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INVITED ARTICLES 
Constructive Criticism 

 
 
Attempts to attain knowledge as certified true belief have failed to circumvent Hume’s injunction against 
induction. Theories must be viewed as unprovable, improbable, and undisprovable. The empirical basis is 
fallible, and yet the method of conjectures and refutations is untouched by Hume’s insights. The implications 
for  statistical methodology is that the requisite severity of testing is achieved  through the use of robust 
procedures, whose assumptions have not been shown to be  substantially violated, to test predesignated range 
null hypotheses. Nonparametric range null hypothesis tests need to be developed to examine whether or not 
effect sizes or measures of association, as well as distributional assumptions underlying the tests themselves, 
meet satisficing criteria. 
 
Keywords: Probability, knowledge, satisficing, statistical methodology 
 
 

Introduction 
 
In the middle of the seventeenth century,            
a remarkable confluence of scientists, 
mathematicians, and philosophers laid the 
foundations for the theory of probability and 
formulated new philosophical underpinnings for 
the justification of claims to knowledge. These 
individuals knew one another, posed problems 
as challenges to one another, and criticized and 
defended the work of one another. Although 
investigations in probability had been conducted 
for  well  over two hundred years before, Fermat  
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and Pascal were credited (by many historians of 
probability) with its mathematical development. 
Although many modern philosophical problems 
had been addressed by Aristotle, Socrates, and 
Protagoras, the interplay between probability 
and philosophy did not begin in earnest until the 
end of the seventeenth century and did not give 
birth to what Stigler (1986) called the infant 
discipline of statistics until 1900.  
 One reason for this fairly long dalliance 
is that it was not clear how the information 
provided by a probabilistic analysis could 
warrant knowledge claims, claims that at the 
time required justification as certain and true. 
Only slowly did probable knowledge get 
recognized as having any veracity, and this on a 
secondary level as opinion or belief. By the end 
of the eighteenth century, philosophers began to 
view even the possibility of acquiring certain 
knowledge of the real world as uncertain at best. 
It was only in the middle of the nineteenth 
century, when the philosophical focus shifted 
from the justification of the source of scientific 
knowledge to the validity of the methods of 
science, that the true romance between 
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probability and philosophy blossomed in the 
testing of scientific theories. 

This relationship continues to flourish, 
and the occasional disagreements are healthy, 
for “statistics requires a dynamic balance 
between its philosophical underpinnings and its 
practice to remain vital” (Kadane, 1976, p. 735). 
In order better to understand this balance and to 
maintain and strengthen the vitality of the 
applied and theoretical aspects of modern 
statistics, it will be helpful to examine the 
history of probability and its joint effort with 
philosophy of science. Such study will 
encourage researchers in statistical theory and 
methods to focus on problems whose solutions 
are essential to the continued health of the 
scientific enterprise, it will allow those 
researchers to avoid repeating mistakes of the 
past, and it is hoped that it will engender an 
appreciation for the incredible insights and 
magnificent oversights of our scientific 
forebears. 

As Stigler wrote (1986), “the advances 
in scientific logic that took place in statistics 
before 1900 were to be every bit as influential as 
those associated with the names of Newton and 
Darwin” (p. 361). Indeed, even though Newton 
dabbled in probability theory, and Darwin=s 
indirect affect on statistics through his cousin, 
Francis Galton, is well known, less well known 
perhaps are Newton=s and Darwin=s influence on 
philosophers of science and statistics. An 
understanding of these kinds of mutual 
influences of statisticians and philosophers may 
help to limn modern statistics in a new yet 
joyously familiar way, “...a recognition, the 
known appearing fully itself, and more itself 
than one knew” (Levertov, 1961). 

  
Origins of Probability Theory 

According to Walker (1927), the 
foundations of the theory of probability were 
laid by Blaise Pascal and Pierre de Fermat in 
1654 in response to two questions asked of 
Pascal by Antoine Gombauld, the Chevalier de 
Mere, Sieur de Baussay. As with many, if not 
most, scientific advances, the work of Pascal and 
Fermat culminated the efforts of other scientists 
and mathematicians that had been accruing over 
a period of hundreds of years. Pascal and Fermat 
were first brought together through the auspices 

of Pierre de Carcavi and Marin Mersenne. 
Mathematicians, including Pierre Gassendi, 
Pierre de Carcavi, Gilles Roberval, Rene 
Descartes, and Blaise Pascal=s father, Etienne, 
met at Mersenne=s house once a week. Etienne 
introduced Blaise to the Mersenne Academy 
when Blaise was fourteen years old. Carcavi 
brought his friend Fermat, with whom he served 
in parliament in Toulouse, into correspondence 
with Mersenne and the others in 1636, and he 
suggested that Etienne and Roberval write to 
Fermat regarding their questions into methods of 
integration and centers of gravity. When 
Descartes criticized (erroneously) Fermat’s 
method of finding tangents, it was Etienne and 
Roberval who defended him. Carcavi also first 
put Fermat and Blaise Pascal in touch with one 
another (David, 1962). 

One of the questions that de Mere asked, 
known as the problem of points, concerned the 
fair distribution of stakes between two players 
when a game they were playing was interrupted 
mid-contest. The problem of points had been 
solved more than 250 years beforehand in some 
works by Antonio de Mazzinghi from around 
1400 (Kiernan, 2001). The first time that the 
problem appeared in a mathematical work, it 
was solved incorrectly by Pacioli in 1494 
(David, 1962; Kiernan, 2001). Cardano, who 
offered his own solution in 1539 (four years 
before Copernicus published his heliocentric 
theory!), referred to Pacioli=s error as one that a 
child should recognize. 

Unfortunately, Cardano’s solution was 
wrong. In 1556, Tartaglia again took up the 
problem of points, commenting that Cardano’s 
solution didn’t make sense. Kiernan (2001, p. 
181) notes that Tartaglia’s answer was “way 
off”, as well. Peverone in 1558 also attempted to 
solve the problem and failed, but according to 
David (1962), M. G. Kendall called this one of 
the near misses of history. It was not until Pascal 
and Fermat discussed the problem in a series of 
letters during the summer of 1654 that a correct 
solution was again found. This time the problem 
of points was solved in three different ways, one 
by Fermat using the enumeration of all cases, 
one by Pascal that used the process of recursion, 
and a second solution by Pascal using his 
arithmetic triangle. (The use of a triangular array 
such as Pascal=s triangle to determine binomial 
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coefficients appeared in works by Chu Shih-
chieh in 1303, Apianus in 1527, Stifel in 1545, 
and Tartaglia in 1556. According to David, 
1962, Fermat dealt with it in 1636, which is 
perhaps the reason that Fisher has referred to it 
as Fermat=s triangle.) 

The second question posed by de Mere 
and solved by Fermat and Pascal dealt with 
probabilities associated with dice. He asked 
Pascal (and Roberval) why the probability of 
throwing at least one six in four rolls of a fair die 
was in the ratio 671 to 625, whereas the 
probability of obtaining at least one pair of sixes 
in twenty-four rolls of two dice was less than 
0.5. Because the expected number of sixes rolled 
in four rolls of a single die is the same as the 
expected number of pairs of sixes in twenty-four 
rolls of two dice, the unequal probabilities that 
de Mere discovered led him, according to 
Pascal, to think he had found a “falsehood in the 
theory of numbers” and that “Arithmetic is self-
contradictory” (cited in David, 1962, p. 88-89). 
That de Mere was able to distinguish empirically 
between two probabilities whose true values are 
0.4914 and 0.5177, concluding that the former 
was less than 0.5, indicates that he was an 
assiduous gambler and note-taker.  

Dice of reasonable quality are known to 
have existed since about 3000 B.C., used chiefly 
at the time in religious rites (David, 1962). A 
complete enumeration of the various outcomes 
on three dice appeared in a thirteenth century 
poem attributed to Fournival (David, 1962), and 
a 1477 commentary by Libri on Dante’s Divine 
Comedy contains the first indication of the 
probabilities of various throws in a three-dice 
game of hazard (Todhunter, 1865). Cardano, 
however, possibly in concert with Ferrari, 
introduced in about 1526 (published 
posthumously in 1663) “the idea of 
combinations to enumerate all the elements of 
the fundamental probability set” and noticed that 
if all elements are equiprobable the ratio of 
favorable to total numbers of cases gives a result 
“in accordance with experience” (David, 1962, 
p. 58). 

From this, David (1962) concluded that 
Cardano was the first mathematician to correctly 
calculate a theoretical probability. 
Unfortunately, Cardano was incorrect in his 
solution of what was essentially de Mere=s 

second question. Galileo also took up the subject 
of dice games and published a fragment on them 
in around 1620 (David, 1962). His benefactor, to 
whom Galileo was Mathematician to his 
Serenest Highness, Cosimo II of Tuscany, had 
posed a problem that had been solved by 
Cardano and that was similar to that posed by de 
Mere: Why, in the throwing of three dice, is the 
number of partitions of 9 and 10 the same, 
though their probability in practice was not 
equal, with 9 being the less probable (David, 
1962)? (His Serenest Highness was almost as 
discerning as de Mere, being able to distinguish 
between probabilities of 0.116 and 0.125.)   

We can see that the topics addressed by 
Pascal and Fermat had a long history before the 
summer of 1654. Nevertheless, as Todhunter 
(1865) commented, “neglecting the trifling hints 
which may be found in preceding writers, we 
may say that the Theory of Probability really 
commenced with Pascal and Fermat” (p. 20). 
And yet, this work was never published by either 
Pascal or Fermat, though both desired that it be 
published. 

 It was Christian Huygens who 
incorporated their work into a small tract 
published in 1657, the first printed work on 
games of chance (Walker, 1929). Huygens 
learned the problem of points from one of 
Carcavi=s friends (David, 1962). After Huygens 
solved the problem and sent his solution to 
Roberval, Carcavi sent Huygens the outlines of 
the discussion of the problem between Fermat 
and Pascal, and he later sent Fermat’s solution to 
Huygens, which turned out to be the same as 
Huygens’. Fermat posed even more difficult 
problems to Huygens, which he solved and 
incorporated into his tract (David, 1962). 
According to David (1962), if one says that “the 
real begetter of the calculus of probabilities is he 
who first put it on a sound footing” (p. 110), 
then one should look to Huygens, Lord of Zelem 
and of Zuylichem, “the scientist who first put 
forward in a systematic way the new 
propositions..., who gave the rules and who first 
made definitive the idea of mathematical 
expectation”. For nearly fifty years, Huygen’s 
work (in Latin) was the unique introduction to 
the theory of probability (David, 1962). 
Todhunter (1865) attributes a 1692 English 
translation of Huygens’ tract to John Arbuthnot. 
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Newton was familiar with Huygens’ 
writings (David, 1962). With the arrival of The 
Great (bubonic) Plague (1664-65), Trinity 
University was closed, and Newton retired to 
Woolsthorpe for two years to invent calculus, 
discover the universal law of gravitation, and 
prove experimentally that white light is 
composed of all colors. Newton’s Principia was 
presented to the Royal Society in 1686 and 
published in 1687 (printed at Edmund Halley's 
expense), thirty years after Huygens published 
the work of Pascal and Fermat. And in 1693, 
Newton solved what was essentially de Mere=s 
dice problem in response to a query by Samuel 
Pepys, thus revealing what David (1962) 
described as at least elementary knowledge of 
probability theory.  

