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On the Properties of Beta-Gamma Distribution

Lingji Kong
Union College

Carl Lee J. H. Sepanski

Central Michigan University

A class of generalized gamma distribution called the beta-gamma distribution is proposed. Some of its
properties are examined. Its shape can be reversed J-shaped, unimodal, or bimodal. Reliability and hazard
functions are also derived, and applications are discussed.
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application.

Introduction

Let f(-) and F(-) be the probability density

function and the cumulative distribution
function (cdf) of a random variable,
respectively. Eugene, Lee, and Famoye (2002)
first introduced a generalized distribution based
on the logit of the beta random variable with a
cumulative distribution function given by

1 F(x)

G(x) = 1 1=0dt, 0<a, f < oo,
B(e, ) !

and the corresponding probability density

function is

gﬂ=3;mF@Vﬁfﬂdmﬂ@ﬁ<%ﬂ<w
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Eugene, et al. (2002) studied properties of
g(x) when F()) is the cdf of a normal
distribution. Maynard (2003) examined the case
when F(-) is the cdf of an exponential
distribution.

Gamma distribution and its generalized
distributions (e.g. McDonald, 1984) have been
applied widely to the analyses of income
distributions, life testing, and many physical and
economical phenomena (e.g. Farewell, 1977,
Lawless, 1980). In this article, the case when
F(-) is the cdf of the gamma distribution is
studied.

A random variable X is said to have a
beta-gamma distribution, BG(, B, p, 1), if its
probability density function is given by

—x/2
xPe™

B(a, T (p)A*
O<a,B,p,A<o, x>0,

p-1

F(x)* ' 1-F)),

g(x)=
(D

where F(x) is the cdf of the gamma distribution
with parameters p and A . One can also

introduce a location parameter & in the density
in (1) by replacing x with x—¢& where
—oo< & <o, In the rest of this article, it is
assumed that & is zero. When both & and [
are integers with &+ f being a bounded

integer, the beta-gamma density function in (1)
is the marginal probability density function of
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the o™ order statistic in a random sample of size
o+ [ from the gamma distribution with
parameters p and A . When o= =1, the
beta-gamma distribution yields the gamma
distribution. When p =1, the beta-gamma

distribution is beta-exponential distribution
introduced in Maynard (2003).

Properties

The limit of g(x)as x goes to 0 and the
mode of the probability density function g(x) in
(1) is given in Lemma 1. The modes for cases
when pa<1 and pa>1 are studied
respectively. Although some cases can be shown
mathematically, plotting the function g(x) using
Maple computer programs are employed to
examine shapes and modalities for other cases.
Illustrative  graphs of g(x) based on
observations from numerous plots are presented.

Numerical percentiles are presented in Table 7
to Table 9.

Limits
Lemma 1: The limit as x goes to 0 of the
beta-gamma probability density function g(x) in

(1)is

hmx—)O g(x) =

oo ifop <1
~ ! — ifop=1
I“(p)B(a, Bp* A
0 if ap>1
)

The proof is given in Appendix.

Modes of g(x) When ap <1
Note that the derivative
df ldx=f(p—1-x/A)/x . The first

derivative of the logarithm of the probability
density function g(x) is given by

p—l—x//7.+05—

-p
X F —

1,1
f+1 Ff-(3)

The mode(s) x,, of g(x)if exists is the solution

to the equation by setting (3) to be zero.
It is shown below that g (x) has a
reversed-J shape when pa <1 and f>1. The

derivative in (3) is equal to

f 1
(1—B)E+;[(a—l)xf+(p—1—x/7L)F].
“4)

When 3 > 1, the first term in (4) is less or equal
to 0. Also,

9 o= Dxf +(p=1—x/2)F]
dx

(o) + (- D PTIZX
X

“F/A+(p—1—-x/M)f
=(ap—-Df —oxf/A—F/A

which is negative when o <1. This implies
that (a—-Dxf+(p—-1-x/A)F is a
decreasing function. Because
(a—Dxf+(p—1-x/A)F =0 when x=0,
the second term in (4) is therefore negative. That
is, g'(x) is negative. By (2) and the fact that

lim_,_ g(x)=0, g(x) has a reversed-J shape
for the cases when pa <1 and #2>1 with
maximum occurring at x =0.

When o <land p <1 regardless of B,
one can see that g(x) has a reversed-J shape by
rewriting g(x) as

_ 1 f(X) a-1[1 _ B
=g BT I-F).

