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Type I Error Rates of the Kenward-Roger F-test for a Split-Plot Design 
with Missing Values and Non-Normal Data 

 
Miguel A. Padilla                        YoungKyoung Min                        Guili Zhang 

 Old Dominion University                    Korea Foundation for the                       East Carolina University 
                                                   Advancement of Science and Creativity 
 
 
The Type I error of the Kenward-Roger (KR) F-test was assessed through a simulation study for a 
between- by within-subjects split-plot design with non-normal ignorable missing data. The KR-test for 
the between- and within-subjects main effect was robust under all simulation variables investigated and 
when the data were missing completely at random (MCAR). This continued to hold for the 
between-subjects main effect when data were missing at random (MAR). For the interaction, the KR 
F-test performed fairly well at controlling Type I under MCAR and the simulation variables investigated.  
However, under MAR, the KR F-test for the interaction only provided acceptable Type I error when the 
within-subjects factor was set at 3 and 5% missing data. 
 
Keywords: missing values, Kenward-Roger F-test, robustness, mixed models, split-plot design, 
non-normal data, and covariance heterogeneity. 
 
 

Introduction 
 
Linear mixed-effects, or mixed models, have 
become increasingly popular in analyzing data 
from split-plot designs such as longitudinal 
research designs. The increased popularity can 
be attributed to at least three factors. Linear 
mixed-effects models (LMEM) offer modeling 
flexibility in that the fixed effects, random 
effects, and the covariance structure can all be 
modeled. Also, parameters of LMEMs are 
estimated via maximum likelihood and hence 
have the asymptotic properties of being unbiased 
and efficient.  In addition, because LMEM 
parameters are estimated through ML, the 
parameters can still be consistently estimated 
with missing data as long as the data are missing 
completely at random (MCAR) or missing at 
random (MAR)  
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(Rubin, 1976). It is this last property which may 
ultimately account for the increased popularity 
of LMEMs. Even so, it is unclear exactly under 
which conditions LMEMs will have consistent 
parameter estimates when there are missing data. 

When applying LMEM to split-plot 
designs, it is usually inferences about the fixed 
effects that are of main interest. Within this 
endeavor, a typical strategy is to try to fit a 
model for the means and select an appropriate 
covariance structure. The model is then tested 
for fit and appropriate modifications are made if 
required in order to test for inferences of interest 
(Wolfinger, 1993). A likelihood ratio, score, or 
Wald test can be used to test hypothesis about 
the fixed effect, but the Wald test is more 
commonly used (Schaalje, McBride, & 
Fellingham, 2002b; Brown & Prescott, 2006). 
The Wald test has good large sample properties, 
but they begin to dwindle with smaller sample 
sizes. However, using Satterthwaite-type 
degrees of freedom (Fai & Cornelius, 1996) can 
improve Wald test small sample properties. In 
addition to adjusting the degrees of freedom, the 
Wald test’s small sample properties can further 
be enhanced by adjusting the covariance matrix 
(Kenward & Roger, 1997). Several simulation 
studies have shown that tests based on the 
Satterthwaite (SW) and Kenward-Roger (KR) 
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adjustments tend to behave well (Keselman et 
al., 1998; Schaalje, McBride, & Fellingham, 
2002a; Padilla & Algina, 2007). In particular, 
the KR-test tends to behave well even with 
missing data (Padilla et al., 2007). 

The small sample situation can further 
be complicated by missing data. It is a common 
occurrence in research and can have dramatic 
affects on the properties of standard statistical 
models, such as ordinary least squares 
regression. The way in which missing data will 
affect statistical models largely depends on the 
type of missing data mechanism and the way in 
which the missing data is handled. As an 
example, by far the most common method for 
handling missing data is to perform listwise 
deletion, also known as complete case analysis. 
This is most likely because it is the default in 
most popular statistical packages (e.g., SAS, 
SPSS, etc.).  Nevertheless, if the data are MAR, 
parameter estimates can be biased and hence 
inference can be inaccurate. Additionally, there 
will be some loss of power in that participants 
with at least one missing value will be 
completely discarded from the analysis. If the 
small sample condition is added to this situation 
then the problems only worsen, adding another 
layer of uncertainty about inferences being 
drawn. 

