
Journal of Modern Applied Statistical
Methods

Volume 1 | Issue 1 Article 27

5-1-2002

JMASM3: A Method for Simulating Systems of
Correlated Binary Data
Todd C. Headrick
Southern Illinois University at Carbondale, headrick@siu.edu

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Headrick, Todd C. (2002) "JMASM3: A Method for Simulating Systems of Correlated Binary Data," Journal of Modern Applied
Statistical Methods: Vol. 1 : Iss. 1 , Article 27.
DOI: 10.22237/jmasm/1020256080

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss1/27?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal O f Modem Applied Statistical Methods 
Winter 2002, Vol. 1, No. 1, 195-201

Copyright © 2002 JMASM, Inc. 
1538 - 9472/02/$30.00

JMASM3: A Method for Simulating Systems of Correlated Binary Data

Todd C. Headrick
Southern Illinois University at Carbondale

An efficient algorithm is derived for generating systems of correlated binary data. The procedure allows for the speci­
fication of all pairwise correlations within each system. Intercorrelations between systems can be specified qualita­
tively. The procedure requires the simultaneous solution of a system of equations for obtaining the threshold probabili­
ties to generate each system of binary data. A numerical example is provided to demonstrate that the procedure gener­
ates correlated binary variables that yield correlations in close agreement with the specified population correlations.
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Introduction

The availability of the desktop computer has made simu­
lation and Monte Carlo techniques widely applicable in 
statistical research. For example, Monte Carlo methods may 
be used to compare the small sample properties of a test 
statistic with its competitors or whether these properties 
are consistent with the statistic’s asymptotic approxima­
tion (Headrick & Rotou, 2001). Markov chain Monte Carlo 
methods (e.g., the Gibbs or slice sampler, Robert & Casella, 
1999) are also commonly used to generate posterior distri­
butions to carry out Bayesian analyses. Further, these tech­
niques are now applicable to many areas of research inter­
est. Some examples include: bootstrap tilting (Hesterberg, 
2001); conditional logistic regression (Mehta, Patel, & 
Senchaudhuri, 2000); and likelihood inference with miss­
ing data (Gilks, Richardson, & Spiegelhalter, 1998).

There may be occasions when it is desirable to 
investigate the properties of statistics that involve corre­
lated binary data. Most procedures that generate correlated 
binary variables are based on an underlying joint distribu­
tion that is multivariate normal (e.g., Bahadur, 1961; 
Emirch & Piedmonte, 1991; Leisch, 2001). This approach 
presents a problem because correlated binary variables with 
normal covariance structures may not provide a realistic 
simulation (Oman & Zucker, 2001). Further, the popular 
Bahadur (1961) method requires the specification of higher 
order correlations. These higher order correlations are nui­
sance parameters that make the Bahadur (1961) procedure 
arduous (Parzen, Bellamy, Lipsitz, & Fitzmaruice, 2001).

Thus, the purpose of this study is to derive a 
simple procedure that generates correlated binary variables. 
The proposed method simulates systems of multivariate 
binary data using a priori specified marginal probabilities 
and only requires a uniform random number generator.

Todd C. Headrick is Assistant Professor of statistics, Mail 
Code 4618, 222-J Wham Building, Southern Illinois Uni- 
versity-Carbondale, IL, 62901. His areas of research in­
terest are statistical computing, nonparametric statistics, 
and optimization. Email him at headrick@siu.edu.
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Notation and a theoretical derivation of the proposed 
method are first provided. A numerical example is subse­
quently worked to demonstrate the procedure. Mathematica 
(Wolfram, Version 4.0,1 999) notebooks are available from 
the author that simultaneously solves systems of equations 
that provide the probability threshold points for implement­
ing the procedure. Fortran 77 source code is also provided 
in the Appendix to demonstrate the algorithm.

