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Reliability and Statistical Power: How Measurement Fallibility Affects Power and 
Required Sample Sizes for Several Parametric and Nonparametric Statistics 

 
        Gibbs Y. Kanyongo           Gordon P. Brook   Lydia Kyei-Blankson   Gulsah Gocmen 
         Duquesne University                                                   Ohio University 
 
 
 
The relationship between reliability and statistical power is considered, and tables that account for 
reduced reliability are presented. A series of Monte Carlo experiments were conducted to determine the 
effect of changes in reliability on parametric and nonparametric statistical methods, including the paired 
samples dependent t test, pooled-variance independent t test, one-way analysis of variance with three 
levels, Wilcoxon signed-rank test for paired samples, and Mann-Whitney-Wilcoxon test for independent 
groups. Power tables were created that illustrate the reduction in statistical power from decreased 
reliability for given sample sizes. Sample size tables were created to provide the approximate sample 
sizes required to achieve given levels of statistical power based for several levels of reliability.  
 
Key words: Pseudorandom generation, effect size, Monte Carlo simulations. 
 

 
Introduction 

 
Students of statistics usually become familiar 
with the factors that affect statistical power. For 
example, most students learn that sample size, 
level of significance, and estimated effect size 
all determine the a priori power of a statistical 
analysis. Some know that how effectively a 
particular design reduces error variance affects 
power, as does the directionality of the 
alternative hypothesis. However, many students 
do not realize that the reliability of 
measurements may also affect the statistical 
power (Hopkins & Hopkins, 1979). Light, 
Singer, and Willett (1990) provided tables to 
illustrate the point. Unfortunately, their tables 
provide only a very few situations and are 
therefore  limited  in   their  usefulness.  It is not 
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clear how the Light et al. tables were developed. 
The present study extends their tables and 
provides such information for additional 
statistical methods. 

Using the information provided in these 
tables, researchers can account for different 
levels of reliability as they determine sample 
sizes for their studies. Perhaps the converse 
approach is even more useful; however, that is, 
researchers might be encouraged to improve the 
reliability of their instruments in order to need 
fewer participants in their studies. These tables 
can also be useful tools in teaching students the 
relationship between reliability of a survey 
instrument and statistical power. 
 
Background 

One of the chief concerns of research 
design is to ensure that a study has adequate 
statistical power to detect meaningful 
differences, if indeed they exist. There is a very 
good reason researchers should worry about 
power a priori: If researchers are going to invest 
a great amount of money and time in carrying 
out a study, then they would certainly want to 
have a reasonable chance, perhaps 70% or 80%, 
to find a difference between groups if it does 
exist. Thus, a priori power (the probability of 
rejecting a null hypothesis that is false) will 
inform researchers how many subjects per group 
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will be needed for adequate power. Several 
factors affect statistical power. That is, once the 
statistical method and the alternative hypothesis 
have been set, the power of a statistical test is 
directly dependent on the sample size, level of 
significance, and effect size (Stevens, 2002). 
Often overlooked, however, is the relationship 
that variance has with power. Specifically, 
variance influences power through the effect 
size. For example, Cohen (1988) defined the 
effect for the t statistic as 
                                           
                            δ = (μ1 − μ0) / σX                 (1)                                     
 
If variance can be reduced, effect size increases. 
Variance reduction techniques include using a 
more homogeneous population and improving 
the reliability of measurements (Aron & Aron, 
1997; Zimmerman, Williams, & Zumbo, 1993). 
Similarly, because variance is reduced, analysis 
of covariance is more powerful than analysis of 
variance when a useful covariate is incorporated 
into the design. 
 
Reliability and Effect Size 

Cleary and Linn (1969) reported that “in 
the derivation and interpretation of statistical 
tests, the observations are generally considered 
to be free of error of measurement” (p. 50). 
From a classical test theory perspective, an 
individual’s observed score (X) is the sum of 
true score (T) and error score (E); that is, X = T 
+ E. Thus, if there is no error of measurement, 
then the observations are the true scores; 
implicitly, statistical hypotheses are proposed in 
terms of true scores. For a set of scores, 
however, measurements made without error 
occur only when the instruments provide 
perfectly reliable scores. Observed score 
variance,  σX

2, is defined as the sum of true score 
variance, σT

2, and measurement error variance. 
Because reliability, ρxx’, is defined as the ratio of 
true score variance to observed score variance, 