 
Certain Knowledge 

Probability theory has clearly long been 
of interest to gamblers. As Bellhouse (1993) 
noted, “familiarity with probability theory can 
enhance the strategy of play.” Putting the 
parentage of the theory aside, one must wonder, 
given that Pascal and Fermat’s theory 
culminated well over one hundred years of work 
on probability, why the methods of probability 
were not beginning to be incorporated into the 
scientific pursuit of knowledge. David (1962) 
opined, “At a time when it was still possible for 
an able mathematician to take all knowledge for 
his province, moreover when dicing, and 
gambling with annuities, were practiced as 
assiduously in England as anywhere else, it is 
indeed strange that not only Newton but nearly 
the whole of the English school showed no 
interest in them” (p. 124-125). 

David (1962) suggested that the 
introduction of probability into science did not 
come before the Renaissance “because the 
philosophic development which opened so many 
doors for the human intellect engendered a habit 
of mind which made impossible the construction 
of theoretical hypotheses from empirical data” 
(p. 26). One or another form of Aristotelianism 
was dominant at the beginning of the 
seventeenth century (Garber, 1995). And yet, 
even late into the Renaissance, during a period 
in which Newton seemed to have obtained 
hypotheses from data (despite his hypotheses 

non fingo claim to the contrary), probability had 
yet to enter the scientific arena.  

One possible reason for this late entry of 
probability into scientific method is that in the 
middle of the seventeenth century, and through 
the middle of the nineteenth century, knowledge 
was defined as certified true belief. Indeed, even 
Pascal claimed that he was not satisfied with the 
probable, seeking instead the sure (Watkins, 
1978). At the heart of this epistemological view, 
according to Suppe (1977), was the argument 
that S knows that P if and only if (a) P is true, 
(b) S believes that P, and (c) S has adequate 
evidence for believing that P. From the late 
sixteenth through the early twentieth centuries, 
natural philosophers were preoccupied by 
systematic methods for discovering knowledge 
(Mulaik, 1987). In this regard, the justification 
clause (c) was satisfied only by finding a 
demonstrably incorrigible base knowledge 
consisting either of the intuitionist Descartes' a 
priori clear and distinct ideas or by the sense 
data of inductivists such as Bacon and Gassendi. 

Greek philosophers recognized that the 
senses can deceive us. For example, atomists 
such as Democritus believed the world to be 
made from tiny entities known as atoms whose 
action on the senses cause us to experience smell 
and heat, for example. Yet, as the atoms have no 
smell or heat, the world of appearance is illusory 
(Mulaik, 1987). For Descartes, whom Peirce 
called “the father of modern philosophy” 
(Peirce, 1868), the broadest aspects of nature are 
understood by deduction from incorrigible first 
principles, which are grounded in pure reason 
(Salmon, 1966). 

So committed to certainty was Descartes 
that in his Discourse on Method of 1637 he 
claimed as false all that was only probable. 
According to Cartesianism, the world is full of 
an infinitely divisible matter, reason dominates, 
and philosophy is based on his own clear and 
distinct perceptions (Garber, 1995). For 
example, as Descartes wrote in his Meditations 
(1642), “Now it is manifest by the natural light 
that there must at least be as much reality in the 
efficient and total cause as in its effect. For, 
pray, whence can the effect derive its reality, if 
not from its cause?” Salmon wonders how the 
intuitionist Descartes, a man who could not be 
certain that 2+2=4 or that he had hands unless he 
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could prove that God is not a deceiver, found it 
impossible to conceive of the falsity of the 
foregoing principle. 

Descartes prepared his Meditations in 
Holland in 1640. Huygens transported it in 
manuscript form to Mersenne, who solicited 
responses from “learned men who would take 
the trouble to scrutinize them” (Descartes, cited 
in Joy, 1995, p. 431). Among those who 
contributed were Hobbes, Gassendi, and 
Mersenne, himself. According to Agassi (1975), 
Gassendi asked why one would deduce “I think, 
therefore I am?” Why not “I walk, therefore I 
am?” Descartes understood the point and agreed 
that if one walked, one necessarily existed. But 
he could not be sure that he walked; he could be 
sure that he thought, and that is why he preferred 
his “Cogito”. He didn’t doubt the validity of 
Gassendi’s inference, he only doubted the truth 
of the premise that he walked. (Agassi 
misattributed this Fifth Objection to Hobbes, 
who actually wrote the Third.) 

Gassendi was an empiricist. For him, 
experience dominates, and philosophy begins 
with our sensations of a public world; this world 
is made up of atoms and a void, and he 
attempted to reconcile Epicurean atomism in a 
way that was more congenial to the Church. In 
rejecting Aristotelianism, he, like Descartes, 
adopted the mechanist philosophy’s premise that 
physical phenomena could be described fully in 
terms of matter and motion. He also believed 
that our senses can fool us, which caused him to 
formulate a kind of moderate skepticism that 
influenced Locke, Peirce, and others. 

For other empiricists, like Bacon, the 
justification of scientific theory is based on its 
ability to explain experimental results. Until 
Bacon, logic as described in Aristotle’s Organon 
(Greek for “tool”) was deductive. What was 
needed was a method that abandoned 
Aristotelianism’s approach that began with 
hypotheses and deduced truths from them 
(Mulaik, 1987). Bacon introduced his inductive 
logic in his Novum Organum (Latin for “New 
Tool”) in 1620. According to Bacon's doctrine 
(Lakatos, 1978), a discovery is scientific only if 
it is guided by facts through a method of 
induction “that would begin without hypotheses 
or speculations, systematically interrogate 
nature, and move to ever more general truths by 

means of an automatic procedure or algorithms” 
(Mulaik, 1987, p. 273). The scientist starts by 
clearing his mind of theory (bias), and nature 
will then make itself known. For Bacon, science 
is an experimental enterprise through which one 
investigates phenomena in controlled 
circumstances. Bacon’s method of eliminative 
induction includes the logical insight that 
affirming instances do not provide evidence for 
inductive generalizations, whereas negative 
instances do provide disconfirming evidence 
(Mulaik, 1987). Bacon, apocryphally, died of 
pneumonia that developed while he was 
investigating refrigeration by stuffing a chicken 
with snow. 

Although Bacon’s Novum Organum of 
1620 preceded Descartes’ Discourse on Method 
by seventeen years, Descartes’ philosophy was 
dominant at the time of Newton’s Principia. 
According to the justificationist standards of the 
day, then, Newton’s theory was non-knowledge 
(Lakatos, 1978). Newton’s theory was not 
proved in the Cartesian sense, because it was not 
derived from Cartesian metaphysics. Newton 
instead proposed that propositions required only 
an empirical-experimental and not a 
rational-metaphysical proof (Lakatos, 1978). 
Because of the extraordinary success of 
Newton's theory, “for 200 years after Newton no 
one could advocate the use of hypotheses 
without an uneasy backward glance” (Medawar, 
1974). This, despite inductivism having suffered 
what should have been severe setbacks at the 
hands of Locke, Hume and Kant. 

 
Probable Knowledge 

The beauty and power of Newton’s 
mathematical approach to physics clearly had an 
effect on John Arbuthnot, who wrote in 1692, 
“There are very few things which we know; 
which are not capable of being reduc’d to a 
Mathematical Reasoning; and when they cannot, 
it’s a sign our Knowledge of them is very small 
and confus’d” (Stigler, 1986, p. 1). Arbuthnot 
implemented a binomial test in 1710 to examine 
“the constant regularity observ’d in the births of 
both sexes,” (Stigler, 1986, p. 225), and he is 
often credited with publishing the first statistical 
test. Fisher, however, attributed the first 
published significance test to de Moivre in 1718, 
and Barnard stipulated that the first published 
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test was due to Daniel Bernoulli in 1734 
(Bennett, 1990, p. 23-26). Regardless of which 
test is deemed to have been the first, it is clear 
that the eighteenth century held promise for 
great discoveries in probability and statistics. 
Some of the early discoveries in probability and 
statistics were important to philosophers, as 
well. Jacob Bernoulli developed the theory of 
permutations and combinations and contributed 
the weak law of large numbers, the theorem that 
with an increasing number of observations, the 
probability increases that an estimator will lie 
within any specified distance of the true value. 

According to Stigler (1986), at least five 
Bernoullis worked on probability, writing “So 
large is the set of Bernoullis that chance alone 
may have made it inevitable that a Bernoulli 
should be designated father of the quantification 
of uncertainty” (Stigler, 1986, p. 63). Jacob 
Bernoulli and philosopher Gottfried Leibniz are 
known to have composed twenty-one letters to 
one another, although one may not have been 
sent (Sylla, 1998). Leibniz may have first 
learned of Jacob’s work in probability from 
Jacob’s brother, Johann, with whom Jacob was 
not speaking. In a letter written in 1697, Leibniz 
spoke of the “need for establishing on firm 
foundations an art of measuring degrees of 
proofs” (Sylla, 1998, p.48). And after the 
publication in 1713 of Jacob Bernoulli’s Ars 
Conjectandi, accomplished eight years 
posthumously by his nephew Nicholas because 
of the rift between brothers, Leibniz noted that 
the probabilities of obtaining an 11 and a 12 in 
rolling two dice are equal. 

John Locke is considered to be the 
father of British empiricism, and he is perhaps 
the first major philosopher to discuss probable 
knowledge as a somewhat tenable, “second-rate 
way of becoming cognitively aware of the nature 
of the world” (Owen, 1993, p. 38). For Locke, 
probable knowledge is faith or opinion. Owen 
noted that Locke and other non-Cartesians stood 
at a junction between the old and new ways of 
looking at the world. Locke’s account 
“recognizes the limitations of knowledge, rather 
traditionally conceived, but looks ahead in 
allowing its rational supplementation by 
probable conjectures” (Owen, 1993, p. 39). 