There are two major alternatives to 
handling missing data: multiple imputation (MI) 
and maximum likelihood (ML). Although both 
methods are a vast improvement over listwise 
deletion – and virtually any other method for 
handling missing data – the focus here will be on 
ML within the framework of split-plot designs 
and LMEMs. The reader interested in MI is 
referred to Schafer (1997) and Little & Rubin 
(2002). 
 The split-plot design is commonly used 
in behavioral research, such as educational and 
psychological research (Keselman et al., 1998b).  
It is, in essence, a hybrid of a between- and 
within-subjects designs incorporating elements 
of both. A longitudinal study is a typical 
split-plot design in that it has a between-subjects 
factor represented by subjects that are randomly 
assigned to treatment groups and a 
within-subjects factor represented by the 
measured multiple time points for each subject. 
Split-plot designs have various ways in which to 

analyze the data they generate and each of those 
methods have their strengths and limitations in 
terms of analyzing the data and how they handle 
missing values or data. However, the one 
promising technique for analyzing data from a 
split-plot with missing values is the linear mixed 
or mixed-effects model estimated through ML. 
Before delving on, the three missing data 
mechanisms are described. 
 
Missing Data Mechanisms 

The three general definitions of missing 
data, ordered from most restrictive to least 
restrictive, are missing completely at random 
(MCAR), missing at random (MAR), and not 
missing at random (NMAR) (Rubin, 1976; Little 
& Rubin, 2002, p. 12).  As described by Verbeke 
& Molenberghs (2000), let ( )| , ,i i if r y X ψ  

denote the distribution of the missing data 
indicator or missing data mechanism for the ith 
participant, where ir  is a 1K ×  vector 

containing zero for missing and one for observed 
scores in the corresponding  1K ×  iy  vector of 

repeated measurements or variables, iX  is the 

design matrix for the factors, and  ψ  contains 

the parameters of the relationship of ir  to iy  and 

iX .  Furthermore, iy  can be partitioned as 

( ) ( )( )i i obs i miss
′′ ′=y y y  where ( )i obs′y  has 

observed scores and ( )i miss′y  has missing scores 

for the ith participant.  The full data density can 
then be factorized as: 
 

( ) ( ) ( ), |, , , | , | , ,i i i i i i i if f f=y r X θ ψ y X θ r y X ψ
                                  (1) 

where ( ), ′′ ′=θ β σ , β contains the fixed effects 

parameters, and σ contains the nonredundant 
parameters of the covariance matrix. This 
factorization is the foundation of selection 
modeling because the factor to the far right 
corresponds to the selection of individuals into 
observed or missing groups.  The missing data 
are MCAR if ( ) ( )| , , | ,i i i i if f=r y X ψ r X ψ , 

that is, the distribution of the missing data 
indicators does not depend on the repeated 
measures or variables. The missing data are 
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MAR if ( ) ( )( )| , , | , ,i i i i ii obsf f=r y X ψ r y X ψ , 

that is, the distribution of the missing data 
indicator does not depend on the variables in 
which the ith participant has missing scores. In 
general, missing data are NMAR if they are not 
MCAR or MAR. However, it is generally 
defined as  

( ) ( )( )| , , | , ,i i i i ii missf f=r y X ψ r y X ψ , that is, 

the distribution of the missing data indicator 
depends on the missing values in the data. 

A general method for consistent ML 
estimation of θ is obtained by including both the 
missing data indicators (ri) and the parameters of 
their relationship to iy  and iX  (ψ) in the 

likelihood. The likelihood of the full data 
density can then be written as: 
 

( ) ( ), | , , , | , ,i i i i i iL f∝θ ψ X y r y r X θ ψ          (2) 

 
             If the missing data mechanism is MCAR 
or MAR and if θ and ψ are disjoint, ML 
estimators of θ will be consistent if ri and ψ are 
excluded from the analysis (Rubin, 1976).  
Dropping ri and ψ is referred to as ignoring the 
missing data mechanism. Hence, MCAR or 
MAR missing data mechanisms are ignorable 
when model parameters (θ) are estimated via 
ML. If data are MCAR, listwise deletion and 
ML ignoring the missing data mechanism will 
produce consistent estimators, but ML 
estimators will be more precise because they use 
all available data. 
 In addition, Rubin (1976) showed that 
MCAR missing data mechanisms are ignorable 
for inferences based on sampling distributions.  
Thus, listwise deletion or ML ignoring the 
missing data mechanism can be used for 
inferences if the data are MCAR, but ML will 
result in more powerful inferences and narrower 
confidence intervals because it does not delete 
individuals with only partially observed scores 
on iy . 

