.e., there is no 
systematic disagreement. Thus U* contains only 
the two diagonal cells. The model can now be 
rewritten as  
 

ijjicrAij Ipp
ji

χλπ )()1( =+−=          (8) 

         
for i = 1, 2 and j = 1, 2, where 0 ≤ pri ≤ 1, pr1 + 
pr2 = 1, 0 ≤ pcj ≤ 1, pc1 + pc2 = 1, 0 ≤ χii ≤ 1, and 0 
≤ λ = χ11 + χ22 ≤ 1.  

As mentioned above, there are three 
degrees of freedom and four parameters: χ11, χ22, 
pr1, and pc1. If no restriction is placed on the 
independent marginal probabilities then a 
restriction must be placed on χ11 and χ22.  

The common correlation model for 
Scott’s pi, denoted κs, assumes 1) no rater bias 
and 2) the rater prevalence in Group 1 equals 
that in Group 2. The second assumption follows 
from 3) the underlying true prevalence in Group 
1 equals that in Group 2 and 4) the common 
rater prevalence is an unbiased estimator of the 
true prevalence. Scott’s pi is limited by the 
assumption of no rater bias, in particular the 
assumption of no rater bias in Group 2. It is 
theorized that the two observers are likely to 
have different rater prevalence’s in Group 2. In 
fact, many agreement studies show evidence of 
rater bias. Thus, to adequately apply the QI 
concept to rater agreement in 2×2 tables, one 
must assume (5) the true prevalence in Group 2 

is equal to that in Group 1, and (6) the rater 
prevalence in Group 2 differs between raters, but 
the average is an unbiased estimator for the true 
prevalence.  

Under assumption (6), χ11/λA can be 
interpreted as the common rater prevalence in 
Group 1 since the two raters classify with 
certainty and agree. Thus, χ11/λA is the best 
estimator of true prevalence. If then one allows 
for the prevalence for each rater for Group 2 
subjects, then (pr1+pc1)/2 is also an estimator of 
true prevalence. Under assumption (5) then one 
has χ11/λA=(pr1+pc1)/2, giving χii=(pri+pci)λA/2. 
Thus, under assumptions (5) and (6) one has the 
restricted QI model, 

       A
cjri

jicrAij
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for i = 1, 2 and j = 1, 2 where 0 ≤ pri ≤ 1, pr1 + pr2 
= 1, 0 ≤ pcj ≤ 1, pc1 + pc2 = 1, 0 ≤ χii ≤ 1, and 0 ≤ λ 
= χ11 + χ22 ≤ 1. The log-likelihood function for 
this restricted model is 
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The maximum likelihood estimators can 
be derived by setting the score equations with 
respect to the parameters equal to zero and 
solving for the unknown parameters. 
Alternatively, estimates can be obtained by 
solving the equations E(Nij) = Nij, i = 1, 2, j = 1, 
2. 

Thus, the following maximum 
likelihood estimates are obtained:  
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Note that when N11N22=N12N21 (independence), 

Aλ̂ =0 and when N12=N21=0 (total agreement), 

Aλ̂ =1. Moreover, the estimated independent 
marginal probabilities are the same as the 
observed marginal probabilities iff Aλ̂ =0 or 
N12=N21. 

If both N12 and N21 are replaced by 
(N12+N21)/2 on RHS of equation (11) the 
estimator for Scott’s pi, κS is derived. When the 
assumption of no rater bias is made, the 
extended model (9) reduces to the common 
correlation model (Donner & Eliasziw, 1992). 
Because the extended model allows for rater 
bias, Aλ̂  has several advantages over κS as 
follows: 
 

1. The common correlation model does not 
fit the data if in fact there is substantial 
rater bias. Thus applications of the 
common correlation model of Scott’s pi 
could be misleading in the absence of a 
test for rater bias, such as McNemar’s 
test. However, even with such a test, the 
power may be insufficient to detect rater 
bias for a small sample size, and an 
improper application of Scott’s pi may 
occur. 

