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Better Binomial Confidence Intervals 

James F. Reed III  
Lehigh Valley Hospital & Health Network 

 
 
 
The construction of a confidence interval for a binomial parameter is a basic analysis in statistical 
inference. Most introductory statistics textbook authors present the binomial confidence interval based on 
the asymptotic normality of the sample proportion and estimating the standard error - the Wald method. 
For the one sample binomial confidence interval the Clopper-Pearson exact method has been regarded as 
definitive as it eliminates both overshoot and zero width intervals. The Clopper-Pearson exact method is 
the most conservative and is unquestionably a better alternative to the Wald method. Other viable 
alternatives include Wilson's Score, the Agresti-Coull method, and the Borkowf SAIFS-z.  
 
Key words: Binomial distribution, confidence intervals, coverage probability, Wald method, Clopper-
Pearson Method, Score Method, Agresti-Coull method. 
 
 
 

Introduction 
 
The International Committee of Medical Journal 
editors indicated that confidence intervals are 
preferred over simple point estimates and p-
values. This applies to over 300 international 
medical/scientific journals. Most introductory 
statistics textbook authors present the binomial 
confidence interval based on the asymptotic 
normality of the sample proportion and 
estimating the standard error. This approximate 
method is referred to as the Wald interval. In 
order to avoid approximation, some advanced 
statistics textbooks recommend the Clopper-
Pearson exact binomial confidence interval. 
Other methods, asymptotic as well as exact, 
have been proposed and appear sporadically in 
introductory  textbooks.   There  is  a rather large  
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set of articles, primarily in the statistics 
literature, about these and other less common 
methods of constructing binomial confidence 
intervals. 
 The purpose of this article is to provide 
a review of alternatives to the Wald method for 
computing a binomial confidence interval and 
provide a set of tractable and better methods of 
constructing binomial confidence intervals for a 
single proportion. 
 

Methodology 
  
When a binomial confidence interval is reported, 
the computational method is rarely given. This 
may imply that there is only one standard 
method for computing a binomial confidence 
interval - the Wald method (W). The W 
binomial confidence interval, either with or 
without a continuity correction, is found in every 
introductory statistics text. Typically, a warning 
or rule of thumb for determining when not to use 
W is included, but usually ignored. 
Occasionally, the Wald with a continuity 
correction (WCC) is included. For a single 
proportion the W and WCC lower bound (LB) 
and upper bound (UB) are defined as: 
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W LB = p − zα/2 √[pq/n] 
W UB = p + zα/2 √[pq/n], 

WCC LB = p − (zα/2 √[pq/n]+1/(2n)) 
WCC UB = p + (zα/2 √[pq/n]+1/(2n)) 

 
where p = r/n, q = 1-p, r=number of successes, 
and n is the total sample size. 

Even though these two confidence 
interval methods are similar to large-sample 
formulas for means, both the W and WCC 
confidence intervals behave poorly in terms of 
zero width intervals and overshoot (Beal, 1987; 
Vollset, 1993; Newcombe, 1998; Pires, 2002; 
Rieczigel, 2003; Agresti, 2003). For instance, 
when r=0 or n, W and WCC have zero width or 
degenerate confidence intervals. Despite the 
known poor performance of the W and WCC 
confidence intervals, they continue to dominate 
in statistics textbooks, typically accompanied by 
warnings that when np is small, usually less than 
5 or 10, exact or score methods should be used. 
A slightly different version of the rule of thumb 
requires that npq should be greater than or equal 
to 5. A better rule is to not compute confidence 
bounds for a proportion using the W method but 
rather to use one of the better methods. For 
small proportions the calculated lower bound 
can be below zero. Conversely, when a 
proportion approaches one, such as in the 
sensitivity and specificity of diagnostic or 
screening tests, and the upper bound may exceed 
one. This overshoot is avoided by truncating the 
interval to lie within [0, 1]. Overshoot and zero 
width confidence intervals may be avoided by a 
variety of better methods.  
 One of the standard measures of 
binomial confidence interval performance is the 
coverage probability, C(π|n,α). Given X=k,n, 
and α, let δ(π|k,n,α)=1 if π ∈ [LB(k,n,α), 
UB(k,n,α)], and δ(π|k,n,α)=0 otherwise. Then, 
C(π|n,α) for a given π is: 
 