On the other hand, the validity of ML 
based inferences for a MAR missing data 
mechanism will depend on how the sampling 
covariance matrix is estimated. When the 
missing data mechanism is MAR, it will be 

ignorable if inferences are based on the sampling 
covariance obtained from the observed 
information matrix (Kenward & Molenberghs, 
1998). This is in line with arguments from Efron 
& Hinkley (1978) in that the observed 
information matrix provides much better 
precision than the expected information matrix; 
that is, better variance component estimates. If 
ML inferences are based on the sampling 
covariance obtained from the expected 
information matrix, the MAR missing data 
mechanism may not be ignorable. The expected 
information matrix must take into account the 
actual sampling process implied by the MAR 
mechanisms in order for inferences to be valid 
(Kenward et al., 1998).   
 When the missing data mechanism is 
NMAR, then it is non-ignorable for purposes of 
ML estimation. In order to obtain consistent ML 
estimates in this particular case, the pattern of 
the missing values must be taken into account. A 
selection model that incorporates the missing 
values indicators (ri) or using a pattern mixture 
model that stratifies the data on the basis of the 
pattern of missing values can be used to obtain 
consistent ML estimates under an NMAR 
framework (Albert & Follmann, 2000; Diggle & 
Kenward, 1994; Fitzmaurice, Laird, & Shneyer, 
2001; Kenward et al., 1998; Kenward, 1998; 
Troxel, Harrington, & Lipsitz, 1998; Algina & 
Keselman, 2004a; Algina & Keselman, 2004b; 
Little, 1995). 
 
Linear Mixed-Effects Model 
 The linear mixed-effects model 
(LMEM) can be written as 
 

y Xβ Zu ε= + +  (3) 

 
where X and β are the design matrix and its 
corresponding fixed effects vector, Z and u are 
the design matrix and its corresponding random 
effects vector, and ε is the vector of random 
errors. It is generally assumed that u and ε are 
independent, hence 
 

,N
u 0 G 0
ε 0 0 R

æ öé ù é ù é ù÷çê ú ê ú ê ú÷ç ÷çê ú ê ú ê ú÷÷çè øë û ë û ë û
  (4) 
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Based on this assumption, ( )E y Xβ=  and 

( )Var y V ZGZ R¢= = + . A common estimator 

for β is  
 

( ) 1
1 1ˆ ˆ ˆβ X V X X V y

-- -¢ ¢=  (5) 

 

Also, ( ) ( ) 1
1ˆ ˆVar β X V X

--¢=  is the estimated 

generalized least-squares covariance of β̂ . 
Let L be a contrast matrix of full row 

rank r. Then the main effect and interaction 
hypothesis about the between- and 
within-subjects factors can be expressed as 

0 :H Lβ 0= . The common test statistic for this 
hypothesis is the Wald 
 

( ) ( ) ( )
11

1

,

ˆ ˆˆ

r ddfF
r

---æ ö¢ ÷ç ¢ ¢÷ç ÷çè ø
=

Lβ L X V X L Lβ
 (6) 

 
where ddf is the denominator degrees of 
freedom. It should be noted that, under the null 
hypothesis, the Wald ,r ddfF  approximately 

follows an F distribution. However, there are 
times when it follows an F distribution exactly. 
Even so, when there is no missing data, 

( ) 1
1ˆX V X

--¢  tends to underestimate 

( ) 11X V X
--¢  and hence is a biased estimate 

because it fails to take into account the 
uncertainty introduced by using V̂  (Booth & 
Hobert, 1998; Kackar & Harville, 1984; Prasad 
& Rao, 1990). 
 
Kenward-Roger F-Test 

Better estimates were developed as a 
response to the poor statistical properties of 

( )ˆVar β . The first estimate, denoted as 

( )@ @ˆ ˆVar β m= , was proposed by Harville & 

Jeske (1992).  Subsequently, Kenward & Roger 
(1997) developed an alternative estimator, 

denoted as ( )ˆ ˆ
AVar =ΦAβ . Additionally, 

Kenward & Roger derived the test statistic 

( ) ( ) ( )1

*
,

ˆ ˆˆ
A

r dF λ
r

ΦLβ L L Lβ
-¢ ¢

  (7) 

 
where λ is a scaling factor and d is the 
approximate denominator degrees of freedom. 

As in the case of ,r ddfF , *
,r dF  is assumed to 

follow an F distribution under the null 
hypothesis. Both λ and d are calculated from the 

data. First, ˆ
AΦ  is estimated to account for small 

sample bias in ( ) 1
1ˆX V X

--¢  and variability 

introduced by using V̂ (Kackar et al., 1984). 
Then d is approximated by using the spectral 

decomposition of ( ) 1ˆ
A

-
¢ΦL L  concurrently with 

repeated applications of the single degree of 
freedom t-test (Fai et al., 1996; Giesbrecht & 
Burns, 1985). The Kenward-Roger (KR) F-test 
is implemented in SAS PROC MIXED, but uses 

@m̂  instead of ˆ
AΦ . (See Padilla & Algina, 

2007) for how to specify model parameters 
using the mean vector and an indicator matrix 
for the missing values.) 

Some research has been conducted 
investigating the Type I error rate of the KR 
method (Fai et al., 1996; Kenward & Roger, 
1997; Kowalchuk, Keselman, Algina, & 
Wolfinger, 2004; Gomez, Schaalje, & 
Fellingham, 2005). However, very little research 
is available on the Type I error rate of the KR 
method when there are missing values. To date, 
Padilla & Algina (2007) is the only work 
investigating the Type I error rate of the KR 
F-test when the missing values are MAR. 