Because the cdf F' is an increasing function and
the hazard function f/(1—F) of the gamma

distribution function is a decreasing function
when p <1, g(x) is therefore a decreasing

function with lim _,, g(x)=cc when a<1
and p <1.
(2.3)
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Figure 1. Plot of the density function g(x) when par =1, and £=0.25, 0.5, 2, 4
Next, graphical results are shown to cases when ap =1. Figure 2 contains cases
examine the cases when £ <1 and ap <1 with whenap <1. Note that a =¢, b =/, and p

o or p greater than 1. Figure 1 represents = p in all figures in this article.
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Figure 2. Plot of the density function g(x) when pa <1, and =0.25,0.5,2, 4

When po=1 and f>1, the beta-
gamma distribution appears to have a reversed-J
shape. Figure 1 also shows that when o =2
and p=0.5, it has a non-zero mode for [
values of 0.25 and 0.5.

When pa <1 and <1, it is found
that g(x) is not necessarily a reverse J-shape, it

can be bimodal (with one mode at 0). Figure 3
shows two such cases. The top two are for
p =025 a=3.9, and f=0.5; the bottom

graph is for p=2, @=0.49, and #=0.01.
Note that the horizontal axis of the first plot
ranges from 0 to 0.01 and the one of the second
plot ranges from 0.01 to 2. Tables 1 — 4 give the
2nd non-zero mode in addition to the mode at
x=0 for some examples when oap <l
and p <1. The empty cells are cases where
g(x) is reverse J-shaped and the only mode is

at x=0.
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Figure 3. Graphs of BG(a, 3, p,1)
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Table 1. Nonzero 2nd mode of BG(a, 5, p,1) with p =1/2.
£ =001 |0.1 0.2 0.3 0.4 0.5 | 0.6 0.7 108 |09
o=18 | 1.04
1.9 | 1.31 .529 234
1.95 | 1.42 .616 319 167 .074
1.99 | 1.50 .678 374 219 .013 .071 | .035 | .012
Table 2(a). Nonzero 2nd mode of BG(«e, 3, p,1) with p =1/4.
£=001 | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o =3.01
3.02 365
3.1 571
3.2 714
33 .826 274
3.4 923 382
3.5 1.01 460 .193
3.6 1.09 .526 266 .103
3.7 1.16 .585 323 173 .064
3.8 1.22 .638 373 222 124 .052
3.9 1.29 .687 A17 | 264 165 .097 .049
Table 2(b). Nonzero 2nd mode of BG(e, B, p,1) with p=1/4.
£=091 | 092 0.93 0.94 0.95 0.96 0.97 0.98 0.99
=399 |.004 .003 .001
3.995 |.005 .004 .003 .002 .001
Table 3. Nonzero 2nd mode of BG(e, 5, p,1) with p=1/6
B =.01 |0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o=58 1.21 .67 | 41 27 17 10 .05
5.9 1.24 .69 | .44 .29 .19 12 .07 .036 .020
5.99 1.27 J2 | 48 31 21 .14 .09 .052 .026 .008
Table 4. Nonzero 2nd mode of BG(a, B, p,1) with p =2
£=0.01 | 0.015 | 0.1 0.2 0.3 0.4
o =0.48
0.49 |9.85
0.499 |9.86 7.656
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Note that, for example, when & = 0.48,
B =001, and p=2, g(x) has an inversed-J
shape and therefore does not have a nonzero
mode. The range of f where g(x) is bimodal

appears to widen as « increases. When
bimodality occurs, the nonzero mode increases
as the parameter & increases and decreases as
the parameter [ increases. The bimodality
property of beta-gamma distribution is not
independent of the gamma parameters (Ot, p).

The bimodality property also exists for beta-
normal (Famoye, Lee, & Eugene, 2004).

Modes when op > 1
The second derivative of the logarithm
of g(x) is given by

p—l—x/?{(oc—l)f_i_ (1—B)f+p—1—x/x}

X F 1-F X
3 (p—1-x/A) +(OL—1)f2 _(1—[3)f2 +p—1
x’ F? (1-F)* x*

The first term equals to O at the mode x,, .

