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Regular Articles 
Application of a New Procedure for Power Analysis and Comparison of the 
Adjusted Univariate and Multivariate Tests in Repeated Measures Designs 

 
   Sean W. Mulvenon        M. Austin Betz 
             University of Arkansas         Arizona State University 

 
                          Kening Wang                              Bruno Zumbo            
                             University of Arkansas                     University of British Columbia     

 
A relationship between the multivariate and univariate noncentrality parameters in repeated measures designs was 
developed for the purpose of assessing the relative power of the univariate and multivariate approaches. An 
application is provided examining the use of repeated measures designs to evaluate student achievement in a K-12 
school system. 
 
Key words:  Repeated measures designs, adjusted degrees of freedom test, noncentrality parameter, sphericity. 
 

 
Introduction 

 
Repeated measures designs are used frequently 
by social and behavioral science researchers 
(Maxwell & Delaney, 2004; Keselman, H. J., 
Huberty, Lix, Olejnik, Cribbie, Donahue, 
Kowalchuk, Lowman, Petoskey, Keselman, J. 
C., & Levin, 1998). A major advantage of 
repeated measures designs is that subjects serve 
as their own controls, thus variability among the 
subjects due to individual differences is 
removed, and test results are more powerful. 
Various procedures can be used to do variance 
analysis    in    repeated   measures   designs.  In 
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addition to the traditional approaches, univariate 
and multivariate analyses, some methods such as 
Improved General Approximate method (Huynh, 
1978), multivariate Welch (1951)/James (1951)-
type test (WJ test), mixed model approach 
(Littell, Milliken, Stroup, & Wolfinger, 1996), 
and empirical Bayes method (Boik, 1997) have 
also been studied and recommended. Guidelines 
for choosing an analysis strategy are generally 
based on whether the design is balanced or not 
(Keselman, 1998; Keselman, Algina, & 
Kowalchuk, 2002). If group sizes are equal and 
there is no missing data, univariate and 
multivariate methods are frequently used by 
researchers and are recommended as appropriate 
statistical methods (Kirk, 1995; Morrison, 1990; 
Maxwell & Delaney, 2004).  

Both of the univariate and multivariate 
methods require the data satisfy certain 
assumptions: independent observations, 
multivariate normality, and homogeneous 
variance/covariance across groups. In addition to 
the above assumptions, the univariate analysis 
has the additional assumption of sphericity 
(Huynh & Feldt, 1970; Rouanet & Lépine, 
1970). Sphericity refers to differences between 
any pair of repeated measures are equally 
variable. If sphericity is met, the univariate 
analysis has greater power than the multivariate 
analysis (due to a clear degrees of freedom 
advantage in the denominator), and it allows the 
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use of fewer subjects than the multivariate 
analysis for equal power (Morrison, 1990). 
Unfortunately, the assumption of sphericity is 
not often met in the behavioral and social 
research (Davidson, 1972; McCall & 
Appelbaum, 1973; Rogan, Keselman, & 
Mendoza, 1979; Keselman, Huberty et al., 
1998). If sphericity is not satisfied, the 
univariate analysis produces biased tests of 
significance (Box, 1954), and an adjusted 
degrees of freedom test, such as Greenhouse & 
Geisser (1959) or Huynh & Feldt (1976) test is 
suggested. The adjusted univariate analyses 
modify the df of the traditional F statistic using a 
sample estimate of the sphericity parameter 
epsilon (0). The 0 is a measure of the degree of 
violation of the sphericity assumption, with 
perfect conformity to sphericity producing a 0 of 
1.0 (Huynh & Feldt, 1970).     

Because the empirical evidence 
indicates that if the design is balanced, both the 
adjusted univariate and the multivariate 
approaches give the necessary control of Type I 
error (Davidson, 1972; Maxwell & Arvey, 1982; 
Muller & Barton, 1989; Keselman, J., Lix, & 
Keselman, H., 1996), power becomes a critical 
factor in the selection between the adjusted 
univariate analysis and the multivariate analysis. 
Prospective power analysis will help researchers 
to determine an appropriate sample size to 
obtain the desired level of power to detect the 
meaningful differences that are hypothesized. 
Selecting an insufficient sample size will 
increase the risk of failing to detect an important 
difference when it may exist (Type II error). 
Conversely, selecting an excessive sample size 
may produce a statistically significant result, but 
one with limited meaningfulness due to small 
differences.  

Sample size also affects the relative 
power of the adjusted univariate and 
multivariate tests. Without sphericity, 
multivariate tests may be more powerful than the 
adjusted univariate tests (Davidson, 1972). 
However, if sample sizes are small, the adjusted 
univariate analysis may still be more powerful 
than the multivariate analysis, because the 
estimators of the covariance parameters lack 
precision, and as a result, the power of the 
multivariate analysis is low (Boik, 1981). As 
sample size increases, the power of the 

multivariate test improves and can be greater 
than the power of the adjusted univariate test 
(Boik, 1997). 

Power analysis and minimum sample 
size calculations are needed for choosing the 
most suitable method under different conditions. 
Using the expansions of Fujikoshi (1973), 
Sugiura (1973), or Vander Merwe and Crowther 
(1984), power of the multivariate tests can be 
computed. Muller and Peterson (1984) provided 
power approximations of the multivariate tests. 
For the adjusted univariate tests, Muller and 
Barton (1989, 1991) provided power 
approximations based on the expected value 
approximations for the epsilon (0) estimator. 
Vonesh and Schork (1986) presented a statistical 
methodology for determining the minimum 
sample size for the within-subjects repeated-
measures design. 