In his 1690 An Essay Concerning 
Human Understanding, Locke sought to support 

Bacon’s empiricism by arguing that knowledge 
can not have a component based on innate ideas. 
He argued that if knowledge is not received 
through the senses, then the mind at birth must 
have some kind of intellectual ability, at least in 
applying the concepts of logic (Clark, 1957). 
Instead, he felt that a person enters the world 
with a mind that is a blank slate. There are only 
two sources of ideas, sensation and reflection. 
For Locke, complex ideas are formed out of the 
simple ones entering the mind through the 
mental activities of compounding, abstracting, 
and relating. By a method of analysis, Locke 
was able to trace back from complex ideas to the 
simple ones out of which they arose, but he 
could not find the simple idea from which the 
concept of substance came (Mulaik, 1987). 
Because of this, and because he argued that the 
certain qualities of objects, such as color and 
odor, exist only in the mind and are not 
representative of reality, we can not be certain 
that any of our ideas are representative of reality. 

The case for the demise of inductivism 
was made well and irremediably in David 
Hume=s Enquiry concerning the human 
understanding of 1748. Hume’s objections to 
induction can be variously phrased. According 
to Harris (1992), Hume concluded that it is 
impossible to justify epistemologically that 
unobserved cases will resemble observed cases 
in some crucial respect. Because of this, neither 
certain nor probable knowledge can be justified. 

Reichenbach (1951) discussed two 
theses put forward by Hume. In the first thesis, 
Hume makes clear the nonanalytic nature of 
induction by pointing out that we can very well 
imagine the contrary of the inductive conclusion. 
The possibility of a false conclusion in 
combination with a true premise proves that the 
inductive inference does not carry a logical 
necessity with it. Hume's second thesis is that 
induction cannot be justified by reference to 
experience--the inference with which we want to 
justify induction is itself an inductive inference 
(we believe in induction because induction has 
so far been successful), and so we are caught in 
circularity. Russell (1945, p. 672) stated Hume’s 
conclusion as, “We cannot help believing, but no 
belief can be grounded in reason.” Of Hume’s 
conclusion, Russell (1945) exclaimed, “It is 
therefore important to discover whether there is 
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any answer to Hume within the framework of a 
philosophy that is wholly or mainly empirical. If 
not, there is no intellectual difference between 
sanity and insanity. The lunatic who believes 
that he is a poached egg is to be condemned 
solely on the ground that he is in a minority” (p. 
673). It would seem that as of 1748, unless 
arguments could be mounted against Hume’s 
attack, inductivism was dead. Yet, it lived on, 
because of the success of Newton's theory. 

Expanding on the work of Jacob and 
Nicholas Bernoulli, De Moivre published the 
first appearance of the normal curve in 1733 
(Stigler, 1986). And in 1763, Bayes’ Theorem 
was published posthumously by Richard Price, 
who presented it to the Royal Society. Fisher 
(1956) thought Bayes was reluctant to publish 
his work because Bayes felt that his postulating 
a uniform prior distribution might be considered 
disputable. Price, according to Gillies (1993), 
was strongly influenced by Hume’s criticisms of 
induction and thought that Bayes’ Theorem 
could be used to resolve the problems raised by 
Hume by making generalizations probable, 
rather than certain (this despite Hume’s 
injunction against such a possibility).  

 
Synthetic a priori Knowledge 

The first major intuitionist response to 
Hume's empiricist attack was due to Kant, who 
wrote Critique of pure reason in 1781, 
according to Reichenbach (1951), “with the 
intention of saving scientific knowledge from 
the annihilating consequences of Hume’s 
criticism.” Kant, who in his preface to the 
Critique compared his work to that of 
Copernicus, made clear two distinctions among 
types of propositions. First, he distinguished 
between analytic propositions (true virtually by 
definition, such as the statement “All bachelors 
are unmarried”) and synthetic propositions 
(those that inform us about a fact, such as 
observations, and add to our knowledge). 
Second, he distinguished between a priori 
propositions, those which have a basis other than 
experience, and a posteriori (or empirical) 
propositions, needing observational evidence to 
determine their truth. He posited that objects 
conform to the conditions set forth by the mind, 
that whereas the senses provide the subject 
matter, the mind imposes the form of thought. 

Rather than the mind being a Baconian blank 
slate, Kant specified what he called the 
categories of thought as the a priori equipment 
for thinking. He felt that by showing that the 
axioms of Euclidean geometry were synthetic 
and yet known a priori, he could establish the 
incorrigible basis that justified Suppe’s clause 
(c) mentioned earlier. It would seem, then, that 
at this point, intuitionism held the upper hand, 
due to Hume’s crushing blow against 
inductivism and to Kant’s intuitionist argument 
that Euclidean geometry was synthetic and yet 
known a priori.  

The nineteenth century saw major 
upheavals in science and philosophy. As 
described by Reichenbach (1951), “Ever since 
the death of Kant in 1804 science has gone 
through a development, gradual at first and 
rapidly increasing in tempo, in which it 
abandoned all absolute truths and preconceived 
ideas.” Lagrange introduced the method of least 
squares in 1805, and in 1809 Gauss addressed 
the same problem but couched it in probabilistic 
terms (he also claimed priority for the method of 
least squares, claiming he had used it since 1795 
- Stigler, 1986). 

Laplace contributed the central limit 
theorem in 1810, inverse probability and the 
principle of insufficient reason in 1812. His 
definition of probability was as a state of mind 
(Fisher, 1956; Epstein, 1977), whereas Bayes 
seems to have used a frequentist definition 
(Fisher, 1956). The definition of probability as 
the limit of a frequency was due to Poisson in 
1837. According to Epstein (1977), the theory of 
probability is more indebted to Laplace than to 
any other mathematician; indeed, Stigler (1986, 
p. 122) claims that Laplace’s work brought 
about “a truly Copernican revolution in 
statistical concept.” The Gauss-Laplace 
synthesis brought together two lines - the 
combination of observations and the use of 
probability to make inferences - into a coherent 
whole that was widely disseminated through the 
middle of the century (Stigler, 1986).  

But Gauss, along with Bolyai and 
Nikolai Ivanovich Lobachevsky, called the 
Copernicus of geometry by English 
mathematician William Clifford (Bell, 1937), 
made a discovery that had far greater 
philosophical import - the discovery of 
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non-Euclidean geometry. Lobachevsky’s 
publication appeared in 1829-30 and Bolyai’s in 
1832. Gauss claimed to have obtained similar 
results earlier but did not publish because, 
according to Gillies (1993, p. 80), “he was 
‘afraid of the clamour of the Boeotians.’ Boeotia 
was a region of ancient Greece whose 
inhabitants were considered by the Athenians to 
be stupid and uncultured” (p. 80). The arrival of 
non-Euclidean geometry showed that Kant’s 
implication that humans could never conceive of 
non-Euclidean geometries was untenable. 
Despite this, Kant’s impact was strong and 
lasting. 

 
Descriptive Knowledge 

Burtt (1924) saw elements of positivism 
in Galileo's work, and Burtt cited Brewster’s 
claim that Newton was the first great positivist. 
The founder of positivism in its 19th century 
form was Auguste Comte. Comte's Cours de 
philosophie Positive was completed in 1842. 
Comte is also known as the founder of 
sociology. Positivism was Comte’s response to 
the upheavals in society and to Laplace’s 
“scientifically reasoned deterministic 
interpretation of the universe” (Epstein, 1977, 
p.7). It was Comte’s hope that science could be 
turned into a religion, “in which the great 
philosophers and scientists took the place of the 
Christian saints, and an organized devotion to 
the cause of humanity was substituted for the 
worship of God” (Fuller, 1938, p. 384). 
According to Comte, there are three stages in the 
history of thought: 1) a theological stage, 
explaining the universe in terms of the purposes 
of deities; 2) a metaphysical stage, explaining in 
terms of abstract principles which are 
personified; and 3) a scientific stage, in which 
uniformities in nature are described without 
reading any evidence of purpose or design or 
consciousness into them. The meaning of terms 
are referred to what is found in experience. 

Positivists eschew metaphysics and 
refrain from explanation in physics. Science 
organizes knowledge using laws that are merely 
descriptions, approximate at that, of the patterns 
in which phenomena occur, and science gives us 
the power of prediction. Bradley (1971) 
paraphrased Martineau in saying it is strange 

that something so negative should be called 
positivism. 

Fortunately, although an actual Religion 
of Positivism was started, with priests, rituals, 
and baptisms, most of Comte’s excesses in this 
direction were ignored. Comte’s positivist heir 
was physicist Ernst Mach, who was ecumenical 
in his influences, including Hume, Kant, and 
Darwin (Cohen, 1970, p. 127). According to 
Cohen (1970), Mach “apparently succeeded in 
combining a Kantian appreciation of the active, 
even constitutive, role of the mind in generating 
science with a scientific, which is to say, 
empirical-biological, theory of the origins and 
functions of the mental life” (p. 156). For Mach, 
“not knowledge attained, but the method of 
attaining it, could be certified” (Cohen, 1970, 
p.129). 

 Mach, like Comte, was an 
instrumentalist and felt that laws were mere 
descriptions of nature. Mach, however, did not 
completely do away with theories (as opposed to 
laws), as long as they were testable. Mach’s 
positivism differs from Comte's in that nothing 
was “more foreign to Mach than the tendency 
towards absolutism which finally disfigured both 
the philosophical and the human image of 
Comte” (von Mises, 1970, p. 266). Even by the 
turn of the twentieth century, physicists such as 
Plank and Einstein, although influenced greatly 
by Mach early on, began to turn against 
positivism. 