Hence, whenx = x,,

d’Ing
dx’
(p-1-x)" (a=Df?
x’ " F?
LB-Df*  p-1
(1-F)? x’

)

When 21,021, and p 21, (5) is less than 0
atx =x,, . In this case, since there must be a
minimum between any two maxima and that
lim_,, g(x) =0 and lim_,_g(x) =0, it is
concluded that g(x) is unimodal with a concave

shape.
When [ 2>1 and op >1 with o<1

or p<l , though not being shown

mathematically, graphs of such cases indicate
that beta-gamma density function g(x) is also

unimodal with a concave shape. Based on
numerous graphs, the density functions g(x) is

unimodal when ap >1 regardless the value
of . The following illustrates some examples
whenop >1.
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Figure 4. Plot of the density function g(x) when pa >1,and £=0.5, 1.5

In this case g(x) is unimodal with a

concave shape and the mode is nonzero. Tables
5 and 6 tabulate modes for BG(«, 3,2,1) and

BG(a, 5,1/2,1) when par > 1.
The results indicate that
when pa > 1the mode increases as « increases

and that the mode decreases as /3 increases for

both BG(e,,2,]) and BG(e, 5,1/2,1); see

also Figure 4. For other cases when o > 1, this

pattern holds for other values of parameters
pand A though the computation results are not

reported here.

Percentiles of g(x)

The 50", 75", 90™, and 95™ percentiles
of BG(a, B, p,1) are computed and tabulated in
the following Tables 7-9.
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Table 5. Modes for BG(«, 3,2,1) when pa >1
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£=0.2 0.5 1 1.5 2 2.5 5 10
o =1 2.236 1414 1.000 .8165 .7071 .6325 .4472 .3162
o=1.5 3206 2162 1555 1270 1.097 .9775 .6815 .4744
o =2 3729 2.628 1938 1.598 1.386 1.238 .8644 .5994
o=2.5 4.087 2963 2229 1856 1.618 1.451 1.018 .7063
o =5 5.055 3915 3.111 2.672 2379 2.163 1.570 1.107
=10 5913 4787 3964 3498 3.176 3947 2228 1.626
Table 6. Modes for BG(«, 3,1/2,1) when po > 1.
=02 0.5 1 1.5 2 2.5 5 10
o=25 0.832 3919 1692 .0903 .0545 .0359 .0291 .0154
o =5 1.788 1.129 7150 .5137 3923 3114 1337 .0735
o=10 2.653 1.798 1286 1.016 8411 7155 3925 1812
Table 7. Percentiles of BG(e, B, p,1) with p=1/2
e B 50th 75th 90th _ 95th
0.25 0.25 2275 2.011 5.260 7.855
0.5 .0235 4372 1.684 2.846
1 .0031 .0831 4479 .8765
2 .0005 .0169 116 .2445
4 .0001 .0038 .0277 .0654
0.5 0.25 9346 3.194 6.550 9.171
0.5 2275 1.054 2.530 3.716
1 .0508 3014 .8588 1.358
2 .0115 .0802 2632 4522
4 .0027 .0207 .0752 1370
1 0.25 1.735 4.163 7.568 10.21
0.5 .6617 1.735 3.317 4.570
1 2275 .6617 1.353 1.921
2 .0706 2275 .5022 7405
4 .0202 .0706 .1678 2576
2 0.25 2.473 4.979 8.413 11.06
0.5 1.205 2.405 4.044 5.316
1 5531 1.123 1.899 2.501
2 2275 4817 .8367 1.115
4 .0816 1824 .3306 4504
4 0.25 3.160 5.710 9.166 11.82
0.5 1.787 3.057 4.731 6.016
1 9914 1.649 2.478 3.102
2 .5073 .8444 1.261 1.570
4 2275 3872 .5869 7351
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Table 8. Percentiles of BG(«a, 3, p,1) with p =1
o Joj 50th 75th 90th 95th
0.25 0.25 .6939 3.106 6.752 9.535
0.5 1882 1.050 2.710 4.070
1 .0645 3804 1.067 1.685
2 .0265 1577 4517 .7249
4 .0120 0718 2065 3330
0.5 0.25 1.763 4.466 8.125 10.90
0.5 .6925 1.919 3.704 5.077
1 2877 .8267 1.661 2.328
2 1285 3729 7592 1.075
4 0512 1758 3588 5086
1 0.25 2.773 5.545 9.210 11.98
0.5 1.386 2.773 4.605 5.991
1 6931 1.386 2.303 2.996
2 3466 .6931 1.151 1.498
4 1733 .3466 5756 7489
2 0.25 3.644 6.436 10.10 12.88
0.5 2.115 3.565 5.366 6.720
1 1.228 2.010 2.970 3.676
2 .6931 1.120 1.631 2.000
4 .3766 .6055 8768 1.071
4 0.25 4.428 7.229 10.90 13.68
0.5 2.836 4312 6.167 7.556
1 1.838 2.668 3.650 4.363
2 1.159 1.641 2.187 2.571