They developed a formulae for 
calculating the multivariate noncentrality 
parameter, subject to constraint )= |µj - µk|, 
which represents a minimal difference between 
any pair of treatment means. Rochon (1991) 
extend the procedures of Vonesh and Schork to 
the between-subjects repeated-measures design 
when there are only two treatment groups under 
consideration. All of the above researches 
provide strong basis for the purpose of the 
current paper, that is, to develop a relationship 
between the multivariate and univariate 
noncentrality parameters for assessing the 
relative power of the univariate and multivariate 
approaches in repeated measures designs. A 
major goal of this article is to compare the 
statistical power of the univariate and 
multivariate procedures and provide a method 
for selecting an appropriate sample size, given a 
desired effect size and level of power, when 
researchers are developing a study.  
 

Theoretical Foundations and Statistics  
The Model and Hypothesis 
The usual general linear model with g between-
subject groups and one within-subject repeated 
measures factor having p levels can be written as 
follows: 
 

     Y = XM + E                           (1) 
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Where Y is an N× p matrix from N subjects; X 
is an N × g between-subject design matrix; M is 
an g × p parameters matrix; and E is an N × p 
matrix of random errors. The rows of E are 
assumed to be independently and identically 
distributed as Np (0, E), where E is a p × p 
positive definite covariance matrix. 

The general linear multivariate model 
hypothesis has the usual form:   

  
                     H0 : 1 = C M U = 10              (2) 
 
where C is an a × g between-subject contrasts; 
M is an g × p  parameters matrix; U is an p × b 
within-subject contrasts; and 1 is an a × b 
secondary parameters matrix. Without loss of 
generality, assume 10 = 0. Define E* = UNEU, 
which is a covariance matrix of rowi (EU)N. Also 
define T = (1!10)N[C(XNX)-1CN]-1 (1!10), 
which is an unscaled noncentrality matrix. Then, 
the scaled noncentrality matrix (S) and its trace 
(*m) are given by S = TE

-1
*   and *m = tr (S) 

respectively. Using two theorems (Theorem 2, 
p30; and Theorem 3, p31) from Magnus and 
Neudecker (1988), the general form of the 
noncentrality parameter for the F-distribution 
can be written as: 
 

m
11 1

*

( vecM ') '(C ' U )
C (X ' X ) C '

(C U ')( vecM ')

−− −

δ = ⊗
⎡ ⎤⎡ ⎤ ⊗ Σ⎣ ⎦⎢ ⎥⎣ ⎦

⊗

                                                                                  

                                                                                 (3) 
 
The hypothesis in (2) can be tested using 

the multivariate test. If using the Hotelling-
Lawley trace statistic, the noncentrality 
parameter has the form (Muller & Peterson, 
1984; Muller, LaVange, Ramey, & Ramey, 
1992): 

                        
HLT A

A

d

(ab) F (HLT)
HLT /

1/ df (HLT)
s

δ = ⋅

=
                  (4) 

 
where a = g !1, b = p !1, S = min (a, b), and df 
d (HLT) = S [(N ! g) !b !1] + 2. 

The hypotheses in (2) also can be tested 
using the adjusted univariate test. Additionally, 

for repeated measures designs, the univariate 
analysis is a simply by-product of the 
multivariate analysis (Wang, 1983). A 
Univariate noncentrality parameter can be 
derived from (3) and be expressed as:                   

              δ ε ω ωu b tr
tr

tr
tr

tr= =
⎛

⎝
⎜

⎞

⎠
⎟ ⋅( )

( )
( )
( )

( )
*

*

*Σ
Σ
Σ 2    

                                                                  (5)                          
where

  

          

( )
( )ε =

⋅

tr

b tr

2

2

Σ

Σ

*

*
 (Box, 1954). 

 
The sphericity parameter 0 (1/b # 0 # 1) reflects 
a discrepancy from sphericity. If sphericity is 
not met (0 … 1), T 2

univariate . F (ab0, b(N-g)0, 
*u). The Greenhouse & Geisser test uses the 
maximum likelihood estimator (MLE) ε  to 
adjust the degrees of freedom of the univariate 
test.        
 
Lower Bounds of Noncentrality Parameters  

The noncentral F-distribution can be 
used for power and sample size calculations. 
The power associated with the F-test is a 
monotonically increasing function of the 
noncentrality parameter. In this subsection, 
minimizing of the noncentrality parameters, 
developing the lower bounds of the multivariate 
and univariate noncentrality parameters using 
the same constraints, and establishing a 
relationship between them are described.  

As shown and demonstrated in the 
Appendix, for fixed , > 0, subject to the 
constraint 
                       

Δ =
c Md

c c d d
'

' '
  and   θ = tr

b
( )*Σ

 
                                                                         (6) 
 
the lower bounds of multivariate and univariate 
noncentrality parameters can be expressed as:  

   
            

δm
N

d d
*

'= Δ
Σ

2
   and    δ ε

θu
N* = Δ2

           
                                                                         (7) 
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where c and d are arbitrary vectors of contrast 

coefficients. δ δm m≥ * , and δ δu u≥ * . The value 

of θ  is represented as: 

                        θ
λ

= = =tr
b b

i

b

i( )*Σ Σ
1

              (8) 

 
which is the mean eigenvalue of the error matrix 
G* .   
 From (7) and (8), the relationship 
between the lower bounds of multivariate and 
univariate noncentrality parameters can be 
expressed as: 
                              δ ε δu m

* * *=                         (9) 
 

where ε εφ* = , φ σ
θ

= 0
2

, and N represents the 

bias ratio. 
 As shown by Boik (1981), σ 0

2 = ′d dΣ  

is the experimental error of contrast among the 
p-repeated measures, and θ  is the average 
experimental error of any set of b = p - 1 
orthonormal contrasts. Further, when the 
sphericity assumption is met (, = 1.0),  N will 
always equal unity (Boik, 1981). For fixed ,, the 
bias ratio has a range of values, N min < N < N 
max. The upper and lower limits of N are given by 
Boik (1981):  

 
  N max = 1 + B, when 1/ b # , #1, 
 

 

    

φ

ε

ε

min

.