 
 
 

2. Both the common correlation model and 
the extended model assume only random 
agreement, i.e., no systematic 
disagreement. If the two raters have 
different independent marginal 
probabilities they are less likely to agree 
with each other by chance, and the 
observed agreement is more likely to 
have been achieved for reasons other 
than chance. Therefore, if there is rater 
bias, the estimated agreement index 
should increase with this bias given the 
same amount of observed agreement. 
Scott’s pi does not change with observer 
bias while Aλ̂  increases with increasing 
rater bias. 

 
3. When the table is independent 

(N11N22=N12N21) one would expect the 
estimated systematic agreement to be 
zero, as is the case with Aλ̂ . However 
Scott’s pi does not equal zero unless 
N12=N21 in addition. 

 
It may be written  
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When there is no rater bias, pr1=pc1 and 
κs=λA. As pr1-pc1 increases, so does error(κs,λA). 
Table 3 shows the values of error(κs, λA) at 
different values of (pr1,pc1,λA). 
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Consider Table 4 which shows the collapsed 
version of Table 2. The p-value for McNemar’s 
test for this table is 0.003, indicating substantial 
rater bias. For this table, Sκ̂ =0.660 and 

Aλ̂ =0.703 are obtained.  
 

Results 
 
It has been shown above that Aλ̂  increases with 
increasing rater bias while Scott’s pi does not 
change, and that Aλ̂ = 0 for an independent 2×2 
table, whereas Scott’s pi is only zero when the 
off-diagonal elements are equal to each other. 
Thus,  λA is preferable to κS as a measure of 
agreement in the presence of rater bias. When 
there is no rater bias, is λA as good as κS? 
Simulations were conducted to investigate the 
performance of these agreement indices. 

 
 
 
Simulations were conducted for a total 

of 100 configurations: 4 different sample sizes, 
N..={20,50,100,200}; 5 different nominal values 
of systematic agreement  λA = 
{0,0.1,0.3,0.6,0.9}; and 5 combinations of 
independent marginal probabilities 
(pr1,pc1)={(0.9,0.9),(0.8,0.8),(0.7,0.7),(0.6,0.6),(0
.5,0.5)}. The four values for sample size range 
from small to moderate to sufficiently large. The  
five values of λA cover the whole range. The 
independent marginal probabilities all represent 
the case where there is no rater bias. Because of 
symmetry, only probabilities of 0.5 to 0.9 are 
investigated. 

The probability of each cell is computed 
according to the extended model specified in (8) 
given the nominal values of systematic 
agreement and independent marginal 
probabilities. The frequency of each cell is 
generated as a multinomial random number 

 
 
 

Table 3. Error of Scott’s pi under the Restricted QI Model 
 
 

pr1 pc1 λ =0 λ=0.1 λ=0.3 λ=0.5 λ=0.7 λ=0.9 
0.9 0.1 0.640 0.576 0.448 0.320 0.192 0.064 
0.8 0.2 0.360 0.324 0.252 0.180 0.108 0.036 
0.7 0.3 0.160 0.144 0.112 0.080 0.048 0.016 
0.6 0.4 0.040 0.036 0.028 0.020 0.012 0.004 

 
 
 
 

Table 4. Diagnosis of Carcinoma for Pathologists A and B 
 
 

 Classification of Pathologist 
B 

Classification of 
Pathologist A 

Class 1 or 2 Class 3 or 4 or 
5 

Total 

Class 1 or 2 36 16 52 
Class 3 or 4 or 5 3 63 66 
Total 39 79 118 
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given the sample size, using the GENMUL 
routine (Brown and Lovato). For each 
configuration, 1000 tables were generated.  