 
Conjectural Knowledge 

William Whewell, who coined the word 
‘scientist’ (as well as ‘anode’ and ‘cathode’ for 
Faraday and the words ‘physicist’, ‘eocene’, 
‘miocene’, and ‘pliocene’ - Medawar, 1974) 
upon the request of the poet Samuel Taylor 
Coleridge in 1833, tried to reformulate the 
problems of the philosophy of science in a 
Kantian way (Wettersten, 1993), while not 
relying on Kant’s fixed a priori categories. He 
attempted to “explain the facts of the growth and 
stability of science without appeal to induction, 
which he saw to be useless” (Wettersten, 1993, 
p. 482). In his Novum Organum Renovatum of 
1858, Whewell considered induction to be “the 
representation of facts with principles” 
(Wettersten, 1993, p. 497), a notion that will be 
seen in the pragmatacist philosophy of Charles 
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Sanders Peirce, and not the Baconian induction 
from facts to generalizations. He showed that 
neither empiricism nor intuitionism, including 
Kant=s, could account for the growth of scientific 
knowledge; instead, both experience and 
intuition were needed. He gave importance to 
independent tests and to new predictions, and he 
claimed that science needs guesses (Medawar, 
1974 noted that Whewell also used the phrase 
‘felicitous strokes of inventive talent’ when a 
more formal phrase than ‘happy guesses’ was 
required.) As Medawar (1974, p. 281) explained, 
“To say that Einstein formulated a theory of 
relativity by guesswork is on all fours with 
saying that Wordsworth wrote rhymes and 
Mozart tuneful music. It is cheeky where 
something grave is called for to explain how 
scientists discover true principles.” According to 
Wettersten (1993, p. 506), Whewell’s theory 
makes clear that Aeven if we start with poor 
guesses and treat them critically we can come to 
the truth: there are many paths to the truth but 
only one goal’. We see then that Whewell’s 
approach is essentially deductivist and that the 
process consists above all in criticism. In this, 
Whewell is a direct predecessor to Karl Popper’s 
philosophy of conjectures and refutations 
(Wettersten, 1992). 

According to Reichenbach (1951), “the 
turning point in the history of logic was the 
middle of the nineteenth century, when 
mathematicians like Boole and de Morgan 
undertook to set forth the principles of logic in a 
symbolic language.” Peirce, a mathematician 
and logician by training, carried on this work. It 
was not until Boole, DeMorgan, and Peirce 
mathematically overhauled traditional formal 
logic that the logic of probability was put on a 
more scientifically useful basis (Wiener, 1972). 
That Peirce was a frequentist could have been 
due to Boole’s strong criticism in 1854 of the 
postulate of which Bayes was so chary. Like 
Whewell, Peirce was heavily influenced by 
Kant. He claimed that he read Kant=s Critique of 
Pure Reason two hours per day for three years, 
and he named his philosophy ‘pragmatism’ in 
honor of Kant, whom he called The Philosopher. 
He did not use the term practicalism, because in 
Kant pragmatism and practicalism are virtually 
polar opposites (Buchler, 1939). 

Pragmatic means empirical or 
experimental, whereas Kant’s notion of practical 
laws are given purely a priori. Indeed, so often 
were these terms misunderstood that Peirce 
threatened to call his philosophy pragmaticism, a 
term he felt was so ugly that it wouldn’t be 
kidnapped. 

According to Wiener (1972), the great 
difference between the American pragmatists 
and Kant is their denial that over and above 
contingent pragmatic belief are the purely 
rational, necessary, and absolute ideas of Kant's 
transcendental philosophy. The purpose of 
inquiry, wrote Peirce, is to enable us to pass 
from a state of doubt to a state of belief. Despite 
his high regard for Kant, Peirce’s philosophy 
differed from that of Kant. For example, 
whereas Kant considered mathematics to be 
synthetic and yet true a priori, Peirce held that 
mathematics and logic are not synthetic 
(Buchler, 1939). 

He also provided his own version of 
Kant’s categories, writing of them that in 
making their character unchangeable, Kant was 
hostile to the spirit of empiricism. Because of 
the constant nature of Kant’s categories, Kant’s 
epistemology formed a closed system. But 
Peirce, having the benefit of Darwin’s Origin of 
Species of 1859, provides an adaptive 
mechanism behind his categories. Peirce 
attempted to convert the Darwinian ideas of 
chance variation and natural selection into the 
idea of an evolution of the mind by means of a 
logical competition among thoughts, which 
eliminates ideas not fit to stand for the truth 
fated to be discovered by those who investigate. 
It was the nonevolutionary character of the old 
forms of a static empiricism and a rigid a priori 
intuitionism that engaged the pragmatists. 

Peirce was a fallibilist, extending the 
views of Gassendi and Locke in a most thorough 
way. “I will not,” he wrote, “admit that we know 
anything with absolute certainty. It is possible 
that twice two is not four” (Peirce, 1958, p. 64). 
Although he felt that the notion of certain 
knowledge is absurd for a variety of reasons, 
there were two main reasons underpinning his 
fallibilism. First, all claims to knowledge are 
criticizable and only held conditionally, for there 
is no ultimate inductivist or empiricist basis that 
can stop the respective infinite regress in the 
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justification of the claims. And second, he felt 
that no theory was true, able to satisfy all 
features of the facts. In terms of Newton=s law of 
gravity, he pointed out that if, instead of inverse 
square attraction, the exponent of the distance 
between bodies was 2.000001, there would only 
be a minor consequence observable in the orbits 
of the planets, resulting in only slight 
discrepancies in estimated planet masses (Peirce, 
1958).  

Peirce (1878) classified all inference as 
either deductive (or analytic) or synthetic, which 
he subdivided into induction and hypothesis. 
(One difficulty encountered in reading Peirce 
results from his using ‘hypothesis’, 
‘retroduction’, and ‘abduction’ for the same 
synthetic inference. In addition, Peirce 
delineated several types of induction.) 
Deduction is a syllogism in which the truth of a 
rule and a case is transmitted to the result, and 
conversely from the falsity of the conclusion, the 
falsity of the premise follows. In induction, we 
infer from a number of cases that the same thing 
is true of a whole class. Peirce showed that an 
induction is the inverse of a deductive syllogism, 
so that from the case and the result, the rule is 
inferred. As an example (Peirce, 1878), from the 
deduction: 

 Rule: All the beans in the bag were           
white. 
 
 Case: These beans were in the bag. 
 

Result: These beans are white. 
 
we can obtain the induction: 
 
 Case: These beans were in the bag. 
 

Result: These beans are white. 
 
Rule: All the beans in the bag were       

white. 
 
Hypothesis infers the case from the rule and the 
result: 
 
 Rule: All the beans from this bag       
are white. 
 

Result: These beans are white. 
 

 Case: These beans are from this bag. 
Peirce described the scientific method in 

terms of these three modes of inference in the 
following way (Peirce, 1958):  

 
Accepting the conclusion that an 
explanation is needed when facts 
contrary to what we should expect 
emerge, it follows that the explanation 
must be such a proposition as would 
lead to the prediction of the observed 
facts 
 
A hypothesis then, has to be adopted, 
which is likely in itself, and renders 
the facts likely. This step of adopting a 
hypothesis as being suggested by the 
facts, is what I call abduction. 
 
[T]he first thing that will be done, as 
soon as a hypothesis has been adopted, 
will be to trace out its necessary and 
probable experiential consequences. 
This step is deduction. (p. 122). 

 
An abduction for Peirce is an explanation. 

The third step in the process involves 
induction (Peirce, 1958): 

 
Having...drawn from a hypothesis 
predictions...we proceed to test the 
hypothesis by making the experiments 
and comparing those predictions with 
the actual results of the experiment. 
  
This sort of inference it is, from 
experiments testing predictions based 
on a hypothesis, that is alone properly 
entitled to be called induction.  
 
Induction...is not justified by any 
relation between the facts stated in the 
premisses and the fact stated in the 
conclusion...But the justification of its 
conclusion is that that conclusion is 
reached by a method which, steadily 
persisted in, must lead to true 
knowledge in the long run. (p. 124-
125) 
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Peirce distinguished two major types of 
valid induction (there is actually a third type that 
Peirce called the Pooh-pooh argument, but 
enough said). The first, quantitative induction, 
involves the ascertainment of a ratio in the 
population from samples. Through this type if 
induction, we can attain moral certainty of the 
population value, by which Peirce means a 
probability of 1 based on Bernoulli’s results 
concerning the probability that the sample value 
lies within certain limits of the population value. 
“Of course,” he wrote, “there is a difference 
between probability 1 and absolute certainty” 
(Peirce, 1958, p. 131). The second type of 
induction Peirce called qualitative induction, 
from which the most that can be said is that 
there is no reason yet for giving up the 
hypothesis. Of this second type, Peirce (1958)  
wrote, “the only justification for this would be 
that it is the result of a method that persisted in 
must eventually correct any error that it leads us 
into” (p. 134). 

Peirce claimed for induction a 
trustworthiness because of the manner of 
proceeding (Buchler, 1939). The concept of a 
probable argument referred to a class of 
arguments, and an induction belongs to the class 
of all inductions. Saying an induction was 
probable meant that the majority of inductions 
were successful. “[T]hat real and sensible 
difference between one degree of probability 
and another...is that in the frequent employment 
of two different modes of inference, one will 
carry truth with it oftener than the other” (Peirce, 
1878).  

Neither qualitative nor quantitative 
induction and the associated probabilities of 
success involves the probability that a 
generalization itself is true. According to 
Buchler (1939), “After 1883 Peirce does not 
even regard induction as ‘probable’...but rather 
as not probable at all” (p. 251). Peirce said that 
talking about the probability of a law was 
nonsense, as if universes were as plentiful as 
blackberries, and we could pick one. This later 
view reflects Peirce’s distinction between two 
types of probability, the empirical probability 
associated with ratios or with the class of 
inductions and what Peirce called 
conceptualistic probability that is not strictly a 

probability, but is instead only a sense of 
probability (Buchler, 1939). 

As with Whewell, Peirce emphasized 
that potential explanatory hypotheses are 
formulated as guesses. For Peirce, as with Mach, 
the force of scientific reason lies in its methods. 
“[T]he method of methods, is the true and 
worthy idea of the science” (Peirce, 1958, p. 44). 
Science is rational, according to Peirce (1958, p. 
49), where “...‘rational’ means essentially self-
criticizing, self-controlling and self-controlled, 
and therefore open to incessant question.” And 
rather than leading to the probability that the 
inductive inference itself is true, the ability to 
draw valid conclusions lies with the probability 
of correctness of its inductive method, “the 
relative frequency with which this class of 
inferences is found to yield true conclusions” 
(Buchler, 1939, p. 233). 

 
Unprovable and Improbable Knowledge 
 By the end of the nineteenth century, the 
philosophical focus was on American 
Pragmatism and Machian positivism. Both 
Galton and Pearson were Machian 
instrumentalists, which would at least partly 
explain Pearson’s emphasis on fitting data to his 
own system of curves. The continuation of 
Mach’s doctrines fell to the logical empiricists. 
The response of Russell and the Vienna Circle 
philosophers was to search for an empirical basis 
and an inductive logic. Realizing that justifying 
an inductive principle on the basis of 
observation would lead to an infinite regress - to 
justify it would require inductive inferences - 
Russell advocated accepting the principle of 
induction on the ground of its intrinsic evidence 
(Gillies, 1993), that is, on an a priori basis. But 
even if we accepted a priorism as a justification 
of an inductive principle, the positivists' search 
for an empirical basis was doomed to failure, as 
shown by Duhem, who advanced two theses 
against inductivism. One of these, afterwards to 
become known as the Duhem-Quine thesis, will 
be discussed later.  