=

− − ≤ ≤

≤ ≤ −

⎧

⎨

⎪
⎪

⎩

⎪
⎪

1 1 10

0 1 1

B when b
b

when
b

b
b              

                                                                 (10) 

where B b= − −⎡
⎣⎢

⎤
⎦⎥

( )( ) /1 1 1 2ε
ε

. If , = 1, then B = 

0, and N min =  N max = 1. 

 Because ε εφ* =  and N min < N < N max, 

the maximum and minimum values of multiplier 
ε*  can be obtained as:  

  

      ε ε ε ε εmax
* ( ) ( )( )= + = + − −1 1 1B b  

                                                                       (11) 
 
and  
 

      ε ε ε ε εmin
* ( ) ( )( )= − = − − −1 1 1B b  

                                                           (12) 
 
εmax

* varies between a minimum of 1, when , = 

1/b or , = 1; and a maximum of  1
2

1( )+ b , 

when
 

ε = +1
2

1 1( )
b

. εmin
*  varies between a 

minimum of 0, when ,  = (b !1)/b; and a 
maximum of 1, when, = 1. For example, let

 

ε = +1
2

1 1( )
b

and (b !1)/b < , # 1, then

*
max

1 (1 b)2ε = + , and
*
min

1 11 (b 2)2 b
⎡ ⎤ε = − −⎢ ⎥⎣ ⎦ . Let

ε = +1
2

1 1( )
b

, but if , is in the interval of [1 / 

b, (b!1) / b], then εmax
* ( )= +1

2
1 b , but

εmin
* = 0 , because of the restrictive nature of the 

bias ratio N min = 0, when 1/b # , # (b !1)/b. 
      
    
Best and Worst Case Scenarios for the 
Univariate Test 

An examination of (9), (11), and (12) 
allows the determination of best and worst case 
scenarios for the lower bound of univariate 
noncentrality parameter (δu

* ) by substituting the 

maximum and minimum values of ε*  in (9). 
The best case scenario for δu

* is 
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[ ]δ ε ε ε δu mbest b* *_ ( )( )= + − − ⋅1 1
 

                                                                       (13) 
 Because 

 
*
max

11 (b 1)(1 ) (1 b)
2

⎡ ⎤≤ε = ε+ − −ε ε ≤ +⎣ ⎦  
                                                                       
this suggests the  best case scenario for the 
univariate case, which means the minimum 
power of the univariate test will generally 
exceed the minimum power of the multivariate 
test.  

However, substituting εmin
* in (9) yields 

the worst case scenario:                                                     
 

[ ]δ ε ε ε δu mworst b* *_ ( )( )= − − − ⋅1 1
 

                                                           (14) 

Because 
 

[ ]0 1 1 1≤ = − − − ≤ε ε ε εmin
* ( )( )b , 

 
this suggests the  worst case scenario for the 
univariate case, which means the minimum 
power of the univariate test will be generally 
lower than the minimum power of the 
multivariate test. 
 
Univariate versus Multivariate 
 
Power Analysis and Minimum Sample Size 
Calculation  

For computing the minimum necessary 
sample size to obtain a desired level of power in 
the multivariate case, Vonesh and Schork (1986) 
presented a statistic method, and Rochon (1991) 
extended it to the between-subjects repeated-
measures design. If let E to be a positive 
covariance matrix, which means Djk $ 0 for j < k; 
and let σ max

2 represents the largest variance, then 

the lower bound of *m can be approximated:  
 

  δ
σ ρ

δm m
N*

max min( )
=

−
≤Δ2

22 1
        (15) 

 

where Dmin = mint {Dt }. This would guarantee 
power greater than the normal level. Using the 
above approximation, the minimum sample size 
for the multivariate case can be determined by 
utilizing 
   
     ( ) ( )[ ]1− = >β δ αm n d m n dP F df df F df df, ; ,  
                                                           (16) 
 

To determine sample sizes in the 
univariate case when the assumption of 
sphericity is untenable, the following is used 
   

( )

u

u

1
F(ab ,b(N g) ; )

P
F ab ,b(N g)α

− β =
ε − ε δ⎡ ⎤

⎢ ⎥> ε − ε⎣ ⎦  
                                                                     (17) 

 

where *u and , are given in (5).  
 In order to determine the minimum 
sample sizes in the univariate case, applying 
(13) and (14),  the upper (best case) and lower 
(worst case) limits of theδu

* can be obtained, if , 

and δm
* are known. δm

* can be approximated by 

(15). In general, however, it will not be known. 

In the present context, suppose ε = +1
2 1 1( )b , 

then if , is in the interval [(b !1)/b ,1],  the 
upper (best case scenario) limit of the δu

* can be 

obtained as δ δu mb* *( )= +1
2

1 ; and the lower 

(worst case) limit of theδu
* can be obtained as 

δ δu mb b
* *( )= − −⎡

⎣⎢
⎤
⎦⎥

1
2 1 2 1

. This enables 

determination of the upper and lower limits of 
theδu

* for simulation study of the best and the 
worst case scenarios for the univariate case. 
 
Simulation Procedure 

The simulation was conducted in 
SAS/IML and SAS program is available from 
the author on request. The process of minimum 
sample size determination, or statistical power 
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analysis, involves the following four 
components: Type I error ("), power (1!$), 
effect size ) or standardized effect size )*, and 
the minimum correlation Dmin. Desired statistical 
power is set to be 0.80 in this study. The 80% 
level of power is based on Cohen’s well-
informed conjecture that the rate of Type II error 
should be about fourfold that of Type I error 
(Cohen, 1992). Detailed procedures were given 
as the following steps: 

 
1) Specify the desired power (1 - $) to be 0.8, 
and " = 0.05. Set all possible combinations of 
the following values: p = 3, 4; g = 2, 3, 4; Dmin = 
.1, .2, . . ., .9 by .1; and )* = .2, .3, . . ., 1.5 by .1.  
  
2) The necessary sample size (Nm) was 
computed for all the above combinations using 
the multivariate procedure. 
 
3) Using the upper limit of the δu

*  

(δ δu mb* *( )= +1
2

1  ) to calculate the necessary 

sample size (Nu) for the best case scenario of the 
univariate procedure. 
 