 
                ρXX’ = σT

2 / σX
2 = 1 − σE

2 / σX
2 ,      (2)                                 

 
reliability can only be perfect (i.e., ) when there 
is no measurement error (Lord & Novick, 1968). 
Because σX can be written as 
 

                                σΤ / √σXX’,                        (3) 
 
the standardized effect size for the t test can be 
written as 
 
                     δ = (μ1 − μ0)(√σXX’ )/ σΤ              (4) 
 
(Levin & Subkoviak, 1977; Williams & 
Zimmerman, 1989). Consequently, reliability 
affects statistical power indirectly through effect 
sizes. Cohen (1988) reported that reduced 
reliability results in reduced effect sizes in 
observed data (ES), which therefore reduces 
power. That is, observed effect sizes, 
 
                          ES = ESP * √rXX’ ,                 (5)                            
 
where ESP is the population effect size. 
Therefore, when reliability is perfect, observed 
ES equals ESP; but when reliability is less than 
perfect, ES is a value smaller than the true ESP. 
Some introductory statistics textbooks discuss 
this problem in reference to attenuation in 
correlation due to unreliability of measures (e.g., 
Glass & Hopkins, 1996). 
 
Reliability and Power  

Controversy surrounds the relationship 
between power and reliability (Williams & 
Zimmerman, 1989). Good statistical power can 
exist with poor reliability and a change in 
variance unrelated to reliability can change 
power. However, there are persuasive reasons to 
consider reliability as an important factor in 
determining statistical power. For example, 
statistical power is a function of level of 
significance, sample size, and effect size only 
under the assumption of no measurement error, 
but measures in the social sciences are typically 
not measured perfectly (Cleary & Linn, 1969; 
Levin & Subkoviak, 1977). Indeed, the implicit 
assumption that our measures are perfectly 
reliable is not justified in practice and therefore 
measurement error should be considered a priori 
for sample size (Crocker & Algina, 1986; 
Subkoviak & Levin, 1977; Sutcliffe, 1958). 

There is no controversy that statistical 
power depends on observed variance. 
Zimmerman and Williams (1986) noted that 
when speaking of statistical power it is irrelevant 
whether the observed variance is all true score 
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variance or contains some amount of 
measurement error; that is, “the greater the 
observed variability of a dependent variable, 
whatever its source, the less is the power of a 
statistical test” (p. 123). However, because 
reliability is defined by observed variance in 
conjunction with either true or error variance, 
one cannot be certain which source of variance 
is changed when reliability improves. That is, if 
observed variance increases, one cannot be 
certain whether the increase is due to an increase 
in true score variance or a increase in error 
variance, or both. Or as Zimmerman et al. 
(1993) reported, power changes as reliability 
changes only if observed score variance changes 
simultaneously.  

Knowing that improved reliability 
results in less measurement error, if it is 
assumed that true variance is a fixed value for 
the given population, it follows that a change in 
reliability will result in a change in observed 
score variance. Indeed, statistical power is a 
mathematical function of reliability only if either 
true score variance or error variance is a 
constant; otherwise power and reliability are 
simply related (Cohen, 1988; Williams & 
Zimmerman, 1989). But, improvement in 
reliability is usually interpreted as a reduction in 
the measurement error variance that occurs from 
a more precise measurement (Zimmerman & 
Williams, 1986). Therefore, a reduction in 
reliability that is accompanied by an increase in 
observed score variance will indeed reduce 
statistical power (Zimmerman et al., 1993). That 
is, if true score variance remains constant but 
lower reliability leads to increased error 
variance, then statistical power will be reduced 
because of the increased observed score variance 
( Humphreys, 1993). 

 Based on such an assumption, Light et 
al. (1990) advised that when measurements are 
less than perfectly reliable, improving the power 
of statistical tests involves a decision either to 
increase sample size or to increase reliability—
the researcher must compare the costs associated 
with instrument improvement to the costs of 
adding study participants (see also Cleary & 
Linn, 1969; Feldt & Brennan, 1993). 
Researchers may encounter such a situation if an 
instrument does not perform as reliably in a 
given study as it has elsewhere, leading to 

increased variance in the current project. 
Assuming that the increased variance is not due 
to more heterogeneity in the population and that 
the true score variance of the population hasn't 
changed, the observed score variance will 
change as a consequence of the change in 
reliability. 