The efficiency of the two indices were 
compared in terms of empirical bias, empirical 
standard deviation (defined as the standard 
deviation of the estimated values from the 1000 
tables) and empirical residual mean square error 
(RMSE) (defined as the square root of the mean 
square of differences between the estimated 
values of the index and the nominal values over 
the 100 tables). Figure1 displays a side-by-side 
comparison of the bias of Aλ̂  compared to the 
bias of Sκ̂  as a function of the nominal values 
of systematic agreement, independent marginal 
probability and sample size. Figures 2 and 3 give 
similar displays for the standard deviations and 
RMSEs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From these figures, it is observed that 
Sκ̂  is negatively biased, underestimating the 

true value of systematic agreement in all 
situations, whereas Aλ̂  is either positively or 
negatively biased. There is an increasing trend in 
bias for Aλ̂  as λA increases. Both indices are 
increasingly     likely     to     underestimate     λA 

as pr1=pc1 increases. The biases of both Aλ̂  and 

Sκ̂  decrease as sample size increases. There are 
no differences between the standard errors and 
RMSE values of Aλ̂  and Sκ̂  that are visually 
discernible. The standard error and RMSE of 
both indices tend to be smaller when λA is close 
to either 0 or 1, when the independent marginal 
probability is close to 0.5, or when the sample 
size is large. 
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Figure 1. Side-by-side comparison of bias of Aλ̂  (Lambda) and Sκ̂  (Scott’s Pi) as a function of nominal values 
for systematic agreement, independent marginal probability, and sample size. 
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Figure 2 Side-by-side comparison of standard deviation (STD) of Aλ̂  (Lambda) and Sκ̂  (Scott’s Pi) as a 
function of nominal values for systematic agreement, independent marginal probability, and sample size. 
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Figure 3. Side-by-side comparison of residual mean square error (RMSE) of Aλ̂  (Lambda) and Sκ̂  
(Scott’s Pi) as a function of nominal values for systematic agreement, independent marginal probability, 
and sample size. 
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The new index is now compared to 
Cohen’s kappa. Cohen’s kappa corrects for 
chance agreement using the assumption of 
independence between raters. However, the 
assumption of independence in agreement 
studies is not valid. Some degree of agreement is 
usually expected in most agreement studies. If 
there is systematic agreement present, the 
classifications of the raters cannot be 
independent since the raters are dealing with the 
same information (i.e., the same subject) on 
which to base each of their classifications. The 
assumption of blindness of ratings is reasonable, 
leading to an assumption of conditional 
independence. Thus the formula 
 
                           

ji cr ppji =),Pr(         (14) 

       
should not be used to estimate the expected 
agreement by chance.  

Alternatively, one can use the QI 
concept to investigate agreement in this context.  
If it is assumed that no systematic disagreement 
is present, then equation (3) reduces to  
 
              iiiicrAij dpp
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where 

ir
p̂ and 

jcp̂ are estimates of the 

independent marginal probabilities, estimated 
only in the difficult to classify group (Group 2) 
where the observers classify independently. 
Note the similar formulation of Aλ̂  and κ̂ given 
in (2), with the difference being in the marginal 
probabilities used in calculating these two 
agreement indices. 

 
 

If one assumes that there is either no 
systematic agreement or systematic 
disagreement, the quasi independent concept 
resolves the paradoxes posed by Cohen’s kappa 
in 2×2 tables described earlier. Consider the 
following illustrations. 
 
A.  The case of the first paradox is illustrated by 
the two independent tables shown in Table 5. 
The values of lambda are 0 for both table 5.1 
and table 5.2. All agreement is random 
agreement. In these cases the observed marginal 
probabilities are equal to the independent 
marginal probabilities. Table 5.1 has a set of 
symmetrical balanced independent marginal 
probabilities and table 5.2 has a set of 
symmetrical unbalanced marginal probabilities. 
Intuitively, the table with unbalanced 
independent marginal probabilities yields more 
agreement. A subject in table 5.1 has a 50% 
chance to be agreed upon by the two observers 
while the chance is 82% that a subject in table 
5.2 will be agreed upon. The agreement is not 
systematic and can be considered as random 
agreement. Thus, a set of symmetrical 
unbalanced marginal probabilities yields more 
random agreement and less systematic 
agreement than a set of symmetrical balanced 
marginal probabilities. 