4) Using the lower limit of the δu

*                         

(δ δu mb
b

* *( )= − −⎡
⎣⎢

⎤
⎦⎥

1
2

1 2 1
) to calculate the 

necessary sample size (Nl) for the worst case 
scenario of the univariate procedure. 
 
Monte Carlo  

Table 1 contains a selection of the 
results from the univariate and multivariate 
simulations. A comparison of the minimum 
sample size estimates between the multivariate    
procedure    and    the    univariate 
procedure for the best and the worst case 
scenarios indicates some clear trends.  

First, when the effect size is small, for 
example, )* # 0.4, and if minimum correlation is 
also small,   then the minimum  sample  sizes  of 

 
 
 
 
 

the multivariate procedure (Nm) are much larger 
than the   univariate  procedure for the  best case 
scenario (Nu). This trend indicates that when the 
above conditions hold, researchers need to 
consider using the univariate procedure, 
especially when sample sizes anticipated for the 
study may be small. This result is consistent 
with Boik’s (1997) conclusion that if sample 
sizes are small, the adjusted univariate analysis 
may still be more powerful than the multivariate 
analysis. When the design becomes more 
complex, this trend is more obvious, because the 
minimum sample sizes generally increase as the 
number of groups and repeated trials increases 
(due to space considerations, results of other 
combinations of groups and trials are not 
included in the table). 
 Second, when the effect size is large, for 
example, )* $ 0.8, the multivariate procedure 
could generally be recommended due to small 
minimum sample sizes. Simulation results 
indicate that there is small degree of divergence 
of the minimum sample sizes between the 
multivariate procedure (Nm) and the univariate 
procedure for the best case scenario (Nu). 
 Third, when the effect size is moderate, 
for example, 0.4 < )* < 0.8, the minimum 
correlation (Dmin) will provide valuable 
information in selecting between the univariate 
and multivariate procedures. If Dmin is large, for 
example, Dmin $ .80, then the univariate 
procedure is recommended; otherwise, 
researchers need to consider using the 
multivariate procedure. 
 Upon inspection of this table, a pattern 
was also found for the relationship between the 
minimum sample size and the effect size. For 
fixed power, the minimum sample size generally 
decreases as the effect size increases. Thus, if 
sample size is fixed, larger treatment differences 
will provide greater power. The same pattern 
can be observed for the relationship between the 
minimum sample size and the minimum 
correlation. 
 



POWER ANALYSIS IN REPEATED MEASURES 
 

42 

 
 
 

 
 
 

 
Table 1. Necessary sample size estimates by groups, trials, standardized effect size ()*), and minimum 

correlation (Dmin ) for desired power = .80 at " = .05 
________________________________________________________________________________ 

Groups       trials            )*                 Dmin    Nm   Nu    Nl 

______________________________________________________________________________________________________________________________ 
 

2 3 0.2 0.1 227 9 > 500 

2 3 0.2 0.2 202 9 > 500 

2 3 0.2 0.3 177 9 > 500 

2 3 0.2 0.4 152 9 > 500 

2 3 0.2 0.5 127 9 > 500 

2 3 0.2 0.6 103 8 > 500 

2 3 0.2 0.7 78 8 > 500 

2 3 0.2 0.8 53 8 > 500 

2 3 0.2 0.9 28 7 > 500 

2 3 0.3 0.1 103 8 > 500 

2 3 0.3 0.2 92 8 > 500 

2 3 0.3 0.3 81 8 > 500 

2 3 0.3 0.4 70 8 > 500 

2 3 0.3 0.5 59 8 > 500 

2 3 0.3 0.6 48 7 > 500 

2 3 0.3 0.7 37 7 > 500 

2 3 0.3 0.8 26 7 > 500 

2 3 0.3 0.9 15 6 > 500 

2 3 0.4 0.1 59 8 > 500 

2 3 0.4 0.2 53 8 > 500 

2 3 0.4 0.3 47 8 > 500 

2 3 0.4 0.4 41 7 > 500 

2 3 0.4 0.5 35 7 > 500 

2 3 0.4 0.6 28 7 > 500 

2 3 0.4 0.7 22 6 > 500 

2 3 0.4 0.8 16 6 > 500 

2 3 0.4 0.9 10 5 > 500 

2 3 0.5 0.1 39 7 > 500 

2 3 0.5 0.2 35 7 > 500 

2 3 0.5 0.3 31 7 > 500 

2 3 0.5 0.4 27 7 > 500 

2 3 0.5 0.5 24 6 > 500 

2 3 0.5 0.6 20 6 > 500 

2 3 0.5 0.7 16 6 > 500 

2 3 0.5 0.8 12 5 > 500 

2 3 0.5 0.9 8 5 26 

2 3 0.6 0.1 28 7 > 500 

2 3 0.6 0.2 26 7 > 500 

2 3 0.6 0.3 23 6 > 500 

2 3 0.6 0.4 20 6 > 500 

2 3 0.6 0.5 18 6 > 500  
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2 3 0.6 0.6 15 6 > 500 