The other thesis shows that all 
observations are theory-laden. According to 
Agassi (1983), the claim that empirical evidence 
has a theoretical bias was recognized by Bacon 
and Galileo; if one has a theory, it biases 
perception. This led to Bacon’s request that 
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scientists first make observations with no theory 
in mind. Galileo realized, of course, that this 
would result in “just a heap of observations” 
(Agassi, 1983, p. 10), and he was convinced that 
geometry, based on a priori intuitions, must 
precede facts. This led to Kant’s argument 
against empiricism, and  Whewell, influenced by 
Kant, deduced that all data are interpreted, either 
on the basis of theory or of a priori intuitions. 
Therefore, trying to prove a theory inductively 
ultimately requires proving a theory from a 
theory, which is impossible. All one could 
conclude on this basis is that the theories 
involved are consistent. Thus, the 
theory-ladenness of observations meant that 
theories could no longer be hoped to be proved 
from an incorrigible basis. 

It was still felt, however, that although 
theories may not be provable, they still could be 
disproved, or falsified, a view that flies in the 
face of the Duhem’s second thesis, which states 
that an experiment can never condemn an 
isolated hypothesis but only a whole theoretical 
group. Underpinning this thesis is the realization 
that no theory can specify any observable 
consequences. Rather, it requires the conjunction 
of the theory, initial conditions, and auxiliary 
hypotheses. Thus, there can not be such a thing 
as a crucial experiment, on the basis of which a 
theory is falsified and dropped, because an 
observation contrary to prediction can only 
condemn the collective and not any individual 
part. Quine (1951) concluded that any statement 
can be held to be true, if we make enough 
adjustments elsewhere in the system. Thus, not 
only did the theory-ladenness of observations 
make theories unprovable, the Duhem-Quine 
thesis makes them undisprovable. So positivists 
had to fall back on the hope that theories could 
at least be shown to be probable. 

Neyman and Pearson (1933) and Fisher 
(1935) approached these issues from different 
perspectives, and certainly different from the 
probabilist approach of Jeffreys (1939). For 
probabilists, theories have different degrees of 
probability (Lakatos, 1978). Scientific honesty 
then consists in uttering only highly probable 
theories, or the probability in light of the 
evidence. But Ritchie (1926) showed that the 
probability of any inductive generalization is 
zero, and Lakatos (1978) points out that in the 

early 1940’s, Carnap found that the degree of 
confirmation of all genuinely universal 
propositions was zero. So not only can no theory 
be proved or disproved with certainty, but 
theories are also equally improbable. This, then, 
was finally the end of positivism.  

 
Criticism and Knowledge 
 Popper, in his Logic der Forshung in 
1934 (Popper, 1959), attempted to address the 
issues that have been raised, especially Hume’s 
skepticism, the theory-ladenness of 
observations, and the inability to condemn a 
hypothesis in isolation. In his solution, we can 
see much of what was good in Hume, Kant, 
Mach, and especially Whewell and Peirce. 
Popper’s view of knowledge is fallibilist, as was 
Peirce’s, and for him method is fallible as well, 
as distinguished from Mach’s view that method 
was certain. Indeed, Peirce’s overall view of the 
inductive process is virtually indistinguishable 
from the conjecture-and-refutation model 
advocated by Popper (Wiener, 1972). Popper 
(1962) claimed that his method of conjectures 
and refutations had its origins in the writings of 
Kant. Popper never questioned Hume’s 
indictment of induction; instead, he insisted 
there was no problem. Instead of an inductive 
principle, Popper advanced “the theory of the 
deductive method of testing, or as the view that 
a hypothesis can only be empirically tested--and 
only after it has been advanced” (Popper, 1959, 
p. 30).  

Musgrave (1993) described Popper’s 
solution to the problem of induction in the 
following way. Popper, he said, rejected the 
assumption that an ampliative hypothesis is 
reasonable if, and only if, it is justified by the 
evidence, if, and only if, the evidence shows it to 
be true or probably true. In this, it is not clear 
whether justifying beliefs refers to justifying the 
things we believe or providing a warrant for our 
believing those things. According to the classical 
argument, we are justified in believing 
something if, and only if, we can show it to be 
true or at least show it to be more likely true 
than not. Popper rejected this assumption, 
allowing him to endorse Hume’s inductive 
skepticism while rejecting his irrationalism. To 
get from the skeptical thesis to the irrationalist 
thesis you also must assume that a belief is 
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reasonable if and only if it is justified. Popper 
rejected this also. 

In Musgrave’s (1993) view, Popper 
affirmed that some evidence-transcending 
beliefs are reasonable. The central claim of 
Popper’s approach, said Musgrave (1993), is 
that an evidence-transcending belief is 
reasonable if, and only if, it has withstood 
criticism, including, where appropriate, attempts 
to refute it by appeal to evidence. When a 
prediction is falsified we will say that what we 
predicted was wrong, not that it was 
unreasonable to have predicted it. For any 
reasonable theory of reasonable belief, 
according to Musgrave (1993), must make room 
for reasonable beliefs in untruths. In short, 
Hume’s criticism of induction applied to the 
search for a warrant for our beliefs, whereas in 
Musgrave=s view, it does not apply to obtaining 
a warrant for our act of believing. 

By contrast, according to the pancritical 
rationalism of Bartley (1984) and the 
comprehensively critical rationalism of Miller 
(2002), reflecting and extending the philosophy 
of Peirce and Popper, “neither beliefs nor acts of 
belief, nor decisions, nor even preferences, are 
reasonable or rational except in the sense that 
they are reached by procedures or methods that 
are reasonable or rational...Still less are beliefs, 
or decisions, or preferences ever justified” 
(Miller, 2002, p. 81). According to Miller 
(1982), the major difference between Popper’s 
falsificationism and the justificationist 
philosophy of others is methodological, not 
epistemological.  

Virtually all modern philosophers of 
science agree that certain knowledge can not be 
attained. Popper was the first to say outright that 
the attempt to attain certainty should not even be 
made. Miller (1982) pointed out that for 
justificationists, a hypothesis has to be 
confirmed, perhaps inductively, before it is 
admitted to science, and if it fails the tests, or is 
disconfirmed, or not confirmed at all, it is 
excluded from science. For Descartes, ideas that 
can not be justified by being reduced to clear 
and distinct ideas should be rejected, and 
anything that is accepted must be justified in this 
way. For Hume, any idea that can be justified by 
being derived from experience, the empiricist=s 
only source of knowledge, should be accepted, 

and any idea that can not should be rejected 
(Bartley, 1984). 

For Popper, as with Peirce, a hypothesis 
is tested only after it is admitted by being 
conjectured. There is a policy of “open 
admission”, restricted only by the requirement 
that no hypothesis be admitted without there 
being some way to test it (Miller, 1982, p. 22). If 
the hypothesis passes a test, nothing happens, 
whereas if it fails a test, it is expelled. Because 
of the open admission policy, “it is of the 
greatest importance that the expulsion 
procedures should be brought into play at every 
possible opportunity...If we are seriously 
searching for the truth, we should submit any 
hypothesis proposed to the most searching 
barrage of criticism, in the hope that if it is false 
it will reveal itself as false” (Miller, 1982, p.23). 

 
Criticism 
 One objection that could be raised 
regarding the critical rationalist methodology 
concerns the use of logic in a rational approach 
to science. Surely, this line of thinking would 
go, the principles of logic must be assumed to be 
true on an a priori basis. Are we not committed 
to an un-revisable logic, because logic itself can 
not be used to criticize logic? It is true that 
“critical argument...cannot be carried on without 
some system of logic. You cannot in this sense 
abandon logic and remain a rationalist” (Miller, 
1994, p. 91). But the system of logic one uses 
can be criticized if the logical rules consistently 
lead to errors. Miller (1994) gives the example 
of a program written in FORTRAN that can be 
used to test the correctness of an operating 
system, even though the operating system is 
presupposed. Miller (1994) noted that it is “logic 
itself” (p. 91) that is supposedly assumed to be 
beyond criticism by critical rationalism. Yet, 
logic is involved in the critical argument in a 
particular formulation, at a minimum usually 
involving the principle of noncontradiction and 
the law of excluded middle, which might be 
right or wrong, and not in an unformulated way 
as logic itself. And whatever the particular 
formulation, it can certainly be criticized. 

Does not the approach presuppose an 
inductive principle, such as the uniformity of 
nature or that the future will resemble the past, 
at least as far as specifying that we expect that 
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the laws we’ve discovered should work in the 
future? As Miller (1982) pointed out, “In order 
to provide genuinely interesting knowledge of 
the world inductivism needs to assume that there 
is some order and regularity in the world, whilst 
falsificationism requires only that there is some 
order and regularity in the worldBbut it does not 
need to make any sort of assumption to this 
effect” (p. 33). Miller went on to note that if 
there were no regularity, falsificationism would 
yield little, except the conjecture that there is no 
regularity. Hypotheses propose order, but if 
there is none, none will be found. They do not 
presuppose it.  

As regards the reliability of a theory, no 
theory is reliable, in that Hume showed that 
without an inductive principle such as that the 
future will resemble the past, there is no logical 
way to infer that the theory will work in the 
future (or that it will fail). But if a theory is 
conjectured and stands up to severe testing, then 
it has not been discorroborated (a term used to 
emphasize the tentative nature of falsifications), 
and it may be tentatively classified as true; and 
one can deduce from the conjecture that various 
predictions will hold without relying on the 
uniformity of nature. As Miller (1980) wrote, 
“Whatever one calls them, Hume’s problem 
simply does not arise for guesses” (p. 123). But, 
the issue might be pursued, if theories are 
unreliable, then why should any decisions be 
based on them? 

Again, it seems rational to base a 
decision on a theory that has stood up to severe 
testing instead of one that has failed a severe 
test. As Miller (2002) pointed out, if one wants 
to avoid bad outcomes tomorrow, he can cross 
his fingers or he can try to be rational today. 
This does not mean, of course, that we can not 
hope that our favorite theories will continue to 
stand up to severe criticism. Radnitzky (1982) 
explained, “we have a subjective belief that the 
regularities described by a highly corroborated 
theory will also hold in the future. But this 
subjective belief is not granted any 
methodological significance” (p. 74). 