Methodology

Let πi be a pre-specified constant such that πi ϵ  (0,1) 
and Ui be a K  x 1 vector of uniform random deviates on 
the interval (0, 1) where i = 1,. .. ,T .  Let Y1 represent a 
K  x 1 vector of a sequence of independent Bernoulli tri­
als defined by

It follows that

E[Y1] = μY1 =  π1  and (2)

Var[Y1] = μY1( l - μY1) =  π1(1 — π1). (3)

For subscripts i = 2,..., T ,  let K represent the i-
th K  x 1 vector of binary variables resulting from a se­
quence of independent trials defined by

Thus, we have

E \J i '\ = N y, =  x xi t i + (1 -  n x )(1 -  7T,.) ,  (5)

E[YX 7  ] -  it. = n xn i , and (6)

Var[Yt ] = / /K (1 -  fj.Yj) 5 v ;>, . (7)

Given the definitions of Yx and 7  in (1) and 
(4), let their measure of correlation, denoted as P y xy, , be 
defined as

mailto:headrick@siu.edu
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where E [Y12] = E [Y1] and E [Yi2] = E [Yi] because Y1 
and Yi are binary realizations of either 1 or 0. Substitut­
ing equations (2), (3), (5), (6), and (7) into (8) yields:

Given T  vectors of Yi, define X ij as the j-th K  x 1 vector 
of binary variables generated from Yi as follows:

where the second index (j )  runs faster than the first. As 
such, there are NT  vectors of X ij. Note that the NT  vec­
tors of X ij are independent of the T vectors of Ui and the 
constants of πij are not necessarily equal π i.

Taking expectations with respect to X ij and the 
product term of X 1jX 1k gives

E[X1j]=μX1j=π1π1j + (1-π1)(1-π1j), (11)

E[X1k]=μX1k=π1π1k + (1-π1)(1-π1k), (12)

E[X1jX1k]=π1π1jπ1k + (1-π1)(1-π1j)(1-π1k), (13)

and hence

Var[X1j]=μX1j(1-μX1j), (14)

Var[X 1k]=μX1k(1-μX1k). (15)

Taking expectations with respect to X ij and the product 
term X ijX ik for i = 2,...,T yields

E [X ij] = μXij = πij(π1πi + (1-π1)(1 -  πi)) + (1 - πij)(1 -  (π1πi + (1-π1)(1 - πi))) (16)

E[Xik] = μXik = πik(π1πi + (1-π1)(1 - πi)) + (1 - πik)(1 - (π1πi + (1-π1)(1 - πi))) (17)

E[XijXik] = πijπik(π1πi + (1-π1)(1 - πi)) + (1 - πij)(1 - πik)(1 - (π1πi + (1-π1)(1 - πi))) (18)

Var[X ij] =μXij( 1 - μXij), and (19)

Var[Xik]  =μXik(1-μXik).  (20)

The correlations P X1jX1k and PXijXik can be determined 
by substituting the expressions in (11) through (15) and 
(16) through (20) into analogous definitions of (8) ex­
pressed in terms of the X ij.

Given specified constants of πi ,  an efficient num­
ber of correlated X ij vectors for each integer of i = 1, the

selection of N  = 3 yields a system of three equations (for 
three pairwise correlations PX11X12 , PX11X13 , PX12X13 ) solv­
able in terms of three unknowns (probability threshold 
points of π 1 1 ,π 1 2 ,π 13). This system is constructed by 
first substituting the right-hand sides of (11) and (12) into 
(14) and (15). Subsequently substituting (11) through (15) 
into three equations of the form in (8) yields



197 TODD C. HEADRICK

(21), (22) and (23) given the specified correlations and 
values of π1 and π2. The numerical equation solver 
FindRoot (Mathematica, 1999) yields solutions of 
π11 = 0.881247, π12 = 0.924095, π13 = 0.972456, 
π21 = 0.939341, π22 = 0.974722, and π23 = 0.993961.

4. Use equation (25) to determine the correlations between 
the variables of the two systems. The correlations are: 
ρX11X21 =  -0 .294484, ρX11X22 =  -0.331295, ρX11X23 = - 
0.353381, ρX12X21 =  -0.353381, ρX12X22 =  -0.397554, 
ρX12X23 =  -0.424057, ρX13X21 =  -0 .441726, ρX13X22 =  - 
0.496942, and ρX13X23 =  -0.530071.