2 3 0.6 0.7 12 5 > 500 

2 3 0.6 0.8 10 5 > 500 

2 3 0.6 0.9 7 5 8 

2 3 0.7 0.1 22 6 > 500 

2 3 0.7 0.2 20 6 > 500 

2 3 0.7 0.3 18 6 > 500 

2 3 0.7 0.4 16 6 > 500 

2 3 0.7 0.5 14 5 > 500 

2 3 0.7 0.6 12 5 > 500 

2 3 0.7 0.7 10 5 > 500 

2 3 0.7 0.8 8 5 37 

2 3 0.7 0.9 6 5 6 

2 3 0.8 0.1 18 6 > 500 

2 3 0.8 0.2 16 6 > 500 

2 3 0.8 0.3 15 5 > 500 

2 3 0.8 0.4 13 5 > 500 

2 3 0.8 0.5 12 5 > 500 

2 3 0.8 0.6 10 5 > 500 

2 3 0.8 0.7 9 5 63 

2 3 0.8 0.8 7 5 11 

2 3 0.8 0.9 6 5 5 

2 3 0.9 0.1 15 6 > 500 

2 3 0.9 0.2 14 5 > 500 

2 3 0.9 0.3 13 5 > 500 

2 3 0.9 0.4 11 5 > 500 

2 3 0.9 0.5 10 5 > 500 

2 3 0.9 0.6 9 5 > 500 

2 3 0.9 0.7 8 5 14 

2 3 0.9 0.8 7 5 6 

2 3 0.9 0.9 6 5 5 

2 3 1.0 0.1 13 5 > 500 

2 3 1.0 0.2 12 5 > 500 

2 3 1.0 0.3 11 5 > 500 

2 3 1.0 0.4 10 5 > 500 

2 3 1.0 0.5 9 5 > 500 

2 3 1.0 0.6 8 5 26 

2 3 1.0 0.7 7 5 10 

2 3 1.0 0.8 6 5 6 

2 3 1.0 0.9 6 5 5 

2 3 1.1 0.1 11 5 > 500 

2 3 1.1 0.2 11 5 > 500 

2 3 1.1 0.3 10 5 > 500 

2 3 1.1 0.4 9 5 > 500 

2 3 1.1 0.5 8 5 49 

2 3 1.1 0.6 8 5 9 

2 3 1.1 0.7 7 5 7 

2 3 1.1 0.8 6 5 5 

2 3 1.1 0.9 5 5 5 
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2 3 1.2 0.1 10 5 > 500 

2 3 1.2 0.2 10 5 > 500 

2 3 1.2 0.3 9 5 > 500 

2 3 1.2 0.4 8 5 63 

2 3 1.2 0.5 8 5 10 

2 3 1.2 0.6 7 5 8 

2 3 1.2 0.7 6 5 6 

2 3 1.2 0.8 6 5 5 

2 3 1.2 0.9 5 5 5 

2 3 1.3 0.1 9 5 > 500 

2 3 1.3 0.2 9 5 100 

2 3 1.3 0.3 8 5 52 

2 3 1.3 0.4 8 5 11 

2 3 1.3 0.5 7 5 9 

2 3 1.3 0.6 7 5 6 

2 3 1.3 0.7 6 5 5 

2 3 1.3 0.8 6 5 5 

2 3 1.3 0.9 5 5 5 

2 3 1.4 0.1 9 5 37 

2 3 1.4 0.2 8 5 37 

2 3 1.4 0.3 8 5 11 

2 3 1.4 0.4 7 5 11 

2 3 1.4 0.5 7 5 7 

2 3 1.4 0.6 6 5 6 

2 3 1.4 0.7 6 5 5 

2 3 1.4 0.8 6 5 5 

2 3 1.4 0.9 5 5 5 

2 3 1.5 0.1 8 5 26 

2 3 1.5 0.2 8 5 11 

2 3 1.5 0.3 7 5 11 

2 3 1.5 0.4 7 5 7 

2 3 1.5 0.5 7 5 6 

2 3 1.5 0.6 6 5 5 

2 3 1.5 0.7 6 5 5 

2 3 1.5 0.8 5 5 5 

2 3 1.5 0.9 5 5 5 

___________________________________________________________________________________ 
 

Notes: * Due to space considerations, not all of the simulation results are included in the table, but 
they are available from the author on request.  
1 Nm represents the necessary sample size computed using the multivariate procedure. 
2 Nu represents the necessary sample size computed for the “best case scenario” of the univariate  
procedure.  
3 Nl represents the necessary sample size computed for the “worst case scenario” of the univariate  
procedure. 
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A Case Study: Examination of Student 
Achievement Models  
 The most effective method to evaluate 
student achievement is to monitor change in 
performance between two or more points, or 
more specifically a repeated measures design. 
Recent “No Child Left Behind” (NCLB) 
legislation has contributed to a proliferation of 
growth models advocated as best methods to 
examine student achievement. A major concern 
with the use of most of these growth models is 
they assume large samples. However, within 
most traditional educational settings, sample 
sizes are relatively small. The use of the more 
traditional repeated measures designs, univariate 
or multivariate, may be more appropriate than 
hierarchical linear models or latent growth 
analyses. 
 
Case Study 

A recent and growing concern in K-12 
education has been the preparation of students to 
be successful in college. To address this issue, 
numerous studies have been completed that 
examine a student’s high school record of 
achievement. However, education is a linear 
system, with students in theory, starting at grade 
one and progressing through the system to grade 
twelve. Additionally, in large school districts, a 
significant amount of concern is directed at the 
preparation of student’s prior to high school. 
This case study examines three elementary 
schools and the difference in performance of 
students as they progress through this K-12 
school system.  
 Each elementary school has grades 
kindergarten through fifth grade. Students were 
administered standardized reading tests in fifth, 
seventh (while at a middle school within the 
same district), and tenth grade. The primary 
research question, does elementary school you 
attended makes a difference in determining your 
starting point (10th grade) at the local high 
school? Table 2 provides a means and standard 
deviations  of  scaled  scores  for  students   from  
 
 
 
 
 

each of the three elementary schools. The small 
sample sizes reflect the issue of mobility of 
students, and in particular from School A, where 
annually 30 percent of students are identified as 
highly mobile.  

A total of four analyses were completed: 
(1) School A versus School B, (2) School A 
versus School C, (3) School B versus School C, 
and (4) School A, School B, and School C. 
Table 3 provides the multivariate and univariate 
results in addition to retrospective and 
prospective power estimation values. The result 
demonstrated the importance of the univariate 
procedure with large effect sizes and a limited 
number of observations. Additionally, it is 
expected that standardized tests will have a 
strong correlation from year to year, which also 
contributes to the strength of the univariate 
procedure. 
 The case study was done as a study of 
convenience with data that represented the most 
common type of educational data used to 
complete school evaluations. In practice, 
analyses will be completed at the classroom, 
grade or school level in efforts to evaluate the 
impact of instructional practices or new 
educational interventions. The present case 
study does an excellent job of replicating the 
sample size and type of outcome variables 
(standardized test) that will be employed and 
demonstrated, in practice, why greater 
consideration needs to be given to use of the 
univariate method in repeated measures designs. 
 