Finally, the question arises as to how 
one could base a rejection of theory on the basis 
of experience if all basic statements are 
tentative. In this regard, Popper (1985) pointed 
to the well-known asymmetry between 

corroboration and rejection, namely that no 
matter how many confirmatory observations are 
observed, a theory can never be proved, whereas 
a single disconfirmatory observation can falsify 
(tentatively) a theory. Thus, as regards the 
observational basis, “No matter whether they are 
true or whether they are false, a universal law 
may not be derived from them. However if we 
assume that they are true the universal law may 
be falsified by them” (Popper, 1985, p. 185). 
Here the basic statements are conjectured to be 
true and are severely tested. “No falsification is 
conclusive,” Miller (1982) wrote, “if only 
because all test statements are themselves 
fallible and open to dispute. But it would be 
incorrect to conclude from this that no 
hypothesis can be properly falsified... [T]hat a 
falsification has not been done conclusively does 
not mean that it has not been done correctly” (p. 
24). The important thing about basic statements, 
Miller (1982) pointed out, is that they should be 
true. If there is doubt about a basic statement, it 
is rational to test it. It is not enough simply to 
doubt, because doubt is not the same thing as 
criticism.  

 
Gambling with Nature 

The philosophical underpinnings of the 
demand for severity in testing hypotheses has 
been discussed and codified by Mayo (1996). 
“What are needed,” she wrote (Mayo, 1996), are 
arguments that H is correct, that experimental 
outcomes will very frequently be in accordance 
with what H predictsBthat H will very frequently 
succeed...We obtain such experimental 
knowledge by making use of probabilitiesBnot 
of hypotheses but probabilistic characteristics of 
experimental testing methods (e.g., their 
reliability or severity)” (p. 122). 

Mayo (1996) explained, “The control of 
error probabilities has fundamental uses in 
learning contexts. The link between controlling 
error probabilities and experimental learning 
comes by way of the link between error 
probabilities and severity. The ability to provide 
methods whose actual error probabilities will be 
close to those specified by a formal statistical 
model, I believe, is the key to achieving 
experimental knowledge” (p. 411). 

Mayo seemed to concur with Peirce in 
this, including Peirce’s focus on verification. 
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Yet, as we have seen, inductive support is not 
possible. Miller (1982) described the task of 
empirical science as separating as best it can true 
statements about the world from false ones, and 
to retain the true ones. The mission, of course, is 
to classify, and not certify, truths. Scientific 
conjectures are “hopelessly fallible, hopelessly 
improbable, hopelessly unlikely to be true” 
(Miller, 1982, p. 20). And yet, the conjectural 
nature of our hypotheses makes them ready to be 
shown to be wrong. In so doing, we must strictly 
control the rate at which we make errors in order 
to ensure a desired level of severity. This 
imposition of severe testing is a methodological 
one (Miller, 1982), and it is consistent with both 
Peirce’s philosophical views and with Neyman’s 
(1957) philosophy of inductive behavior. 

Neyman (1957) wrote that the 
concluding phase of scientific research, often 
labeled inductive reasoning, involves mental 
processes that are very different from those 
involved in proving a theorem. Instead of 
inductive reasoning, which may be considered a 
misnomer, Neyman preferred the phrase 
inductive behavior. Neyman pointed out that 
theories are models of natural phenomena, that 
is (Neyman, 1957, p. 8)  

A model is a set of invented 
assumptions regarding invented entities such 
that, if one treats these invented entities as 
representations of appropriate elements of the 
phenomena studied, the consequences of the 
hypotheses constituting the model are expected 
to agree with observations. 
 In describing the concluding phase, 
which he pointed out was frequently described 
as induction, he felt that the constituent 
processes were of three types (Neyman, 1957, p. 
10). First, the visualization of several possible 
sets of hypotheses relevant to the phenomenon, 
second deductions from these sets of hypotheses, 
and third an “act of will or a decision to take a 
particular action, perhaps to assume a particular 
attitude towards the various sets of hypotheses.” 
We need to specify in advance the desired 
properties of our decision procedure and try to 
determine the decision rule that has these 
properties. Given that the hypothesized model is 
adequate, probability calculations are used to 
“tell us how frequently the given rule will 
prescribe any of the actions contemplated” 

(Neyman, 1957, p. 18). The mental processes 
involved in the third step, according to Neyman, 
amount to taking a calculated risk.  

Levi (1980) commented on the 
connection between Peirce’s approach to 
induction and the Neyman and Pearson theory of 
hypothesis testing: “Peirce’s inductions are 
inferences according to rules specified in 
advance of drawing the inferences where the 
properties of the rules which make the 
inferences good ones concern the probability of 
success in using the rules. These are features of 
the rules which followers of the Neyman-
Pearson approach to confidence interval 
estimation would insist on” (p. 138). Peirce’s 
call for predesignation is echoed in Pearson’s 
(1936) insight that “to base the choice of the test 
of a statistical hypothesis upon an inspection of 
the observations is a dangerous practice; a study 
of the configuration of a sample is almost certain 
to reveal some feature, or features, which are 
exceptional if the hypothesis is true” (p. 317). 
Mayo (1993), in drawing out the common 
philosophical underpinnings of the Peirce and 
the Neyman-Pearson methodologies, noted that 
Birnbaum and Armitage showed that violating 
predesignation permits tests which can be wrong 
with extremely high probability.  

It may be illustrative to view the 
appropriate use of statistical methods in the 
course of taking Neyman’s calculated risk as a 
system to use, similar say to a system for 
playing blackjack, while “gambling with truth” 
(Levi, 1967) in what Milnor (1954) called 
“games against nature.” In a sense, probability 
theory is returned to its roots. If the game 
against nature is to be played, it seems only 
rational to adopt a system that is known to yield 
a particular advantageous probability of 
winning. 

In blackjack, even the best systems yield 
an overall probability of winning of 0.51 or so 
(Epstein, 1977), so a player must follow a 
system rigorously or the chances of winning will 
be reduced, if not reversed. The system is not 
totally rigid, in that each decision is based on the 
available information at the time the decision is 
to be made, but this adaptive decision-making 
scheme is figured into the overall winning 
probability, which is known in advance. The 
player must be steeled against following 
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intuition or building up superstitions. If a high 
card is needed, and if the cards so far observed 
indicate that there is a sufficient proportion of 
high cards left in the deck to require the player 
to request a card, the decision should not be 
influenced by having seen the previous three 
players receive high cards; nor by the memory 
that taking a card in a previous similar 
circumstance led to a losing hand; nor by the 
feeling that the queen of diamonds is an unlucky 
card. 

Analogously, if prior theoretical or 
empirical information led on the basis of 
superior power in a three-group design to the 
choice of Fisher’s (1935) Least Significant 
Difference (LSD) method of planned 
comparisons, then that must be the procedure 
that is carried out. There will be losing hands, 
experiments in which the Holm procedure would 
have found significant results that LSD missed. 
But unless the background information that led 
to the choice of LSD is substantially changed, 
the researcher must be comforted by the 
knowledge that the gambling system that is 
being employed will in the long run yield errors 
at the low prespecified rate. On the other hand, if 
the researcher chooses between LSD and Holm, 
say, only after the data are seen, the control of 
error rates is lost. As Miller wrote (1994), “Of 
course, we can be less zealous, and criticize 
more mildly. That will not disqualify the 
proposals that would survive harsher 
criticism...But it will inevitably compromise the 
rationality of the decision-making process” (p. 
43). 

Other well-known examples of the price 
paid in violating predesignation involve the 
choice of a one-tailed test (and direction) after 
the results are known or the choice of a 
significant covariate for use in an analysis of 
covariance in the same data set, both of which 
would increase the Type I error rate. Freedman 
(1983) similarly found that screening for 
potential predictors in regression analysis before 
a final model is fit and tested results in inflated 
Type I error rates (this result applies to the 
previous example of covariate choice), and 
Zimmerman (1996) showed that choosing 
between Student=s t test and the Welch (1947) 
test on the basis of a test of homogeneity of 
variance results in a two-stage procedure whose 

Type I error rates are inflated. Similar problems 
would arise when the choice between analysis of 
covariance and analysis of variance is made on 
the basis of results of tests for baseline 
differences, (This is especially peculiar when the 
baseline test is performed even when random 
assignment was used, because in that case the 
only conclusion to draw is that the 
randomization was not successful. Should we 
redo the randomization until we like the results?) 
or when the choice between the t test and a 
particular form of nonparametric test is made on 
the basis of the skewness and kurtosis of the 
dependent variable in the current sample. 

The reason that error rates are changed 
as a result of any similar two-stage procedure is 
that the first stage test incurs its own errors, 
which are then compounded in the second stage. 
Consider Zimmerman=s results. If the population 
variances are equal and the other assumptions of 
the t test hold, then Student=s t test is optimal in 
holding its Type I error rate and yielding desired 
power. But the error characteristics of the t test 
are based on all possible samplings, some of 
which will yield two samples with apparently 
different variances. If, in this case, the 
preliminary test commits a Type I error of its 
own, the Welch test used at the second stage has 
lower power than it should, and these cases are 
also removed from the sampling distribution of 
the t test. The t is left to operate only on samples 
whose variances are too close. Conversely, if the 
population variances are unequal, a Type II error 
at the first stage results in the use of the t test 
when it is inappropriate, yielding an inflation of 
the Type I error rate of the method. 

Mayo (1993) also pointed out that 
Pearson, whom she said shied away from 
Neyman’s notion of inductive behavior, 
‘specifically denied that the tests are to be used 
as automatic routines for testing claims” (p. 
171). Indeed, in this regard, Neyman (1957) 
criticized Fisher’s significance testing approach 
of having an automatic character in apparently 
always selecting a one per cent p-value as the 
cutoff for significance, concluding, “There are 
weighty arguments against this automatism. In 
fact, it appears desirable to determine the level 
of significance in accordance with quite a few 
circumstances that vary from one particular 
problem to the next” (p. 12). These would 
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include a consideration of the severity of the 
errors, both Type I and Type II. Rosnow and 
Rosenthal (1989, p. 1277) may have been right 
in this connection when they wrote, “Surely, 
God loves the .06 nearly as much as the .05”, but 
once they have decided in advance of 
experiment on a value that would not be too 
displeasing to the statistical deity, they must 
ensure that the methods they choose control the 
error rate at this level.  