4 .6931 9706 1.278 1.490
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Table 9. Percentiles of BG(e, B, p,1) with p =2

a Joj 50th 75th 90th 95th
0.25 0.25 1.678 4.874 9.049 12.09
0.5 7450 2.220 4.397 6.021
1 4035 1.142 2.244 3.094
2 2482 .6713 1.273 1.729
4 1631 4277 7860 1.050
0.5 0.25 3.197 6.479 10.58 13.58
0.5 1.678 3.404 5.597 7.194
1 9613 1.887 3.063 3.922
2 5961 1.128 1.782 2.254
4 .3893 157 1.102 1.374
1 0.25 4.472 7.710 11.76 14.74
0.5 2.693 4.472 6.638 8.212
1 1.678 2.693 3.890 4.744
2 1.078 1.678 2.365 2.845
4 7095 1.078 1.487 1.767
2 0.25 5.519 8.710 12.72 15.69
0.5 3.653 5.425 7.560 9.116
1 2473 3.518 4.712 5.557
2 1.678 2.320 3.023 3.505
4 1.135 1.536 1.963 2.250
4 0.25 6.434 9.587 13.57 16.53
0.5 4.549 6.299 8.408 9.949
1 3.296 4.344 5.526 6.359
2 2.376 3.036 3.744 4.225
4 1.678 2.103 2.543 2.834

The percentiles increase as & increases

197

and decrease as [§ increases with fixed p , which

1s consistent with the results of modes. As seen
in all figures, the beta-gamma distribution is
skewed to the right, one would expect that the
mode to be less than the median.

Moments

The closed form solutions of moments
for BG(a, B, p,A) exist only when & and 8

are integers. The closed form solution for the nth

moment of BG(a,pf,p,A) is derived in
Theorem 1 for the cases when & and [ are

integers in this section. The first four moments
are also numerically computed for various
parameters.

Theorem 1: When o, f are integers, the nth

moment of the beta-gamma
variable BG(a, 3, p, 1) is given by

random
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N Ry o+j-1
B(o! B)z( )(J J{Z( D[ JI}
(6)

where

]n,k = Tx”f(x)(l—F)kdx.

The proof is given in Appendix. The follow
Corollary gives E(X) and E(X’) that are used to
obtain variance.

Corollary 1: When @ =2,=1 and p is an
integer, £(X)and E(X’) are given by:

_ & Ap+i)
E(X)=2Ap — = N
i=0 (p ) L

)

5 2p+l ’
i=

(7

(p+i+1j
p-1

p+1

= P(P+1)12[2—ZW

i=0
®)

E(X*)=22(p+1)p

]

The proof is given in Appendix.

Applying (6), the first four moments of
BG(a, B, p,)) for a certain combinations of the

parameters are evaluated and given in Tables 10
and 11.

Table 10. The mean, std, skewness and kurtosis of BG(a, 5, p,1) with p =2.

o ﬂ mean std skewness kurtosis
1 1 2.000 1.414 1.415 6.005
2 1.250 .8292 1.261 5.329
4 .8047 .5048 1.120 4.768
10 4660 2757 9672 4.220
2 1 2.750 1.479 1.207 5.347
2 1.824 .8975 1.010 4.588
4 1.215 .5585 .8693 4.117
10 7150 .3063 7319 3.736
4 1 3.547 1.494 1.106 5.094
2 2.503 .9356 .8595 4238
4 1.747 .5987 .7038 3.779
10 1.062 .3345 5752 3.481
10 1 4.623 1.500 1.057 5.007
2 3.503 .9505 7650 4.063
4 2.618 6278 .5759 3.577
10 1.705 .3654 4363 3.302
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Table 11. The mean, std, skewness and kurtosis of BG(a, 3, p,1) with p =1/2

o Yo, mean std skewness kurtosis
1 1 .5000 7071 2.829 15.00
2 1814 2828 3.287 18.66
4 .0604 .1038 3.834 26.22
10 .0124 .0237 4.688 39.71
2 1 .8180 .8468 2.172 10.28
2 3523 3830 2.290 11.11
4 1356 .1586 2.544 13.14
10 .0319 .0413 3.032 17.96
4 1 1.235 9584 1.762 8.011
2 .6280 4830 1.669 7.422
4 .2868 .2289 1.718 7.614
10 .0820 0712 1.955 9.080
10 1 1.900 1.057 1.468 6.683
2 1.154 5878 1.218 5.491
4 .6508 3228 1.097 4.941
10 2505 1290 1.119 4.968
Based on the numerical results, the section. The reliability function,