 

 
Table 2. Case Study: School Test Scores 

_______________________________________________ 
School      N Score 1         Score 2             Score 3 
_____________________________________________________ 

A 12 614.3(37.6)     653.5(34.6)         685.2(29.5) 
B 27 666.1(35.1)     680.6(26.1)         713.0(27.6) 
C 25 653.4(34.3)     678.8(27.9)         704.8(29.7) 

______________________________________________________ 
 

 
 
 
 
 
 
 



POWER ANALYSIS IN REPEATED MEASURES 
 

46 

 

 
Conclusion 

 The relationship between *u
* and *m

*, 
which was developed in this study, provides a 
theoretical foundation for calculation of 
prospective power estimates for the univariate 
case in repeated measures designs. The 
relationship **

u  = ,* **
m  can be employed to 

compute the univariate noncentrality parameter 
when the multivariate noncentrality parameter 
has been computed. This permits calculation of 
minimum sample size estimates and power 
analysis for the univariate procedure; and it 
provides a basis to address the question of which 
procedure to propose, univariate or multivariate, 
when designing a study which involves repeated 
measures.  
  
 
 

 

 
Some researchers have compared the 

benefits of using either a multivariate or 
univariate procedure. Barcikowski and Robey 
(1984) and Stevens (2002) suggested that when 
conducting an exploratory analysis, both the 
adjusted univariate and multivariate procedures 
should be employed because each analysis could 
possibly reveal different treatment effects. 
O’Brien and Kaiser (1985) reported after a 
thorough review of the literature, under no 
conditions is one procedure uniformly more 
powerful. Results from this study indicate that 
generally, a researcher can use the multivariate 
procedure in most cases, as it does provide 
adequate power protection. However, the 
univariate    procedure  clearly  provides  greater  

 
 
 

 
 

Table 3. Power Results for Univariate and Multivariate Comparisons 
 

 
Comparison 

Schools 

 
N 

 
Retrospective Power 

 
Delta  GG_PWR M_PWR 
 
 

 
Univ_F    Mult_F     N 

            
Prospective Power 

 
Delta      PM       PU      LU      UU 

 
 

 
A vs. B 

 
A vs. C 

 
B vs. C 

 
A vs. B vs. C 

 

 
39 

 
37 

 
52 

 
64 

 
         2.74          0.88           0.23 
 
         1.99          0.60           0.14  
 
         1.40          0.36           0.17 
 
         2.94          0.82           0.13 

 
 7.51(.0015)   5.67(.0072)   60 
 
 3.95(.0291)   2.82(.0738)   75 
 
 1.95(>.05)    1.79(>.05)      78 
 
 4.31(.0037)  3.46(0.114)   117 
 

 
      0.5         0.81        0.81        0.53        0.90 
 
      0.5         0.81        0.81        0.53        0.90 
 
      0.5         0.81        0.81        0.53        0.90 
 
      0.5         0.80        0.80        0.49        0.89 

 
N = sample size 
Delta = effect size 
GG_PWR = Univariate Power 
M_PWR = Multivariate Power 
Univ_F = Univariate F-test and alpha  
Mult_F = Hotelling-Lawley Trace F-test and Alpha 

 

 
N = sample Size 
Delta = Effect size 
PM = Prospective Multivariate 
Power 
PU = Prospective Univariate 
Power 
LU = Lower Bound Univariate 
Power 
UU = Upper Bound Univariate 
Power 
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protection under some specific conditions, 
indicated as best case scenarios, and therefore 
can be recommended for these conditions. 
 Maxwell and Delaney (1990) provided 
an empirical guideline that if the sample size (N) 
is less than p + 10 (p representing the number of 
repeated trials), the univariate procedure is 
recommended; otherwise, if N $ p + 10, the 
multivariate procedure is recommended. In the 
2nd edition, Maxwell & Delaney (2004) modified 
the empirical guideline, and it is that the 
multivariate approach probably should be used if 
(1) p ≤ 4, ε ≤ .90, and n ≥ p + 15, or if (2) 5 ≤ p 
≤ 8, ε ≤ .85, and n ≥ p + 20. Results from this 
study indicate that the suggested guideline by 
Maxwell and Delaney works well, but only 
when the effect size and the minimal correlation 
are large. 
 In closing, this study effectively 
validates many of the recommendations of Boik, 
Maxwell & Delaney, and others; additionally, it 
expands the window where univariate repeated 
measures designs should be employed. 
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Appendix A 

Proof of Rationale for Lower Bounds of Noncentrality Parameters 

In (3), for matrix C (g!1× g) , C CN = Ig-1 ; and for matrix U (p!1× p) , U UN  = Ip-1. Define 
vectors of contrast coefficients c (g × 1) and d (p × 1) as aNC =c and bNU =d , where a is a vector 
(g!1× 1) and b is a vector (p!1× 1). Thus, aN C M U b = cN M d = ). Because ) is a scaler, it can be 
expressed as the form: bN(UNMNCN)a = ). Using the vec operator, we obtain:  

 
( )[ ] ( )vec b U M C a a C b U vecM′ ′ ′ ′ = ′ ⊗ ′ ′ ′  

 
Applying the constraints in (6), and using (1f.1.3) of Rao (1973, p. 60) to (3), the lower bound of *m 
is obtained by evaluating: 

 

[ ]
min inf

,

*

a b m
a C b U vecM

m
n
d d

δ δ
′ ⊗ ′ ′ ′

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

′
=Δ

Σ

2

 