Fai & Cornelius (1996) derived four test 
statistics (F1, F2, F3, F4) for hypothesis testing 
on the means in multivariate data. The F1 and F2 

statistics use ( ) 1
1ˆX V X

--¢  whereas F3 and F4 

use @m̂  to estimate ( )ˆVar β . Additionally, F2 

and F4 have scaling factors λ2 and λ4, 
respectively. The F1 statistic is available in SAS 
PROC MIXED when the Satterthwaite option is 
used for DDFM. The F4 statistic is similar to the 
PROC MIXED KR F-test, but uses a different 
formula for the scaling factor and denominator 
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degrees of freedom. (See Fai & Cornelius for 
further details.) 

Fai & Cornelius (1996) applied their 
tests to simulated data from four unbalanced 3 
(between) × 4 (within) split-plot designs with a 
compound symmetric covariance structure. 
Imbalance was created by varying the number of 
subjects of the between-subjects factor without 
generating some combinations of subjects and 
the within-subjects factor. Missing data were 
never actually generated; hence the missing data 
mechanism is MCAR. The four unbalanced 
designs had total sample sizes of

25, 34, 40, 48N = . Estimated Type I error rate 
and power were reported for the 
between-subjects main effects. All tests 
controlled the Type I error rate reasonably well. 
The results of F1 and F3 were similar, and power 
and Type I error were always larger for F4 than 
for F3. 

In their initial work, Kenward & Roger 
(1997d) investigated the Type I error rate of the 
KR F-test in simulated data from four research 
designs: (a) a four-treatment, two-period 
cross-over, (b) a row-column-α design, (c) a 
random coefficients regression model for 
repeated measures data, and (d) a split-plot 
design. Design (c) had MCAR missing values 
and (d) had missing values with an unspecified 
missing data mechanism. Estimated Type I error 
rates were reported for the between-subjects 
main effect. In all situations, the KR F-test Type 
I error rate was well controlled. 

Kowalchuk, Keselman, Algina, & 
Wolfinger (2004) compared the Type I error 
rates of the KR and Welch-James (WJ) F-tests 
under several simulation conditions for a 3 
(between) × 4 (within) split-plot design. 
Investigated conditions were (a) type of 
covariance structure, (b) group size inequality, 
(c) positive and negative parings of covariance 
matrices with group sample sizes, (d) shape of 
data distribution, and (e) type of covariance 
structure fit to data. A heterogeneous covariance 
structure with a 1:3:5 ratio was used for all 
simulation conditions, and missing values were 
not investigated. Estimated Type I error rates 
were reported for the main effects and 
interaction. Under all conditions with small 
sample sizes (total N = 30, 40), the Type I error 

rate of the KR F-test were closer to the target 
value ( .05)a=  than the WJ F-test. 
Additionally, the Type I error rates of the KR 
F-test were always comparable when using an 
unstructured covariance matrix to modeling the 
true covariance matrix. 

Gomez, Schaalje, & Fillingham (2005) 
investigated the Type I error rate of the KR 
F-test when using AIC (Akaike, 1974) and BIC 
(Schwarz, 1978) to select the covariance 
structure. Investigated conditions were (a) type 
of covariance structures with within- and 
between-subjects heterogeneity (1:3:5 ratio for 
between-subjects), (b) equal ( 9, 15)total N =  

and unequal group sample sizes ( 3, 5, 7)n = , 
(c) positive and negative paring for unequal 
group sample sizes, (d) and levels of the 
within-subjects factor ( 3, 5)K = . The 
between-subjects factor was fixed at 3 and no 
missing values were investigated. Estimated 
Type I error rates were reported for the main 
effects only. In general the Type I error rate was 
close to the target value when the correct 
covariance structure was used. However, the 
Type I error rate becomes inflated with complex 
covariance structures and small sample sizes. 
Additionally, the Type I error rate increased 
with heterogeneity within- and between- 
subjects, and even more so with negative 
pairings. In general, the success rate of choosing 
the correct covariance structure was low for both 
the AIC and BIC. At most, the success rate was 
73.91%. Even so, the success rate was higher for 
the larger sample sizes and simpler covariance 
structures. Lastly, the AIC had better success 
with complicated covariance structures and the 
BIC with simpler ones. 