Mayo (1993) observed that 
predesignation is only called for when violating 
predesignation would conflict with the goal of 
controlling the error probabilities. One example 
of the use of changing error rates mid-
experiment that does not affect the overall 
properties of the test of a theoretical hypothesis 
is seen in the context of multiple comparisons. A 
family is defined as the set of comparisons, the 
significance of any one of which would lead to 
the conclusion that the theory has been 
discorroborated. 

Any contrast whose significance does 
not impinge on the truth of the theory under test 
is not part of the family. Darlington’s (1990) 
notion of conceptual dependence, to be 
distinguished from statistical dependence, 
among contrasts that constitute a family may be 
helpful in deciding whether or not contrasts 
belong to a family. Because methodology must 
be committed to controlling the rate at which the 
theory is falsely rejected, all legitimate multiple 
comparison procedures do so successfully, 
usually through the use of the Dunn-Bonferroni 
or the improved Dunn-Sidak procedure. (The 
Bonferroni inequality is due to Boole. Cox, 
1977, suggested a sequential adjustment of alpha 
like the one that is due to Holm, 1979. He gave 
credit for the suggestion to test the most 
significant comparison at a Dunn-protected 
alpha to Tippett in 1931, whereas O=Neill and 
Wetherill,  1971, call the Dunn-Bonferroni 
procedure Fisher=s Significant Difference 
method, attributed to Fisher, 1935. For some 
reason, Dunn=s name is too often not included in 
references to these methods of error rate 
control.) 

Control at the familywise level assures 
that the probability that one or more of the 
comparisons is falsely rejected is at most the 
desired alpha. Because the false rejection of one 

or more of the comparisons would lead to the 
false discorroboration of the theory under test, it 
is this error rate that must be controlled. Any of 
the sequentially rejective testing procedures, 
such as those of Holm (1979) or Shaffer (1986), 
adjusts the Type I error rate assigned to the test 
of particular comparisons as a function of the 
results that have been obtained prior to the test 
of the particular comparisons. This is legitimate, 
however, because the rate of false 
discorroboration of the theory is still controlled 
at the desired level, which itself must be 
predesignated. 

Recently, some interest has been shown 
in the false discovery rate (FDR) multiple 
comparison procedure of Benjamini and 
Hochberg (1995). The FDR is the expected 
proportion of rejections that are false. Shaffer 
(1995) suggested that a common misconception, 
that alpha refers to the proportion of the rejected 
hypotheses that have been falsely rejected, may 
have been the reason for the interest in defining 
and controlling FDR. Benjamini and Hochberg 
(1995) concluded that familywise (FWE) control 
is important “when a conclusion from the 
various individual inferences is likely to be 
erroneous when at least one of them is” 
(Benjamini & Hochberg, 1995, p. 290), as, of 
course, did Peirce and Neyman and Pearson. 
Benjamini and Hochberg (1995) showed that 
when all of the hypotheses associated with the 
multiple comparisons are true, and so the 
omnibus null hypothesis is true, FDR is equal to 
FWE, and so in this crucial circumstance, the 
two procedures are equally viable. 

There are other circumstances, 
Benjamini and Hochberg (1995) felt, in which 
the less stringent control of FDR is acceptable, 
such as in exploratory analyses, especially 
screening problems in which it is desired to 
obtain as many potential discoveries as possible, 
but at a controlled rate so as not overly to burden 
the later confirmatory stage. When considering 
the different approaches that may be used in 
exploratory as compared with confirmatory 
analyses, it is helpful to place the analyses in the 
context of Peirce’s abductions and inductions or 
of Popper’s conjectures and refutations. Because 
there is an open admission policy toward 
hypotheses, there is no need for any conjectured 
relationship to pass a preliminary test, except for 
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reasons of economy. In the abductive phase, 
then, any level of alpha can be used that suitably 
reduces the number of variables later to be tested 
in an independent study, even values far higher 
than the conventional five percent level. In the 
confirmatory stage, however, it is absolutely 
essential to decide on low and predesignated 
values of the Type I and Type II error rates, so 
that the tests are as severe as possible. 

 
Satisficing 
 In order to test a theory in isolation, 
instead of as a mix of theory, initial conditions, 
and auxiliary theories, one must specify in 
advance of experiment that aspect of the theory 
that is under test and to assign the remainder, 
including theories of measurement, to 
unproblematic background knowledge. To deal 
with the theory-ladenness of observations, one 
must remember that the observations are 
interpreted in terms of theories, including the 
theory under test. In order to subject the theory 
to a severe test, we must specify in advance of 
the experiment what the potential falsifiers of 
the theory will be, what observational outcomes 
of the experiment will cause us to regard the 
theory as falsified. 
 One of Peirce’s rules regarding 
induction, the inferential method by which 
hypotheses are tested, is that of predesignation: 
the property for which a sample is proposed 
must be specified before sampling, for otherwise 
“it will always be possible to find some 
character, however obscure, in which the 
instances sampled agree, and whether the same 
proportion of the entire class...has the property 
will be simply a matter of accident” (Buchler, 
1939, p. 246). Indeed, without predesignation, 
“the induction can serve only to suggest a 
question, and ought not to create any belief” 
(Peirce, 1883, p.436).  

Peirce (1958) wrote, “The essential 
thing is that it shall not be known beforehand, 
otherwise than through conviction of the truth of 
the hypothesis, how these experiments will turn 
out” (p. 58). In this regard, Berkson’s (1938) 
observation is pertinent, that if “the result of 
the...test is known, it is no test at all!” (p. 537). 
But as discussed previously, it is known that the 
probablility associated with a universal 
generalization is zero. Recall that in Peirce’s 

view, no theory is true, that Ritchie showed that 
the probability of any inductive generalization is 
zero, and that Carnap found that the degree of 
confirmation of all genuinely universal 
propositions was zero. Additionally, Peirce 
claimed that laws of Nature, expressed as simple 
formulae relating physical phenomena, “are not 
usually, if ever, exactly true” (Peirce, 1878, p. 
334), and finally, Lakatos (1978) opined “that 
precise particular numerical predictions would 
have zero measure” (p. 139). Such views are not 
only expressed by philosophers, and the transfer 
to statisticians’ views concerning the null 
hypothesis is fairly straightforward. For 
example, Kempthorne (1976) similarly offered 
that “A potentially mystifying aspect of this 
process is that no one, I think, really believes in 
the possibility of sharp null hypothesesBthat two 
means are absolutely equal in noisy sciences” (p. 
772), and Anscombe (1956) wrote that “no one 
expects any scientific theory to be complete and 
exact (p. 25). 

There are those who defend the 
possibility of the truth of the point null 
hypothesis. For instance, Frick (1995) offered as 
an example of a true point null hypothesis one 
involved in testing for evidence of extrasensory 
perception (ESP), and Wainer (1999) considered 
the case of measuring the speed of light in two 
reference frames, wherein it is hypothesized that 
light speed is the same in both experiments. Of 
note is the fact that the claimed truth of both of 
these point null hypotheses is based on the 
assumption of truth of the theories under test, 
dubious at best given the fallible nature of all 
knowledge. In terms of the test involving the 
speed of light, it has been conjectured (Webb et. 
al., 2001) that certain physical constants such as 
the speed of light, Planck’s constant, and the 
charge of the electron have been decreasing with 
time. And if the speed of light were decreasing, 
then the hypothesis that the two experiments 
would yield the same value would be false, 
unless the experiments were conducted 
simultaneously, again difficult according to the 
special theory of relativity. The point to be 
emphasized is that the falseness of point null 
hypotheses is consistent with the fallibility of 
theories. 

In the case of Frick’s ESP example, 
assume for the sake of argument that ESP is 
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indeed not possible. In order to test this 
hypothesis, a person is assigned to guess 
pictures drawn on a set of cards that are held up 
in a random order, and the actual content of the 
card and the guess are recorded. It would be 
expected that if the cards are selected and the 
guesses are made at random, there would be zero 
correlation between them. Unfortunately, neither 
the guesses nor the card selection are truly 
random. Diaconis and Mosteller (1989) pointed 
out that “subjects guess in a notoriously 
nonrandom manner’ (p. 856). Similarly, the 
order of card selection would be made on the 
basis of a random device, say a pseudo-random 
number generator, whose properties are 
excellent but not perfect. Indeed, MacLaren 
(1992) showed that the usable length of a 
pseudorandom sequence was the two-thirds 
power of its period, after which the uniformity 
of the sequence no longer conforms to that of a 
true random sequence. Therefore, the 
nonrandom sequences of guesses and cards 
selected will evidence a nonzero correlation. In 
any experiment, not only must the theory under 
consideration be true in all respects, but all other 
aspects of the conditions of experiment would 
have to be perfectly controlled in order that the 
value specified in the point null hypothesis be 
true. This is not at all likely to occur.  

This is not to say that it can not happen. 
The complement to Peirce’s previously cited 
insight that there is a difference between 
certainty and a probability of unity is that an 
event whose probability is zero is not 
impossible. Consider being handed a lottery 
ticket. If there are a finite number of possible 
winners, then you have a finite probability of 
holding the ticket with the winning number. But 
if the population of possible winning numbers is 
truly infinite, then your probability of winning is 
zero, despite your having an actual ticket in your 
hand. Analogously, although it is not impossible 
that the numerical value specified in a point null 
hypothesis is equal to the population parameter, 
the probability that they are equal for an infinite 
population is zero. 

As a possible solution to the dilemma 
posed by false point null hypotheses, Lakatos 
(1978) suggested, “One could...argue...that 
confirmation theory should be further restricted 
to predictions within some finite interval of error 

(p. 139). Similarly, Anscombe (1956) concluded 
that “we expect some discrepancy between the 
deduced theoretical hypothesis and our 
observations. We wish to know if the agreement 
of observation with hypothesis is good enough 
(p. 25). This notion of specifying a range within 
which an effect is essentially zero corresponds to 
Simon’s (1957) principle of satisficing and 
Serlin and Lapsley’s (1985) good-enough 
principle. As an example of the application of 
the satisficing principle, consider the eclipse 
experiment in which Einstein’s General Theory 
of Relativity was found to have greater 
predictive power than Newton=s theory (Dyson 
et. al., 1920). The conclusion that light seemed 
to be bent by a gravitational object according to 
Einstein=s theory was acclaimed by Thomson 
(1919) as the most important result obtained in 
connection with the theory of gravitation since 
Newton’s day” (p. 389). Yet the average of the 
four widely differing experimental values was 
off by 10% from theoretical prediction. When 
asked about the discrepancy, Einstein said that 
for the expert, this thing is not particularly 
important.  