mean and standard deviation appear to increase
with & for a fixed [ ; and skewness and

kurtosis appear to decrease as « increases for a
fixed B in both cases when p=2 and

p=1/2 . Based on Figure 4, the density

function has a heavier right tail as & increases.
The mean and standard deviation decrease as
B decreases for a fixed & . Although the

skewness and kurtosis decrease with [
when p = 2 as shown in Table 10, the skewness
and kurtosis increase with f when p=1/2
andp <1, as shown in Table 11. However, no

clear pattern is noticed whenop > 1.

Reliability and Hazard Functions

The reliability and hazard functions of
the beta-gamma distribution are derived in this

R(x)=1-P[X < x], at time x defined to be

the probability that a unit X survives beyond
time x. For a beta-gamma random variable, it is
given by

1 X

1— F*'(1-F)*'dF(t
B(OC,B)‘([ (1-F)*dF(t)
1 F(x) 5
=1- t* (1 =t)P ' dt
Bap ) Y

where f and F are the density function and cdf
of the gamma random variable with
parameters 0 and A , respectively. The hazard
function defined to be a instantaneous measure
of failure at time x given survival to time x is
equal to
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H(x) = g(x) _ _
TR The hazard functions of BG(e, 3, p,1)
1 are plotted. Cases with ap <l are presented in
-1 -1
B, f) F(-F )'H S () Figure 5 and cases with ap =1 are given in
- N . Figure 6. The graphs in the first column
1 J'F(H (1-F)"" f(x)dx represent the cases op =1 with f=1/2, 1, and 2;
B(e, By and those in the second column represent the
cases when ap >1 with f=1/2, 1, and 2 in
Figure 6.
Lemma 2:
(a) hmx—)O H(X) = 1imx—>0 g(x)
(b) lim_,_ =4/4
The proof is given in Appendix.
p=0.5 a=5 and b=25, 5, 2 symbol=hox, cross, line p=.25 a=3 and b=25, 5, 2 symbol=box, cross, line
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64 6:
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Figure 5. Hazard Function of BG(a, 5, p,1) whenaop <1
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As stated in Lemma 2, the curves of the
hazard functions start at the values given in
Lemma 1 and go to the value of S as x goes to
oo regardless the values of other parameters.
When op <1land S 21 (see also Figure 2),
g(x) has a reversed J shape and the trends of
hazard functions for £ =1 and S =2 (both
B >1) are similar (Figure 5). When oo =1 and
B =1/2, the hazard function has a nonzero
maximum or minimum. The hazard function is
constant whenax = p = =1, sine g(x) is the
exponential distribution. Within each plot, a
larger & value seems to result in a larger value
of the hazard function. Whenaop >1, g(x) has
a nonzero mode (see also Figure 4) and the
corresponding  hazard function is non-
decreasing.

When o = f =1, it is Gamma function.

lim___ =1/A, which is different from that of

X—>
beta-gamma. Also, the hazard function of the
beta-gamma can handle bathtub cases where
gamma can not. Therefore, the beta-gamma
distribution is more flexible. This is especially
important when the beta parameter is not near
one.
Parameter  Estimation  Using  Maximum
Likelihood Method

Let x,,x,,....x, be a random sample

of size n from a beta-gamma distribution defined
in  (1.1), the log-likelihood function
l(a, B, p, ) is then given by

I'a+ ) R
og—r(a)r(ﬁ) +(a l);log F(x,)

+(ﬁ—1)iloga—F<x,.>) +ilogf<x,.>,

where f(x) and F(x) are the pdf and cdf of
the gamma distribution with parameters p and

A, respectively. Let w(z) =dl'(z)/dz be the
digamma function. The equations for solving the
maximum likelihood estimates of «,f, 0

and A are given in Appendix.
The example in the next section, initial
estimates of p and A is first computed by

assuming the data set follows gamma
distribution with @ =1and S =1, the results

from MLE of ( p,A) along with & =1 and
P =1 then are used as the initial values for
solving the equations (A.3) to (A.6).