C(π|n,α)=Σ P(X=k|n,π) δ(π|k,n,α) 
 
 Figure 1 shows the 95% confidence 
interval coverage probability of the standard 
Wald methods {W, WCC} as a function of π, π 
∈ [0,1], for n=20. The coverage probability 
curves demonstrate the subnomial coverage for 
values of π near 0 and 1.  

 The Clopper-Pearson (CP) binomial 
confidence interval is the best-known exact 
method for interval estimation and is considered 
by most to be the gold standard (Clopper & 
Pearson, 1934). The CP confidence interval 
eliminates overshoot and zero width intervals 
and is strictly conservative. The CP lower and 
upper limits are defined by inverting the exact 
binomial tests with equal-tailed acceptance 
regions. 
 
CP  LB=0 if x=0, (α/2)1/n if x=n. 
   
 LB=[1+(n−r+1)/(r × F2r, 2(n−r+ 1), 1−α/2)]-1 
    
CP  UB=1-(α/2)1/n if x=0, 1 if x=n. 
  

UB=[1+(n−r)/(r × F2(r+1), 2(n−r),α/2)]-1 
  

Fleiss (1981) preferred a more 
computationally intense binomial confidence 
interval with a continuity correction (SCC) 
attributed to Wilson (Wilson, 1927). For a single 
proportion, Wilson's Score (S) and Wilson's 
Score with continuity correction (SCC) LB and 
UB are defined as: 

 
S LB=(2np+z2−z√{z2+4npq})/2(n+z2) 
 
S UB=(2np+z2+z√{z2+4npq})/2(n+z2) 

 
SCC LB = 
[2np+z2−1−z√{z2−2−1/n+4p(nq+1)}]/(2n+2z2) 
 
SCC UB =  
[2np+z2+1+z√{z2+2−1/n+4p(nq-1)}]/(2n+2z2) 
 
 Blyth and Still (1983) investigated the 
performance of W, WCC, CP, Sterne's binomial 
confidence interval method (Sterne, 1954), and 
Pratt's (P) approximate confidence interval 
method (Pratt, 1968). Their results demonstrate 
the need for a continuity correction even when n 
is large. Blythe and Still then suggested a 
modification to W (WBS). While the WBS was 
an improvement over W and WCC, they 
concluded    that    it    still    was    not  
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satisfactory. The LB and UB for WBS are 
defined as: 
 

LB = p − [z/√(n-z2-2z/√n-1/n][√(pq)+1/2n], 
 
except LB=0 when r=0. 
 

UB = p + [z/√(n-z2-2z/√n-1/n][√(pq)+1/2n], 
 
except UB=1 for r=n. 
 
 Vollset (Vollset, 1993) compared 
thirteen    methods    for    computing    binomial  
 

 
confidence intervals using evaluative criteria of 
C(P), interval width, and errors relative to limits.  
Vollset proposed a mean Pratt (MP), a 
modification of P that is a closed form 
approximation to the mid-P exact interval.  
Define the UB of P as: 
 
           P UB=[1+(r+1)/(n-r))2((A-b)/c)3]-1,  
 
with  
 
                     A=81(r+1)(n-r)-9n-8,  
 
          B=3z√[9(r+1)(n-r)(9n+5z2)+n+1],  
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Figure 1.  Coverage Probabilities (n=20) for the Wald and Wald CC Binomial  

Confidence Interval Methods. 
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and  
 
               C=81(r+1)2-9(r+1)(2+z2)+1.   
    
For P LB, replace r with r-1 and z with -z. 