It is felt that our best theories are close 
to the truth, that is, that they evidence 
verisimilitude, and perhaps that over time our 
theories become closer approximations to the 
truth. It is necessary to shift our focus to 
providing a method that allows the conclusion 
that the theory under test is better than the old 
one, or that a single prediction is closer to the 
truth, rather than simply that the difference is 
nonzero or that the prediction is in error. We 
could, of course, be wrong. But the emphasis 
here is on drawing a conclusion concerning the 
magnitude of an effect. As Anscombe (1956) 
wrote in this regard, “When testing a theoretical 
hypothesis, should we not in any case begin by 
treating the problem as one of estimation, by 
estimating the magnitude of departure from the 
theoretical hypothesis” (p. 25). Often, the 
hypothesis test and the estimation of magnitude 
are considered separate parts of the analysis. For 
example, Yates (1948) noted, “The first point 
that struck the practical man was that 
experiments in general performed two different 
functions, one being to test the significance of a 
certain hypothesis, and the other to estimate the 
magnitude of the deviation from that hypothesis 
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if, in fact, it was found to be, or was suspected 
of being, untrue” (p. 204). 

One reason for this apparent disconnect 
between hypothesis testing and estimation by 
confidence interval is that the traditional point 
null hypothesis only allows the conclusion that 
the parameter is not exactly as specified, 
whereas the essential information to be obtained 
in an experiment regards whether the parameter 
is outside of the good-enough region. 
Unfortunately, the classical Neyman-Pearson 
confidence interval can not answer this question 
well. In the traditional case, it is posited that the 
test statistic has a certain distribution, given that 
the parameter is equal to a specific value, and 
the inversion of this distribution yields the 
confidence interval for the parameter, given the 
observed test statistic. But the results of the 
hypothesis test can be significant, indicating a 
nonzero effect, without the confidence interval 
indicating that the magnitude of the effect is 
important. 

Of course, the logic underpinning the 
standard confidence interval is solid. We can 
legitimately reason that if the population mean 
equals a particular value, then given the data, the 
confidence interval can be derived using the 
solid statistical principles offered by Neyman 
and Pearson. The logic is impeccable. But 
because the value specified in a point null 
hypothesis has zero probability of being correct, 
Descartes might have said, “I don't doubt the 
validity of your inference, only the premise.” 

Equally troubling is the finding by 
Meeks and D’Agostino (1983) that the coverage 
probability of the classical confidence interval is 
liberal if one only constructs the confidence 
interval after rejection of the point null 
hypothesis. Instead, if the confidence interval is 
derived from the inversion of the distribution of 
the test statistic that would be used to test a 
range null hypothesis, the interval answers the 
question of interest regarding whether the 
magnitude of the effect is large enough, there is 
a nonzero probability that the range specified in 
the null hypothesis covers the limit to the 
population range, and the results of the 
confidence interval and hypothesis test are 
consistent. Hodges and Lehmann (1954) and 
Serlin and Lapsley (1985, 1993) provided tests 
of range null hypotheses that allow the 

conclusion that an effect is large enough. An 
example of the use of a range null hypothesis 
test to show large effects was provided by 
MacCallum, Browne, and Sugawara (1996) in 
the context of covariance structure modeling. 
Examples of the use of confidence intervals that 
provide good-enough information are given in 
Steiger and Fouladi (1997), Cumming and Finch 
(2001), Fidler and Thompson (2001), and 
Smithson (2001).  

In addition, range null hypotheses (and 
confidence intervals) can be used to examine 
theories that predict effects of at least a certain 
magnitude by allowing the discorroborating 
conclusion that the effect is smaller than that 
demanded by the theory. The bioequivalence 
literature introduced many tests that allow the 
conclusion that an effect is small, as did Serlin 
and Lapsley (1985, 1993), Rogers, Howard, and 
Vessey (1993), and Seaman and Serlin (1998). 
Serlin (2000) showed how such a test could be 
used in a Monte Carlo study to establish that a 
statistical procedure satisfies specified criteria 
for robustness. As previously indicated for the 
general case, in using any of these procedures, 
the criterion for a large enough effect or an 
effect that is small enough to discorroborate the 
theory must be predesignated. 

 
Implications for future research 
 In his book on games of chance, 
according to David (1962), Cardano lamented 
that the facts of probability that he discovered 
contribute to mathematical understanding but 
not to the gambler. It has been shown, however, 
that quite to the contrary, the theory of 
probability is essential to a rational scientific 
methodology in the game against nature. Point 
null hypotheses, like universal theories, are quite 
probably false, as are the assumptions 
underlying statistical tests. As Cox (1958) wrote, 
“Assumptions that we make, such as those 
concerning the form of the populations sampled, 
are always untrue” (p. 369). It is essential, then, 
that we be able to examine the verisimilitude of 
theories through the application of severe range 
null hypothesis tests whose assumptions are 
themselves subjected to serious scrutiny. The 
Journal of Modern Applied Statistical Methods 
is particularly well-placed to advance statistical 
methodology in this regard. 
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In order to conduct a severe test of a 
hypothesis, the Type I error rate of the statistical 
procedure must be held as close as possible to its 
predesignated size, and the power of the test 
must not fall far from its specified level, 
regardless of the nature of the populations 
sampled. To this end, robust procedures for 
testing range null hypotheses have to be 
developed and investigated. The most difficult 
problem to be addressed likely will involve 
finding a means to incorporate the hypothesized 
good-enough range, expressed in actual or 
standardized units of the raw scale, into the 
distribution-free procedure. 

For example, in a one-sample test that a 
theoretical prediction is no more than 0.2 
standard deviations from the true value, the 
satisficing range must be introduced in both the 
hypothesis to be tested and the sampling 
distribution of the test statistic. The satisficing 
limit of 0.2 standard deviations must be 
expressed in terms of the population median for 
the range null hypothesis addressed by the 
signed-rank Wilcoxon test, and the null range 
must also be incorporated into the sampling 
distribution of the signed-rank statistic. Similar 
accommodations must be made in a multiple-
sample, multiple-predictor, and/or multiple 
dependent variable test in which the null range is 
specified in terms of a measure of association, 
such as R-squared, or in terms of a function of 
eigenvalues or the Mahalanobis distance.For 
instance, if the range null hypothesis is stated in 
terms of the squared multiple correlation 
coefficient between a set of predictors and a 
dependent variable, what are the corresponding 
parameters and sampling distribution of the 
sample statistic in a rank regression test of the 
appropriate range null hypothesis? 

Regardless of the nature of the 
hypotheses and tests, the assumptions 
underlying the procedures must be taken into 
account. In the one-sample case, asymmetric 
pre- and post-tests with unequal variances will 
yield asymmetric difference scores, which 
would violate the assumptions underlying the 
matched-pair Wilcoxon test, as would having a 
single asymmetric dependent variable. As with 
the matched-pair Wilcoxon test, the properties of 
the adjusted Mann-Whitney test of Fligner and 
Policello (1981) and the modified Kruskal-

Wallis test of Rust and Fligner (1984), which 
accommodate unequal variances in multiple-
group tests of location, are affected by 
asymmetry. Although much work has been done 
in this regard, the properties of tests of 
symmetry seem to depend on other properties of 
the distribution, such as kurtosis (Antille, 
Kersting, & Zucchini, 1982; Fan & Gencay, 
1995; Brizzi, 2002), and so more work in this 
area is needed. In addition, differing variances 
and covariances of sets of difference scores in a 
repeated measures design violate the 
assumptions of the Friedman test and other 
competitors (Harwell & Serlin, 1994). The 
multiple group, multiple measure design would 
analogously require nonparametric tests of 
sphericity and homogeneity of covariance 
matrices, as would the test of identity of 
regression lines and the test of parallelism that is 
used to examine hypotheses concerning 
moderating variables.  

Most importantly, the need for range 
null hypothesis tests applies both to the test of 
theory and to the tests of assumptions. That is, 
the requirement of satisficing applies at all levels 
of the scientific endeavor. Because theories are 
improbable, a good-enough region must be 
determined in advance of experiment, so that 
potential falsifiers can be specified. This, in turn, 
requires that a range null hypothesis be tested, in 
order to determine if a discorroborating outcome 
has occurred. And the test can only be 
considered severe if the error probabilities are 
held within an acceptable range of the 
predesignated levels, according to a criterion of 
robustness. 

When examining whether or not the 
assumptions underlying a statistical procedure 
are satisfied, the hypothesis to be tested 
concerning the assumptions must specify that 
the statistical model that is conjectured to apply 
to the data is a good enough fit, that is, that the 
assumptions underlying the statistical test of a 
substantive theory are met well enough that the 
statistical test itself meets its criterion of 
robustness. This means that a good-enough 
region must be specified in a range null 
hypothesis of the test of the validity of the 
assumptions underlying the statistical test of the 
substantive theory, and robust tests of these 
range null hypotheses concerning assumptions 
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need to be developed. To this end, Monte Carlo 
studies of the robustness of procedures must 
provide response surfaces reflecting the Type I 
error rate and power as a function of the inexact 
agreement of model and data. Pearson and 
Please (1975), for example, present the Type I 
error rates for the one- and two-tailed, one- and 
two-sample t tests and tests of variances in a 
series of graphs for varying kurtosis at specific 
values of skewness. A researcher could 
determine limits to the skewness and kurtosis 
that lead to the two-sample t test, say, meeting a 
criterion for robustness; then these limits, in 
turn, would be implemented in range null 
hypotheses in a pilot study to determine if the 
skewness and kurtosis of the distribution of the 
population from which the proposed sample is to 
be drawn adequately meet the requirements for 
robustness of the t test. 
 

Conclusion 
 

Attempts to attain knowledge as certified true 
belief have failed to circumvent Hume=s 
injunction against induction. Unfortunately, 
Hume also showed that the search for probable 
knowledge, that which Locke called opinion or 
belief, also depended on an inductive principle. 
Instead, theories must be viewed as unprovable, 
improbable, and undisprovable (Lakatos, 1970) 
because, in addition to Hume=s criticism of 
justificationism, Peirce among others showed 
that the empirical basis is fallible. Importantly, 
though, as Whewell advocated, the method of 
conjectures and refutations is untouched by 
Hume=s insights. 
 The implication for statistical 
methodology is that the requisite severity of 
testing is achieved through the use of robust 
procedures, whose assumptions have not been 
shown to be substantially violated, to test 
predesignated range null hypotheses. 
Nonparametric range null hypothesis tests need 
to be developed to examine whether or not effect 
sizes or measures of association, as well as 
distributional assumptions underlying the tests 
themselves, meet satisficing criteria. 
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