Unfortunately, there are few easy ways 
to account for reliability when determining 
sample sizes. The tables found in Cohen (1988) 
do not provide the option to vary reliability. 
Computer programs such as Sample Power and 
PASS 2000 also assume perfect reliability. This 
article will report on the impact of reliability on 
power as well as provide tables to assist 
researchers in finding sample sizes necessary 
with fallible measures. 
 

Methodology 
 
Two Monte Carlo programs, MC2G (Brooks, 
2002) and MC3G (Brooks, 2002) written in 
Borland Delphi Professional version 6.0, were 
used to create normally distributed but 
unreliable data and perform analyses for several 
statistical methods, namely: (a) paired samples 
dependent t test, (b) pooled-variance 
independent t test, (c) one-way analysis of 
variance with three levels, (d) Spearman rank 
correlation, (e) Wilcoxon signed-rank test for 
paired samples, and (f) Mann-Whitney-
Wilcoxon test for independent groups. The 
program output was used to create power and 
sample size tables for these tests.  

Reliability was varied from .70 to 1.0 in 
increments of 0.05. For power tables, power 
rates varied from .70 to .90 by .10. Population 
effect sizes were varied from small to large 
using Cohen’s (1988) conventional standards. 
Specifically, for t tests and their nonparametric 
alternatives, a small standardized effect size was 
set at d = .20, medium was d = .50, and a large 
effect was set to be d = .80; for correlations, a 
small effect was set at r = .10, medium was r = 
.30, and a large effect was set to be r = .50; for 
ANOVA, a small standardized difference effect 
was set at f = .10, medium was f = .25, and a 
large effect was set to be f = .40. For the power 
tables, the sample sizes were obtained under the 
assumption of perfect reliability. That is, the 
sample sizes were fixed at the values needed to 
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achieve power levels of .70, .80 and .90, 
respectively, when reliability was 1.0. The 
remaining values in the power tables were 
determined by systematically varying the 
reliability with that given sample size. For the 
sample sizes tables, power was fixed, reliability 
was varied, and sample sizes were tried 
repeatedly until the desired power was achieved. 
 
Data Generation 

The two Monte Carlo programs generate 
uniformly distributed pseudorandom numbers 
that are used as input to the procedure that 
converts them into normally distributed data. All 
data were generated to follow the standard 
normal distribution. For each sample, the 
appropriate statistical analysis was performed. 
The number of correct rejections of the null 
hypothesis was stored and reported by the 
program. These procedures were repeated as 
necessary for each sample condition created. 
The programs use the L'Ecuyer (1988) uniform 
random number generator. Specifically, the 
Fortran code of Press, Teukolsky, Vetterling, 
and Flannery (1992), was translated into Delphi 
Pascal. The L'Ecuyer generator was chosen 
because of its large period and because 
combined generators are recommended for use 
with the Box-Muller method for generating 
random normal deviates (Park & Miller, 1988).  

The computer algorithm for the Box-
Muller method used by the MC2G and MC3G 
programs was adapted for Delphi Pascal from 
the standard Pascal code provided by Press, 
Flannery, Teukolsky, and Vetterling (1989). The 
programs generate normally distributed data of 
varying reliability based on classical test theory. 
That is, reliability is not defined using a 
particular measure of reliability (e.g., splithalf or 
internal consistency); rather it is defined as the 
proportion of raw score variance explained by 
true score variance (Equation 2). Each raw score 
generated is taken to be a standardized total 
score.  

In order to generate data with less-than-
perfect reliability, scores were generated using 
the true-score standard deviations provided by 
the researchers; then for each score, the 
programs added a random error component. 
Consequently, as reliability decreased, the 
variation of the random error component 

increased, resulting in increased raw score 
variance. For correlation analyses, the same 
reliability was used for both measures; for 
independent sample analyses, the same 
reliability was used each for each group. 
 
Monte Carlo 

The number of iterations for the study is 
based on the procedures provided by Robey and 
Barcikowski (1992). Significance levels for both 
tests on which Robey and Barcikowski's method 
is based were set at .05 with a power level of 
.90; the magnitude of departure was chosen to be 
α ± .2, which falls between their intermediate 
and stringent criteria for accuracy. The 
magnitude of departure is justified by the fact 
that at ± .2 α, the accuracy range for α = .05 is 
.04 ≤ α ≤ .06.  