Padilla & Algina (2007) studied the 
Type I error rate of the KR F-test with missing 
values and heterogeneity of covariance matrices 
(1 : 3 : 5 )ratio . Investigated conditions were (a) 
level of between-subject factor (J), (b) level of 
within-subject factor (K), (c) min /( 1)n K - , (d) 
sample size inequality, (e) degree of sphericity, 
(f) covariance and group sample size pairing, (g) 
missing data mechanism (MCAR or MAR), and 
(h) percent of missing data. Estimated Type I 
error rates were reported for the main effects and 
interaction. In general, the Type I error rates of 
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the KR F-test were close to the target value of 
.05a=  for the between- and within-subjects 

main effects and the between- by within-subjects 
interaction. The best Type I error control was 
attained by the between-subjects main effect 
with the between- by within-subjects interaction 
attaining the worst. However, the distribution of 
the data was normal. 

The previous studies demonstrate that 
the Type I error rate of the KR F-test remains 
close to the target value ( .05)a=  under a 
variety of repeated measures designs and 
simulation conditions, which included MCAR 
unbalanced data. However, Padilla & Algina 
(2007) is the only study to investigate the Type I 
error rate of the KR F-test under the MAR 
condition in normal data. This study builds on 
Padilla & Algina and investigates the Type I 
error rate of the KR F-test under several 
simulation conditions. Of particular interest is 
the KR F-test Type I error rate when data are 
non-normal with missing values as it is 
implemented in SAS PROC MIXED. 
 

Methodology 
Design 
 The simplest of the split-plot design 
with one between- and one within-subjects 
factor ( . ., )i e J K´  with heterogeneity between 
the jth covariance matrix and non-normal data 
was investigated. In this type of design subjects 
are randomly assigned to the levels of the 

between-subjects factor ( )1, 2, , ; jj
j n n= å  

and measured under all levels of the 
within-subjects factor ( 1, 2, , )k K=  . The 
heterogeneity between the jth covariance 
matrices was set at 1:3:5; that is 1 21 3=Σ Σ  and 

3 25 3=Σ Σ  (Algina & Keselman, 1997; 
Keselman, Algina, Kowalchuk, & Wolfinger, 
1999; Padilla et al., 2007; Keselman, Carriere, & 
Lix, 1993). The non-normal data were generated 
from a multivariate lognormal distribution under 
the null using the methods outlined in Algina & 
Oshima (1994) with skewness set at 1.75 and 
kurtosis at 5.90 (Keselman, Algina, Wilcox, & 
Kowalchuk, 2000; Kowalchuk, Keselman, 
Algina, & Wolfinger, 2004). 

All simulations and analyses were done 
on SAS 9.1. The PROC MIXED code for 

estimating the Kenward-Roger F-test can be 
found in Padilla and Algina (2007). 
 
Simulation Variables 
 Eight variables were investigated. The 
variables of interest are (a) number of levels of 
the between-subjects factor (J), (b) number of 
levels of the within-subjects factor (K), (c) 
sample size, (d) sample size inequality across 
the jth groups, (e) degree of sphericity, (f) pairing 
of the jth group sizes with covariance matrices, 
(g) type of missing data, and (h) percent of 
missing data. Because this study builds on 
Padilla & Algina (2007), the simulation 
variables here are similar to theirs. 
 
Between- and Within-Subjects Factors 

 The between- and within-subjects 
factors each had two levels with , 3, 6J K = . 
 
Sample Size 

Sample sizes were based on the 

min ( 1)n K -  ratio (Keselman, Carriere, & Lix, 
1993b). The ratios were set as in Padilla & 
Algina (2007) and for the same reasons. The 
actual sample sizes used, in combination with 
sample size inequality, are displayed in Tables 1 
and 2. 

 
Table 1: 
Groups Sizes for Each Level of J at K = 3 

Sample Size Inequality 

J C ≈ .16 C ≈ .33 C ≈ .16 C ≈ .33 
 
 
 

3
 
 
 
 
 

6

nmin/(K – 1) = 4.0 nmin/(K – 1) = 6.0 
8 

10 
12 

8 
14 
20 

12 
15 
18 

12 
20 
28 

nmin/(K – 1) = 5.0 nmin/(K – 1) = 7.7 
10 
13 
16 
10 
13 
16 

10 
17 
24 
10 
17 
24 

15 
19 
23 
15 
19 
23 

15 
25 
35 
15 
25 
35 
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Table 2: 
Groups Sizes for Each Level of J at K = 6 

Sample Size Inequality 

J C ≈ .16 C ≈ .33 C ≈ .16 C ≈ .33 
 
 
 

3 
 
 
 
 
 
6 

nmin/(K – 1) = 4.0 nmin/(K – 1) = 6.0 
20 
25 
30 

20 
34 
48 

30 
37 
44 

30 
50 
70 

nmin/(K – 1) = 5.0 nmin/(K – 1) = 7.7 
25 
31 
37 
25 
31 
37 

25 
42 
59 
25 
42 
59 

38 
47 
56 
38 
47 
56 

38 
64 
90 
38 
64 
90 

 
Sample Size Inequality   

Unequal sample sizes are common in 
split-plot designs and hence were investigated 
here (Keselman et al., 1998). The unequal group 
sample size were investigated through the 
coefficient of variation as defined by Keselman 
et al. (1993): 
 

( ) ( )
1 2

1

J

j
j

C n J n n
-

=

= -å  (8) 

 
where .16, .33C  describes moderate and 
severe group sample size inequality, 
respectively. 
 