5. Given the parameters and solutions from steps 2 and 3, 
generate the correlated binary data. Fortran 77 source code 
is presented in the Appendix to implement this example. 
Presented in Table 1 are population correlations and com­
puted correlations for both within and between the two 
systems described in steps 1 and 4. Single samples of bi­
nary data with K = 5000 were generated for each of the six 
variables as described in step 5. Inspection of Table 1 in­
dicates that the proposed method generated correlated bi­
nary data that yielded computed correlations that were in 
close agreement with the population correlations.

Conclusion

As previously mentioned the systems of equations of the 
form in (21), (22), and (23) solve for the probability thresh­
old points (π ij)  for only positive correlations. However, it 
may be desirable to generate binary data with negative 
correlations. This can be accomplished by writing addi­
tional i f -  else structure statements in the Fortran 77 source 
code that simultaneously reversing the 1's and 0's within 
each selected vector. Such reversals will allow for the con­
struction of negative correlations within the system(s).

More specifically, suppose that it was desired that

ρX11X12 =  -0.40, and ρX11X13 =  -0.50 in the numerical ex­
ample. This can be accomplished by simultaneously re­
versing the 1's and 0’s in the vectors X 12, and X 13. It should 

be noted that these changes would also create positive corre­
lations between the systems of: ρX12X21 = 0.353381, 
ρX12X22 = 0.397554,  ρX12X23 = 0.424057, ρX13X21 = 0.441726, 
ρX13X22 = 0.496942, and ρX13X23 = 0.530071.

It should also be pointed out that as the sample 
sizes become smaller the probability increases of obtain­
ing vectors of either all 1's or all 0 ’s (i.e., standard 
deviations of zero). Thus, one way to circumvent this prob­
lem in a larger simulation would be to initialize the corre­
lation computed in the subroutine (e.g., PCOR in the Ap­
pendix) to zero when either standard deviation is zero and

Specifying π1 and selecting positive values for 
ρX11X12 , ρX11X13 , and ρX12X13 in (21), (22), and (23) and then 
simultaneously solving these equations gives the probability
threshold points of π11,, π12, π13 to generate X 11, X 12, 

and X 13 with the desired intercorrelations for (10). Sys­
tems of equations analogous to (21), (22), and (23) can be 
created in the same manner for all i = 2,...,T  from equa­
tions (16) through (20). As such, 3T  vectors of X ij can be 
generated with three positive pairwise correlations within 
each system.

Without loss of generality, feasible solutions (i.e., 
0 ≤ πij ≤ 1) are obtainable provided that the following con­
ditions hold with respect to the left-hand sides of (21), (22), 
and (23)

These conditions must also hold with respect to the other 
T -1  systems of equations.

Because all Yi for i=  2 ,...,T are a function of Y1 
from (4), intercorrelations between X ij belonging to dif­
ferent systems may also exist and can be analytically de­
termined as follows:

ρXijXjj = (ρXijYi)(ρYiYj)( ρYjXjj). (25)
Further, and by inspection of (5) and (9), correlations in 
equation (25) may be negative, zero, or positive. Specifi­
cally, correlations are respectively negative, zero, or posi­
tive when 7ti < 0.5, n i = 0.5, or 7t. > 0.5 in equation (9) 
for alii = 2,.. .,7  Note that the correlations P x 0y, and p YjXjj 
in (2.5) are derived analogously as (21),..., (23) from (8 ).

Numerical Example
Suppose it is desired to generate two systems of 

correlated binary data with correlations P xnx  12 = 0.40, 
P xnXi3 =0.50,  P x  1 2 * 1 3  =0 .60 ;  and P x2Xx22 = 0.75, 
P x 2 1 * 2 3  = 0.80, P x22x23 = 0.90 and where the variables 
between the systems are inversely related. The following 
steps are taken:

1. Ensure that three pairwise intercorrelations within the 
systems satisfy (24a), (24b), and (24c).

2. Specify values for n x and n 2. Let n x = 0.90 and let 
n 2 = 0 . 1 0  to obtain the inverse relationships between the 
two systems.