Next consider Table 6. Aλ̂ =0.70 and 

Aλ̂ =0.32 are calculated for table 6.1 and table 
6.2, respectively, which agree with the Cohen’s 
kappa estimates. However, one is also able to 
use the QI concept to derive estimates of the 
independent marginal probabilities, obtaining 
(

1
ˆ rp  , 

1
ˆ cp ) = (0.53, 0.42) and (

1
ˆ rp  , 

1
ˆ cp ) = 

(0.91, 0.84). Thus, table 6.1 yields a set of 
symmetrical balanced independent marginal 
probabilities while table 6.2 yields a set of 
symmetrical unbalanced independent marginal 
probabilities. Given the same observed 
agreement, the amount of systematic agreement 
(estimated by Aλ̂ ) should be greater for the 
tables with symmetrical balanced independent 
marginal probabilities. Thus, by using the 
construct of a latent class of subjects who are 
systematically classified, one arrives at a 
resolution of the first paradox. 
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B. Consider now the case of the second paradox 
illustrated by the two independent tables in 
Table 7. Table 7.1 has a set of symmetrical 
marginal probabilities while table 7.2 has a set 
of asymmetrical marginal probabilities. There is 
no systematic agreement in either table. The 
observed marginal probabilities are the 
independent marginal probabilities. Intuitively, 
the agreement achieved by the observers in 
Table 7.1 is much more than that in table 7.2 
Thus a set of symmetrical independent marginal 
probabilities yields more agreement than a set of 
asymmetrical independent marginal 
probabilities. 

 
 
 
 

 
 
 
 
Next consider Table 8. Aλ̂ =0.13 and 

(
1

ˆ rp ,
1

ˆ cp ) = (0.59, 0.71), Aλ̂ =0.33 and 

(
1

ˆ rp ,
1

ˆ cp ) = (0.67, 0.23) are estimated for tables 
8.1 and 8.2 respectively. The independent 
marginal probabilities have more symmetry for 
Table 8.1, yielding more random agreement and 
less systematic agreement than Table 8.2. Given 
the same amount of observed agreement, there is 
less systematic agreement (estimated by Aλ̂ )  for 
Table 8.1, thus resolving the second paradox. 
 
 
 
 
 
 

 
Table 5. Balanced and unbalanced independent marginal probabilities 

 
Table 5.1: oP̂  = 0.50, Aλ̂ =0  Table 5.2: oP̂  = 0.82, Aλ̂ =0 

 Observer A    Observer A  
Observer B Yes No Total  Observer B Yes No Total 
Yes 25 25 50  Yes 81 9 90 
No 25 25 50  No 9 1 10 
Total 50 50 100  Total 90 10 100 

 
 
 

Table 6. Balanced and Unbalanced Marginal Probabilities 
 

Table 6.1: Balanced Marginal Probabilities  Table 6.2: Unbalanced Marginal 
Probabilities 

 Observer A    Observer A  
Observer B Yes No Total  Observer B Yes No Total 
Yes 40 9 49  Yes 80 10 90 
No 6 45 51  No 5 5 10 
Total 46 54 100  Total 85 15 100 

 
For table 6.1 we obtain oP̂  = 0.85, κ̂  = 0.70, Aλ̂ =0.70, and  (

1
ˆ rp  , 

1
ˆ cp ) = (0.53, 0.42), while for table 6.2 we 

obtain oP̂  = 0.85, κ̂  = 0.32, Aλ̂ =0.32, and (
1

ˆ rp  , 
1

ˆ cp ) = (0.91, 0.84). 
Source: Derived from Feinstein and Cicchetti (1990) 
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Conclusion 

 
It has been shown how the quasi-independent 
concept can be applied to studies of inter-rater 
agreement. When applied to 2×2 tables, the use 
of the QI concept results in a paradigm for 
agreement that resolves the paradoxical behavior 
of the popular measure, Cohen’s kappa, 
although the resulting measure can only be 
derived after the user decides on cells 
representing systematic agreement or 
disagreement. This measure has other desirable 
properties; specifically it allows for assessment 
of the independent marginal probabilities, which 
can be reported as companion statistics. Unlike 
the other statistics  that  have been suggested for  
 
 
 

 

 
reporting along with Cohen’s kappa, these 
independent marginal probabilities are model-
based. Thus, further use and study of the 
application of the QI concept in inter-rater 
agreement studies is warranted. 
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