 
For the lower bound of *u, subject to the same constraint as used in the multivariate case, the 
minimum of tr(T) is n)2, then replacing tr(T) with n)2,  the lower bound of *u is obtained as: 
 

δ ε ε
θu b n

tr
n*

*( )
= ⋅ =Δ

Σ
Δ2 2

 , 
where 

 

θ = tr
b
( )*Σ . 
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Appendix B 
SAS Programming Notation and Code for 

Monte Carlo Procedures 
 

options ls= 121 ps= 40 nodate pageno= 1; 
data temp1; 
 set ade.adv_multi_data_set2; 
 if gender = "M" then gender1= 1; 
  if gender= "F" then gender1= 2; 
 if readss1= . or readss2= . or readss3= . then 
delete; 
 *if leanob1 in(7203014 7203010);* 7203013); 
 if leanob1 in(7203014 7203010 7203013); 
   /* combinations: 7203014 with (7203010*/ 
run; 
 
proc glm; 
 class leanob1; 
 model readss1 readss2 readss3 = leanob1; 
 repeated trials 3; 
 means leanob1; 
run; 
 
proc sort data= temp1; by gender1; run; 
 
%macro powerint(pdelta=, power=, alpha= ); 
 proc iml; 
 use work.temp1; 
 read all var {leanob1} into xx3; 
 gender1= unique(xx3[,1]); 
 read all var {leanob1 readss1 readss2 readss3} 
into xx; 
 groups= unique(xx[,1]); 
 
pdelta= &pdelta; 
power= &power; 
alpha= &alpha; 
 
/*************************************/ 
/*  Generate Basic Values for Repeated 
Measures Analysis                    */ 
/* 
**************************************/ 
n1= nrow(xx); 
study_n= n1; 
t= ncol(xx); 
p= ncol(xx)-1; 
x= xx[, 2:t]; 
b= p-1; 
g= ncol(groups); 
dd= ncol(leano); 

a= g-1; 
m= (p - 1)*ncol(groups); 
sum= x(|+,|); 
mean1= sum/n1; 
d_Mean= mean1; 
xpx= t(x)*x - t(sum)*sum/n1; 
s= diag(1/sqrt(vecdiag(xpx))); 
corrmat= corr(x); 
covmat= xpx/(n1-1); 
 
/*************************************/ 
/*   Generate Contrast Matrices for RM-Design: 
Group Matrix                 */ 
/************************************* 
 
cmatrix1= vecdiag(i(g)); 
cmatrix2= J(g,g-1,0); 
 do h= 1 to g; 
  do i= 1 to a while (i < h); 
   cmatrix2[h,i]= -1; 
   cmatrix2[i,i]= g - i; 
  end; 
 end; 
cmatrix1= t(cmatrix1); 
cmatrix2= t(cmatrix2); 
 
/*************************************/ 
/* Generate Orthonormalized Contrast Matrices             
*/ 
/*************************************/ 
 
u_i1= j(p,p-1,0); 
do k= 1 to p; 
 do l= 1 to b while (l < k); 
  u_i1[k,l]= -1; 
  u_i1[l,l]= p - l; 
 end; 
end; 
 
u_i1= 
u_i1/shape(sqrt(u_i1[##,]),nrow(u_i1),ncol(u_i1
)); 
 
 
 
 
 
 
 
/**************************************/ 
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/*  The next piece is the iterative do-loop to 
make this program a generalized form. 
Generating                  */ 
/*  the necessary within matrix components 
regardless of the number of groups or subjects 
within a group */ 
 
do i=1 to ncol(groups); 
  do rm=1 to p; 
    subset= 
subset||remove(xx[,rm+1],loc(choose(xx[,1]=gro
ups[i],0,1)))`; 
  end; 
n= nrow(subset); 
    nn= nn//nrow(subset); 
   sum= subset[+,]; 
   mean= mean//sum/n; 
   xpx= subset`*subset - sum`*sum/n; 
   s= xpx/(n-1); 
   s_st= s_st//(n-1)*u_i1`*s*u_i1; 
 x_pop= diag(nn); 
 free subset; 
end; 
 
/**************************************/ 
/* Generate Comparison Matrices to Compute 
Sigma_st and use these matrices and the 
information ob-   */ 
/* tained using the do-loop to generate the 
pooled sigma_st matrix                                                             
*/ 
/*************************************/ 
 
if p= 2 then 
   do; 
     a1= shape({1}, p-1, m); 
     pool1= a1*s_st; 
     sigma_st= pool1/(n1-g); 
   end; 
 else if p= 3 then 
   do; 
     a1= shape({1 0}, p-1, m); 
     a2= shape({0 1}, p-1, m); 
     pool1= a1*s_st; pool2= a2*s_st; 
     sigma_st= (pool1[1,]//pool2[2,])/(n1-g); 
   end; 
 else if p=4 then 
   do; 
     a1= shape({1 0 0}, p-1, m); 
     a2= shape({0 1 0}, p-1, m); 
     a3= shape({0 0 1}, p-1, m); 

     pool1= a1*s_st; pool2= a2*s_st; pool3= 
a3*s_st; 
     sigma_st= 
(pool1[1,]//pool2[2,]//pool3[3,])/(n1-g); 
   end; 
 