3. Simultaneously solve the two systems of the form in
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Table 1. Two systems of correlated binary data generated using the Fortran source code provided 
in the Appendix. A single sample of size K=5000 was drawn for each o f the six variables.______

System 1 System 2
Variables: X 11, X 12, X 13 Variables: X 21, X 22, X23

Pop. Correlations 
Within System 1

Computed Correlations Pop. Correlations 
Within System 2

Computed Correlations

ρX11X12 = 0 .40 

ρX11X13 = 0.50 

ρX12X13 =  0.60

0.400780

0.503307

0.591606

ρX21X22 =0.75 

ρX21X23 =0.80 

ρX22X23 =0.90

0.745030

0.790314

0.893551

Population Correlations 
Between System 1 and System 2

Computed Correlations

ρX11X21 =-0.294484 

ρX11X22 =-0.331295 

Pxuxn =-0.353381 

Px12*21 = —0-353381 

Pxnx» =-0.397554 

Px»xn =-0.424057 

p XaXn =-0.441726 

Px„xa =-0.496942 

Pxaxu =-0.530071

-0.290305

-0.330829

-0.351456

-0.347825

-0.390941

-0.407341

-0.449708

-0.504316

-0.526768

keep count of the zero correlations throughout the simula­
tion. Thus, the total real number of replications could be 
computed by subtracting the number of times a zero corre­
lation occurs due to standard deviations of zero (e.g., 50 
occurrences) from the initialized total number of replica­
tions (e.g. 10,000). That is, the total real number of repli­
cations would be 9950.
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APPENDIX

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C THIS EXAMPLE PROGRAM (BINARY) GENERATES TWO SYSTEMS OF BINARY 
C DATA. EACH SYSTEM CONTAINS THREE VECTORS WITH REQUESTED INTER -  
C CORRELATIONS.
C
C SUBROUTINES CALLED BY PROGRAM BINARY:
C 1. UNI1 (BLAIR, 1987) BASIC UNIFORM (0,1) PSEUDO-RANDOM NUMBER
C GENERATOR. PURPOSE IS TO CREATE VECTORS OF U 1, U2,
C U 11, U12, U13, U21, U22, U23 OF LENGTH K.
C 2. PCOR (BLAIR, 1987) COMPUTES THE PEARSON-PRODUCT MOMENT 
C CORRELATION COEFFICIENT.
C ARGUMENTS:
C 1. INPUTS:
C K: VECTOR LENGTH OF BINARY DEVIATES (1 OR 0) TO BE
C RETURNED, K=5000.
C P1, P2: PARAMETERS ON THE INTERVAL (0,1 ),
C P1=0.90, P2=0.10.
C P11, P12, P13: THRESHOLD PROBABILITIES FOR SYSTEM 1,
C P11=0.939341, P12=0.974722, P13=0.993961.
C P21, P22, P23: THRESHOLD PROBABILITIES FOR SYSTEM 2,
C P21=0.881247, P22=0.924095, P23=0.972456.
C DSEED(1-8) -  INPUT/ OUTPUT: DOUBLE PRECISION
C VARIABLE IN THE EXCLUSIVE RANGE (1.D0,2147483647.D0).
C 2. OUTPUTS:
C Y 1, Y2: REAL VECTORS OF LENGTH K CONTAINING THE
C CORRELATED BINARY VARIATES TO THE GENERATE THE
C SIX VECTORS OF XU.
C
C X 11, X12, X13: REAL VECTORS OF LENGTH K CONTAINING THE
C REQUESTED CORRELATED BINARY VARIATES FOR
C SYSTEM 1. REQUESTED CORRELATIONS ARE:
C CORR(X11,X12)=0.40, CORR(X11,X13)=0.50,CORR(X12,X13)=0.60.
C
C X21, X22, X23: REAL VECTORS OF LENGTH K CONTAINING THE
C REQUESTED CORRELATED BINARY VARIATES FOR
C SYSTEM 2. REQUESTED CORRELATIONS ARE:
C CORR(X21,X22)=0.75, CORR(X21,X23)=0.80,CORR(X22,X23)=0.90.
C
C R112, R113, R123: COMPUTED CORRELATIONS BETWEEN VECTORS
C X 11, X12, X 13 OF SYSTEM 1.
C
C R212, R213, R223: COMPUTED CORRELATIONS BETWEEN VECTORS
C X21, X22, X23 OF SYSTEM 2.
C
C R1211, R1212, R1213, R1221, R1222, R1223, R1231, R1232, R1233:
C COMPUTED CORRELATIONS BETWEEN VECTORS
C X 11, X12, X23, X21, X22, X23 OF SYSTEMS 1 AND 2.
C (E.G.: R1211 IS THE CORRELATION BETWEEN X 11 AND X21)
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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PROGRAM BINARY
REAL Y1(5000), Y2(5000), X 11(5000), X12(5000), X13(5000), X21(5000), X22(5000), 
X23(5000), U1(5000), U2(5000), U 11(5000), U12(5000), U13(5000), U21(5000), 
U22(5000), U23(5000), P1, P2, P11, P12, P13, P21, P22, P23, R112, R113, R123, R212, 
R213, R223, R1211, R1212, R1213, R1221, R1222, R1223, R1231, R1232, R1233 
INTEGER I, K
DOUBLE PRECISION DSEED1, DSEED2, DSEED3, DSEED4, DSEED5, DSEED6, 
DSEED7, DSEED8
READ (*,*) K, P1, P2, P11, P12, P13, P21, P22, P23