The Vollset MP lower and upper bound 
are then defined as: 

 
               MP LB={Pl(r)+Pl(r+1)}/2, 
               MP UB={Pu(r)+Pu(r-1)}/2 
 
Vollset argued that W and WCC were 
unsatisfactory and the Clopper-Pearson, Pratt's 
approximation, SCC, MP, S and SCC are 
methods that may be safely used in all 
applications. 
 Newcombe (1998) compared seven 
methods for constructing two-sided binomial 
confidence intervals (W, WCC, S, SCC, 
Clopper-Pearson, mid-P and a likelihood-based 
method). The W and WCC were quickly judged 
as being inadequate, highly anti-conservative, 
asymmetrical in coverage, and incurred a higher 
risk of unacceptable boundary limits. 
Newcombe argued that neither W nor WCC 
should be acceptable methods for the scientific 
literature since other methods are tractable and 
all perform much better.  Newcombe further 
argued that the use of the simple asymptotic 
standard error of a proportion should be 
restricted to sample size planning and 
introductory teaching purposes. Newcombe 
preferred three methods: the Clopper-Pearson 
method, the Score method and mid-P binomial 
based method. 
 Agresti and Coull, in noting the poor 
performance of the Wald interval and 
conservativeness of the Clopper-Pearson 
interval, proposed a straightforward adjustment - 
the add 4 to Wald. They suggested that by 
simply adding two successes and two failures 
and then use the Wald formula. Alternatively, 
one could add z2/2 successes and z2/2 failures 
before computing the Wald confidence interval.  
 
 
 
 

The latter is preferred. The Agresti-Coull 
adjusted Wald (AC) lower and upper bounds 
are: 
 

LB=p'−z√[p'q'/n'], 
UB=p'+z√[p'q'/n'], where 

p'=(2r+z2)/(2n+z2), and n'=n+z2 
  
 Pires (2002) compared twelve methods 
for constructing confidence intervals for a 
binomial proportion and concluded that a clear 
classification of conservative methods included 
the Clopper-Pearson, the Score, and two arcsine 
transformation methods. A second tier of 
recommended confidence interval construction 
methods included a Bayesian method and the 
SCC.  
 Agresti (2003) argued for reducing the 
effects of discreteness in binomial confidence 
intervals by inverting two-sided tests rather than 
two one-sided tests. In most statistical practice, 
for interval estimation of a proportion or a 
difference or ratio of proportions, the inversion 
of the asymptotic score test is the best choice. If 
one wants to be a bit more conservative, mid-P 
adaptations or the Clopper-Pearson are 
recommended. For teaching purposes, the Wald-
type interval plus and minus a normal-score 
multiple of a standard error is simplest. 
 Reiczigel compared four methods for 
constructing binomial confidence intervals: 
Wilson's Score, Agresti and Coull Adjusted 
Wald, the Clopper-Pearson, the mid-P, and 
Sterne's interval (Rieczigel, 2003). Unique to 
this study is the recommendation of using the 
Sterne interval and the Agresti-Coull adjusted 
Wald interval for binomial confidence intervals. 
 Tobi et al. (2005) compared the 
performance of seven approximate methods and 
the exact Copper-Pearson exact confidence 
intervals for small proportions. Three criteria 
were used to evaluate the performance of 
confidence intervals; coverage, confidence 
interval width, and aberrant confidence  
intervals.  They   concluded  that: (1) one should 
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compute confidence intervals for small 
proportions even when the number of events 
equals zero, (2) report what method has been 
used for confidence interval calculation, (3) the 
W method should be discarded, and (4) the 
Clopper-Pearson and the SCC are the best 
choices to calculate confidence intervals for 
small proportions. 
 Borkowf (2005) argued that even though 
the Agresti-Coull method binomial confidence 
intervals are substantially better than the Wald 
method, it can yield sub nominal coverage for 
some values of π for moderate sample sizes. A 
binomial confidence interval, which results in 
near nominal coverage and is easy to calculate 
by first augmenting the original data with a 
single imaginary failure to compute the lower 
confidence bound and a single imaginary 
success to compute the upper confidence bound 
is proposed - a single augmentation with an 
imaginary failure or success (SAIFS) method. 
The lower and upper SAIFS confidence bounds 
are then: 
 