/*************************************/ 
/* Complete the necessary computations for the 
within groups and one-between one-within    */ 
/* groups repeated measures designs for the 
multivariate and univariate cases                          
*/ 
/*************************************/ 
 
sigma= u_i1`*covmat*u_i1; 
m_sigma= sigma_st*(n1-g); 
eval1= eigval(sigma_st); 
epsilon= (sum(eval1)*sum(eval1))/((p-
1)*eval1`*eval1); 
theta1= cmatrix1*mean*u_i1; 
delta1= 
theta1`*inv(cmatrix1*inv(x_pop)*cmatrix1`)*th
eta1; 
theta= cmatrix2*mean*u_i1; 
delta_st= 
theta`*inv(cmatrix2*inv(x_pop)*cmatrix2`)*thet
a; 
delta= sqrt(trace(delta_st))/sqrt(trace(sigma_st)); 
hlt= trace(delta_st*inv(m_sigma)); 
hlt1= trace(delta1*inv(m_sigma)); 
s= a><b; 
m_within= (hlt1/b)/(1/(n1-p-g+2)); 
m_inter= ((hlt/s)/(a*b))/(1/(s*(n1-g-b-1)+2)); 
f_within= trace(delta1)/trace(sigma_st); 
f_inter= 
(trace(delta_st)/(a*b))/(trace(sigma_st)/(b)); 
rho= min(corrmat); 
m_ndf= (p-1)*(g-1); 
m_ddf= s*((n-g) - (p-1)-1 + 2); 
m_ncp= (m_ddf/s)*hlt; 
 if m_ncp >= 50 then m_ncp= 50; 
m_fcrit= finv(1-alpha, m_ndf, m_ddf); 
m_pwr= 1 - probf(m_fcrit, m_ndf, m_ddf, 
m_ncp); 
gg_ndf= (p-1)*(g-1)*epsilon; 
gg_ddf= (p-1)*(n-g)*epsilon; 
gg_ncp= 
b*epsilon*trace(delta_st)/trace(sigma_st); 
gg_fcrit= finv(1-alpha, gg_ndf, gg_ddf); 
gg_pwr= 1 - probf(gg_fcrit, gg_ndf, gg_ddf, 
gg_ncp); 
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do n2= 12 to 1000 by 3 until (rm_pwr > power); 
rm_ndf= (p-1)*(g-1); 
rm_ddf= s*(n2-(p-1)-1) + 2; 
rm_ncp= ((n2/g)*(delta**2)/2)/(2*(1-rho)); 
rm_fcrit= finv(1-alpha, rm_ndf, rm_ddf); 
rm_pwr= 1 - probf(rm_fcrit, rm_ndf, rm_ddf, 
rm_ncp); 
end; 
 
lb_eps= 1/(p-1); 
do eps1_str= lb_eps to 0.999 by .001 until 
(rgg_pwr >= rm_pwr); 
 rgg_ndf= (p-1)*(g-1)*eps1_str; 
 rgg_ddf= (p-1)*(n2-g)*eps1_str; 
 rgg_ncp= rm_ncp*eps1_str; 
 rg_fcrit= finv(1-alpha, rgg_ndf, rgg_ddf); 
 rgg_pwr= 1 - probf(rg_fcrit, rgg_ndf, rgg_ddf, 
rgg_ncp); 
end; 
 
do n3= 12 to 1000 by 3 until (pm_pwr > power); 
 pm_ndf= (p-1)*(g-1); 
 pm_ddf= s*(n3-(p-1)-1) + 2; 
 pm_ncp= ((n3/g)*(pdelta**2)/2)/(2*(1-rho)); 
 pm_fcrit= finv(1-alpha, pm_ndf, pm_ddf); 
 pm_pwr= 1-probf(pm_fcrit, pm_ndf, pm_ddf, 
pm_ncp); 
end; 
 
total_n= n3; 
grp_size= total_n/g; 
do eps_star= lb_eps to 1.0 by .001 until 
(pgg_pwr >= pm_pwr); 
 pgg_ndf= (p-1)*(g-1)*eps_star; 
 pgg_ddf= (p-1)*(n3-g)*eps_star; 
 pgg_ncp= pm_ncp*eps_star; 
 pg_fcrit= finv(1-alpha, pgg_ndf, pgg_ddf); 
 pgg_pwr= 1 - probf(pg_fcrit, pgg_ndf, pgg_ddf, 
pgg_ncp); 
 if (pm_pwr > power) & (pgg_pwr >= pm_pwr) 
then do; 
 end; 
end; 
 
/* Generate E_Max and E_Min for Bias Ratio */ 
 
  B= P - 1; 
  Q= P + 1; 
  E1= 1/B; 
  E2= (B - 1)/B; 
  E3= 1/2*(1 + SQRT(1/B)); 

  E_MAX= 1/2*(1 + SQRT(B)); 
  E_MIN= 1/2*(1 - (B - 2)*SQRT(1/B)); 
  IF E_MIN < .00 THEN E_MIN= .00; 
 
  /* GENERATE THE UNIVARIATE UPPER 
BOUND ESTIMATE  */ 
 
  U_NDF= (p-1)*(g-1)*EPSILON; 
  U_DDF= (p-1)*(n3-g)*EPSILON; 
  U_NCP= PM_NCP*e_max; 
  U_FCRIT= FINV(1-ALPHA, U_NDF, 
U_DDF); 
  *U_FCRIT= 7.85; 
  UU_PWR= 1 - PROBF(U_FCRIT, U_NDF, 
U_DDF, U_NCP); 
 
  /* GENERATE THE UNIVARIATE LOWER 
BOUND ESTIMATE  */ 
  U_NDF= (p-1)*(g-1)*EPSILON; 
  U_DDF= (n-1)*(n3-g)*EPSILON; 
  U_NCP= PM_NCP*e_min; 
  U_FCRIT= FINV(1-ALPHA, U_NDF, 
U_DDF); 
  LU_PWR= 1 - PROBF(U_FCRIT, U_NDF, 
U_DDF, U_NCP); 
  print 
'*************************************'; 
  print ' '; 
  print '                 Power Analysis Results                    
'; 
  print ' '; 
  print 'Retrospective: ' Study_n delta rho 
gg_pwr m_pwr epsilon eps1_str '                     ';  
  print '                     ' f_within f_inter m_within 
m_inter '                     '; 
  print ' '; 
  print '         Prospective: ' total_n grp_size 
pdelta epsilon pm_pwr pgg_pwr lu_pwr uu_pwr 
'                  '; 
  print ' '; 
  print  
 
'*************************************'; 
%mend powerint; 
%powerint(pdelta= .50, power= .80, alpha= .05); 
quit; 
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