Based on the calculations for these 
parameters (this set of values was not tabled), 
5422 iterations would be required to 
“confidently detect departures from robustness 
in Monte Carlo results” (Robey & Barcikowski, 
1992, p. 283), but applies to power studies also 
(Brooks, Barcikowski, & Robey, 1999). 
However, to assure even greater stability in the 
results, a larger number of simulations was 
chosen for each type of analysis. Specifically, 
10,000 samples were used for the power tables. 
The sample size algorithm used by the programs 
runs repeated analyses beginning with 100 
samples per analysis, gradually increasing to 
10,000 samples per analysis. Sometimes, 
however, the algorithm aborts before the 10,000 
sample level is reached when the desired power 
level is approximated closely enough earlier in 
the process (at least 1000 samples were run in 
every case). 
 

Results 
 
Tables 1 through 5 show the relationship 
between statistical power and reliability for the 
dependent t test, independent t test, one-way 
ANOVA with three groups, Wilcoxon signed 
ranks, and Mann-Whitney-Wilcoxon tests, 
respectively. The tables clearly show that, as 
reliability is reduced while true score variance 
remains constant, statistical power is reduced. 
There is a relatively linear relationship between 
statistical power and reliability when sample 
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size is fixed. For example, Table 1 shows that 
when statistical power is chosen to be .71 for the 
dependent t test, 12 cases are required when 
perfect reliability is assumed and a large effect 
size (d = .8)  is  expected. When  reliability   was 
changed   to   .90   with   12   cases,   the    actual  
 
 

 
 
 
 

statistical    power    was    observed    to  be .63. 
Reliability set at .80 resulted in observed 
statistical power of .54. Finally, actual power for 
12 cases was .46 when reliability was set at .70. 
Such depreciation of power occurs for all other 
tests examined in the study.  
 
 

 
 
 
 

 
Table 1. Actual statistical power for paired-samples dependent t tests resulting from different reliability 

values for given sample sizes at two-tailed α = .05 
 N   Reliability     

Effect 
Size 

per 
group 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large 12 .71 .67 .63 .59 .54 .50 .46 
(d=.8) 15 .82 .78 .74 .70 .65 .61 .56 
 19 .91 .88 .85 .81 .77 .73 .68 
Medium 27 .71 .66 .62 .58 .53 .49 .45 
(d=.5) 34 .81 .77 .73 .68 .64 .59 .55 
 44 .90 .87 .83 .80 .75 .71 .66 
Small 157 .70 .66 .62 .57 .53 .49 .45 
(d=.2) 199 .80 .76 .72 .67 .63 .59 .54 
 264 .90 .87 .83 .80 .75 .71 .66 

 
 
 
 
 

Table 2.Actual statistical power for pooled-variance independent t tests resulting from different 
reliability values for given sample sizes at two-tailed α = .05 

 N   Reliability     

Effect 
Size 

per 
group 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large 21 .72 .70 .67 .65 .62 .59 .56 
(d=.8) 26 .81 .79 .77 .74 .72 .69 .66 
 34 .90 .89 .87 .85 .83 .81 .78 
Medium 51 .70 .68 .66 .64 .61 .58 .55 
(d=.5) 64 .80 .78 .76 .74 .71 .68 .65 
 86 .90 .89 .87 .85 .83 .81 .78 
Small 309 .70 .68 .65 .63 .60 .58 .54 
(d=.2) 393 .80 .78 .76 .73 .71 .68 .65 
 526 .90 .89 .87 .85 .83 .80 .77 

 
 
 



RELIABILITY AND STATISTICAL POWER 86 

 
 

 
 

Table 3. Actual statistical power for one-way analysis of variance with three groups resulting from different 
reliability values for given sample sizes at two-tailed  α = .05 

 N   Reliability     

Effect 
Size 

per 
group 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large 17 .70 .67 .65 .63 .60 .56 .53 
(f=.40) 21 .80 .78 .75 .73 .71 .67 .64 
 28 .91 .89 .87 .85 .83 .80 .77 
Medium 41 .70 .67 .65 .62 .60 .57 .54 
(f=.25) 51 .80 .78 .75 .73 .70 .67 .64 
 66 .90 .88 .86 .84 .82 .79 .76 
Small 269 .71 .68 .65 .62 .60 .57 .54 
(f=.10) 333 .80 .78 .75 .73 .70 .67 .64 
 441 .90 .89 .87 .85 .82 .80 .77 