C INITIALIZE DSEED(l-8) AND CALL UNI1 TO GENERATE ARRAYS OF U 1, U2, U 11, 
C U12, U13, U21, U22, U23 
C***************************************************************************** 

CALL UNI1 (DSEED1, K, U 1) 
C***************************************************************************** 

C CREATE CALLUNU STATEMENTS FOR U2,...,U23 
C***************************************************************************** 

DO 10 I= 1, K 
IF ( U 1(I) .LE. P1 ) THEN 
Y 1(I) = 1.0
ELSE IF ( U 1(I) . GE. P1) THEN
Y 1(I) = 0.0
ENDIF
IF ( U2(I) .LE. P2 ) THEN 
Y2(I) = Y 1(I)
ELSE IF ( U2(I) .GE. P2 .AND. Y 1(I) .EQ. 0) THEN 
Y2(I)=Y1(I) +  1
ELSE IF ( U2(I) .GE. P2 .AND. Y 1(I) .EQ. 1) THEN
Y2(I)=Y2(I) - 1
ENDIF
IF( U 11(I) .LE. P11 )  THEN 
X 11(I)=Y1(I)
ELSE IF ( U 11(I) .GE. P11 .AND. Y 1(I) .EQ. 0) THEN 
X 11(I)=Y1(I) + 1
ELSE IF ( U l 1(1) .GE. P11 .AND. Y 1(I) .EQ. 1) THEN
X 11(I)=Y1( I ) - 1
ENDIF

C *****************************************************************************

C CREATE IF-THEN STRUCTURES TO GENERATE VECTORS X12 AND X13 FROM Y 1. 
£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IF( U21(I) .LE. P21) THEN 
X21(I)=Y2(I)
ELSE IF ( U21(I) .GE. P21 .AND. Y2(I) .EQ. 0) THEN 
X21(I)=Y2(I) +1
ELSE IF ( U21(I) .GE. P21 .AND. Y2(I) .EQ. 1) THEN
X21(I)=Y2(I)-1
ENDIF

£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C CREATE IF-THEN STRUCTURES TO GENERATE VECTORS X22 AND X23 FROM Y2. 
£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

10 CONTINUE
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C*********************************************************************************

C CALL PCOR TO COMPUTE THE CORRELATIONS 
C*********************************************************************************

CALL PCOR (X11, X12, K, R 112) 
CALL PCOR (X11, X13, K, R 113) 
CALL PCOR (X12, X 13, K, R123) 
CALL PCOR (X21, X22, K, R212) 
CALL PCOR (X21, X23, K, R213) 
CALL PCOR (X22, X23, K, R223) 
CALL PCOR (X11, X21, K, R1211) 
CALL PCOR (X11, X22, K, R1212) 
CALL PCOR (X11, X23, K, R1213) 
CALL PCOR (X12, X21, K, R1221) 
CALL PCOR (X12, X22, K, R1222) 
CALL PCOR (X12, X23, K, R1223) 
CALL PCOR (X13, X21, K, R1231) 
CALL PCOR (X13, X22, K, R1232) 
CALL PCOR (X13, X23, K, R1233) 
STOP 
END
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