Covariance Sphericity 

Sphericity as quantified by Box’s 
epsilon (1954) was investigated with 

.60, .75, .90e= . Here, .60e= represents a 
relatively severe departure from sphericity 
whereas .75e=  a moderate one. Epsilon values 
were chosen based on the argument that .75e=  
represent the lower limit of ε found in 
educational and psychological data (Huynh & 
Feldt, 1976). (See Padilla & Algina (2007) for 
the actual covariance matrices.) 
 
Group Pairing with Covariance 

Pairing of the unequal group samples 
sizes and heterogeneous covariance matrices 

were investigated. The two conditions 
investigated were positive and negative pairings 
because positive pairing tend to produce 
conservative Type I error rates whereas negative 
pairings tend to produce liberal ones (Keselman 
& Keselman, 1990). A positive pairing occurs 
when the largest nj is paired with the covariance 
matrix with the largest elements and a negative 
pairing occurs when the largest nj is paired with 
the covariance matrix with the smallest 
elements. For positive pairings, the ratios of 
group sample size to heterogeneity of covariance 
matrices was set at 5 :3 :1  for 3J =  and 
5 :3 :1: 5 :3 :1 for 6J = .  For negative 
pairings, it was set at 1:3 : 5  for 3J =  and 
1:3 : 5 :1:3 : 5  for 6J = . 

 
Missing Data Mechanism 

Both MCAR and MAR missing data 
mechanisms were investigated. The missing data 
mechanisms were simulated as described by 
Padilla & Algina (2007). NMAR was not 
investigated because it negatively impacts the 
Type I error rate of the KR F-test in a repeated 
measures designs with no between-subjects 
factor and normal data (Padilla & Algina, 2004). 
 
Percent of Missing Data   

Five percent (5%) and 15% probability 
of missing data at each level of the 
within-subjects factor were investigated. The 
exception here is that there was no missing data 
in the first level. Higher missing data 
probabilities were not investigated because the 
sample sizes are considerably small (see Table 
1) and this will impede the convergence of the 
Newton-Raphson algorithm. 
 
Analysis 
 The p-values of KR F-test were 
available from 5,000 replications for each 
combination of the simulation variables. The 
Type I error for each of the p-values was defined 
as  
 

0 value < .05

1

ì -ïï=íïïî

if p
Type I Error

otherwise
. 
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Logistic regression models were used to 
analyze the between-subjects main effect, 
within-subjects main effect, and the between- by 
within-subjects interaction of the KR F-test 
separately. In each logistic model the Type I 
error variable was used as the dependent 
variable with the simulation variables as the 
independent variables. A forward selection 
approach was used to select appropriate models 
beginning with the intercept-only model and 
moving up to main effect only, main effect with 
two-way interaction, etc. A model adequately fit 

the data if the 2χ  goodness of fit test was 

non-significant or if .95CFI ³  (Bentler, 1990). 
With large sample sizes (i.e., number of 

replications), the 2χ  goodness of fit statistic is 
sensitive to small effects, hence a fit index was 

used to supplement the 2χ . In this context, the 
CFI is calculated as follows: 
 

( )1 iCFI λ λ= −  (9) 

 

where ( )2max , 0dfλ χ= −  with χ2 (the test 

statistic) and df (the degrees of freedom) for the 

fitted model and ( )2 2max , , 0i i idf dfλ χ χ= − −  

with 2
iχ  and dfi for the intercept-only model. 

 Bradley’s (1978) liberal criterion was 
used to assess the Type I error rates. The liberal 
criterion is .5 1.5α τ α≤ ≤  where α is the 
nominal Type I error and τ is the empirical Type 
I error. With .05α =  the liberal range is 
.025 .075τ≤ ≤ . Hence if the Type I error is 
within the range, the test is considered to be 
robust. 
 

Results 
 
Between-Subjects Main Effect 
 The logistic model with main effects 

and two-way interactions had 2 (339) 388.40χ =
, .0331p =  and .98CFI = . Inspection of all 
two-way interaction tables indicated that for the 
between-subjects main effects all Type I error 
rates were within Bradley’s liberal criterion. In 
fact the range of the Type I error rates across all 
two-way interaction tables was [.051, .071]. 

Even though the KR F-test for the 
between-subjects main effect does appear to be 
slightly liberal, it is not too strongly affected by 
the simulation variables. 
 