SAIFS LB = p1 - ξ1-α/2 √[p1q1/n] 
 
and  
 
             UB = p2 + ξ1-α/2 √[p2q2/n],  
 
with 
 
             p1=(r + 0)/(n+1) and p2=(r+1)/(n+1) 
 
 Borkowf (2005) evaluated two forms of 
the SAIFS. The first uses the z-quantiles (ξ1-α/2) 
and the second used the t-quantiles (τn-1, 1-α/2). 
Compared to the Clopper-Pearson method, the 
SAIFS method using either the z or t quantiles 
results in confidence intervals with mean widths 
that are narrower for proportion parameters near 
0 or 1 and whose coverage probabilities are 
marginally better over all values of π. The 
SAIFS-Z is preferred. 
  
 
 
 
 

Figure 2 shows the 95% confidence 
interval coverage probability as a function of π, 
π ∈ [0,1], for n=20 for CP, WBS, S, SCC, AC, 
and SAIFS-Z. Note that the sawtooth appearance 
of the coverage functions is due to the 
discontinuities for values of p corresponding to 
any lower or upper limits in the set of n+1 
confidence intervals. The Clopper-Pearson and 
Borkowf SAIFS-z methods give at least nominal 
coverage for all values of π ∈ [0,1], with severe 
over coverage near 0 and 1. The Score CC 
method gives at least nominal coverage for all 
values of π ∈ [0,1] and avoids the over coverage 
of either the Clopper-Pearson or Score methods. 
The Score and Agresti-Coull methods yield 
nearly nominal coverage for all values of π ∈ 
[0,1]. 
 

Conclusion 
 

For the one sample binomial confidence interval, 
a new generation of introductory and medical 
statistics textbooks should emphasize the poor 
performance properties of W, WCC and include 
better binomial confidence methods. At least one 
from the set of Clopper-Pearson, S, SCC, 
Agresti-Coull, or the SAIFS-z methods should 
be mentioned. With the widespread use of laptop 
computers and access to computing resources on 
the internet, the complexity of computing 
binomial confidence intervals should not be an 
issue. The question remains as to which method 
to use. The Clopper-Pearson exact method has 
been regarded as definitive as it eliminates both 
overshoot and zero width intervals. The 
Clopper-Pearson exact method is the most 
conservative and is unquestionably a better 
alternative to the W when constructing and 
reporting binomial confidence intervals. In terms 
of programming ease, the Clopper-Pearson is 
easily programmed as are the Blythe & Still, 
Wilson's Score, Score with a continuity 
correction, the Agresti-Coull method, and the 
Borkowf SAIFS-z. 
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Figure 2.  Coverage Probabilities (n=20) for the Clopper-Pearson, Score, Score CC, Agresti-Coull, and 

Borkowf SAIFS-z Binomial Confidence Interval Methods. 
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Figure 2 (Continued).  Coverage Probabilities (n=20) for the Clopper-Pearson, Score, Score CC, 
Agresti-Coull, and Borkowf SAIFS-z Binomial Confidence Interval Methods. 
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Table 1.  Methods for Calculation of Confidence Intervals for a Single Proportion 

Method                Formula        

Clopper-Pearson CP          LB=0 if x=0, (α/2)1/n if x=n. 

     LB=[1+(n−r+1)/(r × F2r, 2(n−r+ 1), 1−α/2)]-1 

     UB=1-(α/2)1/n if x=0, 1 if x=n. 

     UB=[1+(n−r)/(r × F2(r+1), 2(n−r),α/2)]-1 

 

Score (Wilson)  S  LB=(2np+z2−z√{z2+4npq})/2(n+z2) 

     UB=(2np+z2+z√{z2+4npq})/2(n+z2) 

 

Score (w/CC)  SCC  LB=[2np+z2−1−z√{z2−2−1/n+4p(nq+1)}]/(2n+2z2) 

     UB=[2np+z2+1+z√{z2+2−1/n+4p(nq-1)}]/(2n+2z2) 

 

Agresti-Coull  AC  LB=p'−z√[p'q'/n'] 

     UB=p'+z√[p'q'/n'], where 

     p'=(2r+z2)/(2n+z2), and n'=n+z2. 