 
Table 4. Actual statistical power for Wilcoxon signed-rank tests resulting from different reliability values for 

given sample sizes at two-tailed α = .05 
 N   Reliability     

Effect 
Size 

per 
group 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large 12 .70 .66 .62 .58 .54 .50 .45 
(d=.8) 15 .80 .76 .71 .67 .63 .58 .54 
 19 .90 .87 .83 .79 .75 .71 .66 
Medium 28 .70 .65 .61 .57 .53 .48 .44 
(d=.5) 35 .80 .76 .72 .68 .63 .58 .54 
 46 .90 .87 .84 .80 .75 .71 .66 
Small 164 .70 .66 .62 .57 .53 .49 .45 
(d=.2) 208 .80 .76 .72 .68 .63 .59 .54 
 276 .90 .87 .83 .80 .75 .71 .66 

 
Table 5. Actual statistical power for Mann-Whitney-Wilcoxon tests resulting from different reliability values 

for given sample sizes at two-tailed α = .05 
 N   Reliability     

Effect 
Size 

per 
group 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large 21 .69 .67 .64 .62 .59 .57 .53 
(d=.8) 27 .80 .78 .76 .74 .71 .68 .65 
 35 .90 .88 .86 .84 .82 .80 .77 
Medium 53 .70 .68 .66 .63 .61 .60 .55 
(d=.5) 67 .80 .78 .76 .73 .71 .68 .65 
 90 .90 .89 .87 .85 .83 .81 .78 
Small 323 .70 .67 .65 .62 .59 .57 .54 
(d=.2) 411 .80 .78 .76 .73 .71 .68 .65 
 550 .89 .88 .87 .85 .82 .80 .77 
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Tables 6 through 10 show the sample sizes 
required to maintain a given power level when 
reliability is less than perfect. Again, there are 
relatively linear relationships for all tests at all 
power levels. For example, Table 6 shows that 
when the desired statistical power level is set at 
.80  and  a  large  effect size (d = .8) is expected, 
 

 
 
 
 
 
 

the use of 15 cases results in power of .80 when 
reliability is 1.0; but when reliability is reduced 
to .90, 17 cases are required. If reliability is .80, 
then the study needs 21 participants. Finally, 25 
cases must be used to achieve power of .80 
when reliability is .70. 
 

 

 
 
 
 
 
 

 
Table 6. Sample sizes required for paired-samples dependent t tests in order to achieve the given 

statistical power values under different reliability conditions at two-tailed α = .05 
    Reliability     

Effect 
Size 

 
Power 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large .70 12 13 14 15 17 18 20 
(d=.8) .80 15 16 17 19 21 23 25 
 .90 19 20 22 24 27 29 33 
Medium .70 27 29 32 35 39 43 48 
(d=.5) .80 34 37 40 44 49 54 60 
 .90 44 49 53 59 65 72 80 
Small .70 157 172 192 214 234 258 287 
(d=.2) .80 199 220 243 266 289 329 369 
 .90 264 286 328 364 400 440 492 

 
 
 

Table 7. Sample sizes required for pooled-variance independent t tests in order to achieve the given 
statistical power values under different reliability conditions at two-tailed α = .05 

    Reliability     

Effect 
Size 

 
Power 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large .70 21 22 23 24 25 27 29 
(d=.8) .80 26 27 28 30 32 34 37 
 .90 34 36 38 40 42 45 48 
Medium .70 51 53 56 59 63 67 72 
(d=.5) .80 64 67 71 75 79 85 91 
 .90 86 89 95 102 107 114 121 
Small .70 309 327 345 365 387 415 443 
(d=.2) .80 393 415 438 466 492 527 566 
 .90 526 557 583 618 658 702 755 

 
 



RELIABILITY AND STATISTICAL POWER 88 

 
Table 8. Sample sizes required for one-way analysis of variance with three groups in order to achieve 

the given statistical power values under different reliability conditions at two-tailed α = .05 
    Reliability     

Effect 
Size 

 
Power 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large .70 17 18 19 20 21 22 24 
(f=.40) .80 21 22 23 25 26 28 30 
 .90 28 29 30 32 34 36 39 
Medium .70 41 44 45 48 50 54 58 
(f=.25) .80 51 54 56 61 65 68 73 
 .90 66 70 75 78 83 88 95 
Small .70 269 288 300 314 332 356 382 
(f=.10) .80 333 353 374 395 419 451 482 
 .90 441 464 488 516 551 583 619 