Within-Subjects Main Effect 
 The logistic model with main effects 
and three-way interactions had 

2 (262) 261.76χ = , .4925p =  and 1.00CFI = . 
Therefore, the three-way interaction model was 
selected for further analysis. Wald tests of the 
logistic model indicated that levels of the 
within-subjects factor (K), group pairing with 
covariance, missing data mechanism, and 
percent of missing data had significant main 
effects and also entered into the most significant 
three-way interactions. 
 Mean Type I error rates are displayed in 
Table 3. The range of mean Type I error rates 
under MCAR was [.054, .067]. Although 
slightly liberal, the mean Type I error rates are 
well within Bradley’s liberal criterion. Under 
MAR, the situation changes dramatically. In 
fact, the mean Type I error rates were all liberal 
ranging from [.079, .158]  and above Bradley’s 
liberal criterion. Furthermore, the mean Type I 
error rate increases as both the levels of the 
within-subjects factor (K) and percent of missing 
data increases. On the other hand, under MAR, 
the mean Type I error rate decreases as the 
group pairing with covariance changes from 
positive to negative (consistent with Keselman 
et al., 1990). 
 
Table 3: Within-Subjects Main Effect 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Type I error rate above Bradley’s liberal 
criterion are in bold type. 

Missing 
Data 

Mechanism 
% 

Missing K 

Group Pairing 

Positive Negative

MCAR 
5 

3 .0625 .0670 
6 .0543 .0572 

15 
3 .0634 .0670 
6 .0607 .0631 

MAR 
5 

3 .0794 .0794 
6 .0938 .0880 

15 
3 .1078 .0986 
6 .1580 .1389 
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Between- by Within-Subjects Interaction 
 The logistic model with main effects 
and three-way interactions had 

2 (262) 308.64χ = , .0252p =  and 1.00CFI = . 

Hence, the three-way interaction model was 
selected for additional analysis. Wald tests of the 
logistic model indicated that K, J, sample size, 
group pairing with covariance, covariance 
sphericity, and percent of missing data had 
significant main effects. However, K, J, sample 
size inequality, group pairing with covariance, 
missing data mechanism, and percent of missing 
data entered into the most significant three-way 
interactions. Thus, these latter simulation 
variables were selected for further analysis. 

Mean Type I error rates under MCAR 
are displayed in Table 4. With the exception of 
15% missing data, a negative pairing, and a 
severe group sample size inequality, the majority 
of mean Type I error rates are within Bradley’s 
liberal criterion. However, the mean Type I error 
rates increase as the percent of missing data, K, 
and J increases and as group pairing changes 
from positive to negative. As noted above, the 
situation becomes more aggravated under the 
most severe conditions of the simulation 
variables. 

Mean Type I error rates under MAR are 
presented in Table 5. Here, most of the mean 
Type I error rates are outside of the range of the 
Bradley’s liberal criterion. The only time the 
mean Type I error rate is controlled is under the 
simplest of conditions for group pairing with 
covariance, K, and J. Nevertheless, as was the 
case for the MCAR condition, the mean Type I  
changes  from  positive to  negative. The   one 

 
 
 
 
 
 
 
 
 
 
 
 

 

difference is that mean Type I error rate error 
rates tend to increase as percent of missing data, 
K, and J increases and as group pairing 
increases as the sample size inequality becomes 
more severe. Not surprising the mean Type I 
error rates become more liberal under the more 
severe conditions of the simulation variables. 
 

Conclusion 
 

The results indicate that sampling 
distribution based inferences on the means for 
the between-subjects factor of a split-plot design 
using ML estimates can control the Type I error 
rate under an MCAR and MAR missing data 
mechanism and non-normal data. Furthermore, 
the Type I error control can be achieved with 
relatively small to moderate sample sizes when 
using the KR F-test. The same cannot be said of 
inferences about the within-subjects factor or the 
within- by between-subjects interaction. 

The Type I error rates of the KR F-test 
for the latter two cases are impacted by several 
conditions of the simulation variable with the 
most dramatic being the MAR condition. This is 
most clearly seen in inferences about the 
within-subjects factor, in which case none of the 
Type I error rates were acceptable. Under 
MCAR, increasing the percent of missing data 
and switching from a positive to negative pairing 
of groups with covariance matrices tended to 
increase the Type I error rate, but the Type I 
error rate was still within Bradley’s (1978) 
liberal criterion. Although the same pattern of 
increase in Type I error rate is observed under 
MAR, the increase in Type I error rate was  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: MCAR for Interaction 

% Missing Group Pairing 
Sample Size 
Inequality 

K = 3  K = 6 
J = 3 J = 6  J = 3 J = 6 

5 
 
 
 
 

15 

Positive 
 

Negative 
 
 