 

Borkowf  SAIFS               LB = p1 - ξ1-α/2 √[p1q1/n] 

     UB = p2 + ξ1-α/2 √[p2q2/n], with 

     p1=(r + 0)/(n+1) and p2=(r+1)/(n+1), where 

     ξ1-α/2 are z-quantiles or τn-1, 1-α/2 the t-quantiles 

 



JAMES F. REED III  
 

161

References 
 

Agresti A. & Coull B. A. (1998).  
Approximate is better than 'exact' for interval 
estimation of binomial proportions.  The 
American Statistician, 52, 119-126. 

Agresti, A. & Min, Y. (2001). On small-
sample confidence intervals for parameters in 
discrete distributions.  Biometrics, 57, 963-71. 

Agresti, A. (2003). Dealing with 
discreteness: Making 'exact' confidence intervals 
for proportions, differences of proportions, and 
odds ratios more exact.  Statistical Methods 
Medical Research, 12, 3-21. 

Blyth, C. R. & Still, H. A. (1983). 
Binomial confidence intervals.  Journal of the 
American Statistical Association, 78, 108-116. 

Bonett, D. G. & Price, R. M. (2005).  
Confidence intervals for a ratio of binomial 
proportions based on paired data.  Statistical 
Methods Medical Research,15. 

Borkowf, C. B. (2005). Constructing 
binomial confidence intervals with near nominal 
coverage by adding a single imaginary failure or 
success.  Statistical Methods Medical Research, 
25. 

Clopper, C. J. & Pearson, E. S. (1934). 
The use of confidence or fiducial limits 
illustrated in the case of the binomial.  
Biometrika, 26, 404-413. 

Fleiss, J. H. (1981). Statistical methods 
for rates and proportions (2nd Ed.). New York: 
John Wiley & Sons. 

Newcombe, R. G. (1998). Two-sided 
confidence intervals for the single proportion: 
Comparison of seven methods.  Statistical 
Methods Medical Research, 17, 857-72. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Pires, A. M. (2002).  Confidence 
intervals for a binomial proportion: Comparison 
of methods and software evaluation.  
Proceedings of the Conference ComStat 2002.  
http://www.math.ist.utl.pt/~apires. 

Pratt, J. W. (1968). A normal 
approximation for binomial, F, Beta, and other 
common, related tail probabilities.  Journal of 
the American Statistical Association, 63, 1457-
1483. 

Radhakrishna, S., Murthy, B. N., Nair, 
N. G. K., Jayabal, P., & Jayasri, R. (1992). 
Confidence intervals in medical research.  
Indian Journal of Medical Research [B], 96, 
199-205. 

Reiczigel, J. (2003). Confidence 
intervals for the binomial parameter: Some new 
considerations. Statistical Methods Medical 
Research, 22, 611-21. 

Sterne, T. E. (1954).  Some remarks on 
confidence or fiducial limits'. Biometrika, 41, 
275-278. 

Tobi, H., van den Berg, P. B., & deJong-
van den Berg, L. T. W. (2005). Small 
proportions: What to report for confidence 
intervals.  Pharmacoepidemiology and Drug 
Safety, 14, 239-247. 

Vollset, S. E. (1993). Confidence 
intervals for a binomial proportion. Statistical 
Methods Medical Research, 12, 809-24. 

Wilson, E. B. (1927). Probable 
inference, the law of succession, and statistical 
inference.  Journal of the American Statistical 
Association, 22, 209-212. 
 


	Journal of Modern Applied Statistical Methods
	5-1-2007

	Better Binomial Confidence Intervals
	James F. Reed III
	Recommended Citation


	Microsoft Word - toc_vo6_no1.doc