 
 
Table 9. Sample sizes required for Wilcoxon signed-ranks tests in order to achieve the given statistical 

power values under different reliability conditions at two-tailed α = .05 
    Reliability     

Effect 
Size 

 
Power 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large .70 12 13 14 16 17 19 20 
(d=.8) .80 15 17 18 20 21 24 26 
 .90 19 21 23 25 28 31 34 
Medium .70 28 31 34 37 40 45 50 
(d=.5) .80 35 39 42 46 51 57 63 
 .90 46 51 56 62 68 75 85 
Small .70 164 181 201 222 246 273 304 
(d=.2) .80 208 225 253 282 314 346 387 
 .90 276 307 338 376 417 462 511 

 
Table 10. Sample sizes required for Mann-Whitney-Wilcoxon tests in order to achieve the given 

statistical power values under different reliability conditions at two-tailed α = .05 
    Reliability     

Effect 
Size 

 
Power 

 
1.0 

 
.95 

 
.90 

 
.85 

 
.80 

 
.75 

 
.70 

Large .70 21 22 23 25 27 28 30 
(f=.40) .80 27 28 30 32 34 36 39 
 .90 35 37 40 42 44 47 51 
Medium .70 53 56 58 62 67 69 75 
(f=.25) .80 67 70 74 79 84 89 96 
 .90 90 93 97 105 113 117 127 
Small .70 323 339 358 386 405 437 463 
(f=.10) .80 411 430 458 484 517 551 593 
 .90 550 575 611 653 692 733 796 
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Conclusion 
 
In social sciences, few things are measured 
perfectly (Subkoviak & Levin, 1977). 
Researchers should therefore make an effort to 
minimize the effects of measurement error. 
Although some authors suggest that lower 
reliability is acceptable for group studies of 
attitudes or personality variables (e.g., Fink & 
Kosecoff, 1998; McMillan & Schumacher, 
2001), it becomes obvious based on the tables 
provided here that improving reliability will 
increase power and therefore fewer members of 
these groups will be needed to participate in the 
study.  

For example, in a two group study using 
a dependent measure that produces scores with a 
reliability of .70, 91 participants are required for 
a medium effect size at a power of .80; if 
reliability is improved to .85, the number of 
participants can be reduced to 75 (see Table 7). 
Perhaps for some studies, the additional effort 
required to improve the instrument is not 
justifiable; but for research with high per-subject 
costs, investment to improve the instrument may 
be very worthwhile. As well, the effect of 
measurement fallibility is even more dramatic 
for small effect sizes. In the same example as 
above, but for a small effect size, an 
improvement from reliability of .70 to .85 will 
result in a sample size reduction of around 100 
(see Table 7). 

Perhaps the most advantageous way for 
researchers to use the sample size information 
provided here is to make informed decisions 
about the trade-off between sample size and 
reliability. That is, researchers can make 
informed decisions about the costs and benefits 
of spending time and effort to improve an 
instrument. The issue really isn’t how many 
more people do we need because our instrument 
is not perfectly reliable? Researchers would 
already have an estimate of variance based on 
that level of unreliability from pilot studies or 
previous research—after all, the effect size 
would be based on that observed variance—not 
true score variance. Rather, the implication 
intended from this work is more emphasis on the 
development of reliable and valid instruments. 
As instruments and reliability improve, because 
the true score variance of participants would 

(presumably) remain the same, observed score 
variance will decrease and would provide 
additional power. There are several strategies 
that have been developed for minimizing the 
effects of measurement error and increasing 
reliability. These include revising items, 
increasing the number of items, lengthening item 
scales, administering the instrument 
systematically, timing of data collection and use 
of multiple raters or scores (Light et al., 1990). 

Before choosing a final sample size, the 
possibility of measurement error should be 
considered. To determine sample sizes “without 
simultaneously considering errors of 
measurement is to live in a ‘fool’s paradise’” 
(Levin & Subkoviak, 1977, p. 337). If one 
suspects that measurement error exists and there 
is no viable means to reduce it, sample size 
should be increased accordingly. Researchers 
can identify potential problems with 
measurement error through pilot studies or 
previous research. Where reliability information 
is lacking, the researcher should use cautious 
estimates, with a preference toward more 
conservative values, when deciding sample sizes 
(Levin & Subkoviak, 1977). 
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