Positive 
 

Negative 

Moderate 
Severe 

Moderate 
Severe 

 
Moderate 

Severe 
Moderate 

Severe 

.0495 

.0468 

.0642 

.0787 
 

.0503 

.0517 

.0679 

.0781 

.0575 

.0527 

.0769 

.0864 
 

.0582 

.0564 

.0774 

.0910 

 .0446 
.0456 
.0569 
.0614 

 
.0562 
.0542 
.0637 
.0715 

.0549 

.0513 

.0607 

.0673 
 

.0584 

.0629 

.0709 

.0769 

Note:  Type I error rate above Bradley’s liberal criterion are in bold type.
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sharper and obvious when switching from 
MCAR to MAR in which case none of the Type 
I error rates were within Bradley’s liberal 
criterion. 

With regard to the within- by 
between-subjects interaction, the KR F-test is 
once again severely impacted by several of the 
simulation conditions, but more dramatically by 
the MAR condition. Under the MCAR condition 
the majority of the Type I error rates are within 
Bradley’s liberal criterion. When the 
within-subjects factor is 3, the same pattern is 
observed for 5% and 15% missing data: a 
negative pairing of groups with covariance 
matrices coupled with severe sample size 
inequality increased the Type I error rate above 
the liberal criterion. When the within-subject 
factor is 6, the Type I error rate was above the 
liberal criterion only under the more severe 
simulation conditions. Under MAR, most of the 
Type I error rates were above the liberal 
criterion. The only time the Type I error rates 
were consistently within the liberal criterion was 
when the within-subjects factor was 6, 5% of the 
data were missing, and there was positive 
pairing of groups with covariance matrices. The 
remaining acceptable Type I error rates tended 
to occur when the between-subjects factor was 3 
and under the least severe of the simulation 
conditions. Even so, the Type I error rate tended 
to increase as the simulation conditions switched 
into the more severe conditions investigated. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By far the MAR condition had the 

largest impact on the Type I error rate of the KR 
F-test for the within-subjects factor and the 
within- by between-subjects interaction. It is 
clear that missing values coupled with 
non-normal data impact the accuracy of the 
F-distribution as an approximation to the 
sampling distribution of the KR F-test. The KR 
F-test uses an adjusted estimator of the 
covariance which is then used to estimate 
Satterthwaite type degrees of freedom. The 
procedure provides a better approximation to the 
F-distribution with small sample sizes (Kenward 
& Roger, 1997). This seemed to be the case for 
the between-subjects factor under all the 
simulation variables of this study. However, for 
the within-subjects factor and the within- by 
between-subjects interaction, it appears that the 
MAR condition coupled with non-normal data 
severely limited the KR F-test’s ability to 
control the Type I error. 

Two potential reasons exist for this 
result. First, SAS PROC MIXED does not 
compute the covariance matrix by inverting the 
Hessian (information matrix) for the fixed 
effects and the covariance parameters. 
According to Verbeke & Molenberghs (2000), 
the observed Hessian should be used and not the 
expected Hessian. Again, the observed Hessian 
provides more precision than the expected 
Hessian (Efron & Hinkley, 1978). Second, 
sample sizes were too small; particularly when 

Table 5: MAR for Interaction 

% Missing Group Pairing 
Sample Size 
Inequality 

K = 3  K = 6 
J = 3 J = 6  J = 3 J = 6 

5 
 
 
 
 

15 

Positive 
 

Negative 
 
 

Positive 
 

Negative 

Moderate 
Severe 

Moderate 
Severe 

 
Moderate 

Severe 
Moderate 

Severe 

.0504 

.0523 

.0672 

.0823 
 

.0561 

.0668 

.0699 

.0916 

.0637 

.0661 

.0843 

.1041 
 

.0789 

.0963 

.0991 

.1338 

 .0665 
.0728 
.0696 
.0820 

 
.0987 
.1247 
.0954 
.1200 

.0859 

.0994 

.0977 

.1181 
 

.1582 

.2009 

.1665 

.2208 

Note: Type I error rate above Bradley’s liberal criterion are in bold type. 
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the within- and between-subjects factors were 
both set at six. Although the samples sizes were 
based on the recommendations set by Keselman 
et al. (1993a) and Algina & Keselman (1997), 
those studies did not have missing values, which 
is not the case here. Here it appears that missing 
values coupled with data non-normality put a 
heavy burden on the analysis. A simple solution 
is to increase the sample sizes. However, doing 
so will increase the computation time of PROC 
MIXED’s KR procedure, but it should provide 
more information for the procedure to use. 
However, increasing the sample sizes is not easy 
in practice. 

The KR F-test for the between-subjects 
factor appears to be robust, in terms of 
controlling the Type I error, to non-normal data 
under the simulation variables investigated. 
Also,   the  KR  F-test  for  the  within-subjects  
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