Applications of the Beta-Gamma Distribution

An application of the proposed
distribution is presented using the data sets
given in Park, Leslie, and Mertz (1964), Park
(1954), Moffa and Costantino (1977).
Costantino and Desharnais (1981) established a
gamma-state probability distribution for adult
numbers in continuously growing populations of
the flour beetle Tribolium. The hypothesis that
the data set is from a beta-gamma distributed
population is tested using the observed
frequency distributions of adult numbers for
Tribolium castaneum and Tribolium Confusum.

The beta-gamma distribution is fitted to
the ten data sets discussed above, and the results
are compared to those from gamma distribution
and beta-normal distribution proposed by
Eugene (2001) where the maximum likelihood
method was used. Table 12 tabulates the
resulting chi-square values form the goodness-
of-fit test for the 10 data sets, and for illustration
of the computations Tables 13 and 14 contains
results for two of the ten data sets (Data set # 6
and #10). The expected numbers are calculated
using the respective distribution with the
parameters set at their maximum likelihood
estimates. The chi-square goodness-of-fit test is
then employed to make a comparison between
the observed and expected number of
observations under each distribution. Note that a
class interval with an expected number less than
5 is combined with the adjacent class to avoid
inflating the chi-square test statistic.
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Table 12. The resulting ¥ ? values (p-value, d.f) from the goodness-of-fit tests for the 10 data sets.

Data set Gamma Beta-Normal Beta-Gamma

#1 24.03 (0.0043, 9) 5.04 (0.6545, 7) 7.88 (0.3433, 7)
#2 48.16 (0, 12) 27.02 (0.0026, 10) 20.50 (0.0249, 10)
#3 129.18 (0, 17) 74.85 (0, 15) 72.63 (0, 15)

#4 78.07 (0, 11) 25.39 (0.0030, 9) 28.36 (0.0008, 9)
#5 23.62 (0.0144, 11) 19.99 (0.0180, 9) 17.89 (0.0365, 9)
#6 10.72 (0.3793, 10) 7.42 (0.4913, 8) 7.05 (0.5312, 8)
#7 21.67 (0.0169, 10) 10.56 (0.2280, 8) 12.89 (0.1157, 8)
#8 55.71 (0, 9) 25.05 (0.0007, 7) 22.28 (0.0023, 7)
#9 25.02 (0.2463, 21) 16.85 (0.6001, 19) 16.54 (0.6210, 19)
#10 17.19 (0.3076, 15) 17.07 (0.1959, 13) 15.01 (0.3067, 13)

It is of no surprise that the proposed
beta-gamma distribution fits better than the
gamma distribution for all the data sets. Seven
of the ten data sets, the beta-gamma distribution
fits better than the beta-normal distribution

based on the chi-squares values. Note that, for
example, the data set in Table 14 appears to
have a long right tail, it is reasonable that beta-
gamma distribution performed the best.
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x —value

37.5
42.5
47.5
52.5
57.5
62.5
67.5
72.5
71.5
82.5
87.5
92.5
97.5

102.5
107.5
112.5

p-value

observed

)
10
5
14
33
40
49
44
52
44
28
29
13
9

1
1:3
1

368

degree of freedom

Expected

Table 13. Observed and Expected Frequencies for Tribolium Confusum Strain # 4(b)

Gamma Beta-Normal

2.36
8.78
6.42

15.37
28.26
41.74
51.32
53.98
49.66
40.67
30.07
20.31
12.66
7.34

3.99
2.05,7.84
1.80

368

25.61

2.71
10.72

0.3793
10

2.85}
10.63
7.78
16.45
27.43
37.79
45.59
50.12
50.31
44.99
34.99
23.48
13.62
6.87

3.02
1.16 5.73
1.55

368

0.45
0.23
62.79
6.74

7.42
0.4913

Beta-Gamma

4.01
12.12
8.11

16.90
28.59
40.48
49.06
51.78
48.48
41.02
31.64
22.07
13.62
7.24

3.25
1.235.01
0.53

368

0.17
0.69

111.58

0.74
7.05
0.5312
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Table 14. Observed and Expected Frequencies for Tribolium Castaneum at 24° C (b)

x —value observed
25 0
35 043
45 3
55 9
65 39
75 53
85 77
95 105
105 135
115 114
125 113
135 92
145 59
155 54
165 38
175 22
185 17
195 6
205 10
215 3
225 2
235 0|6
245 1
255 0
265 0
a

B

yii

o]

P

A

ZZ

p-value

degree of freedom

Expected

Gamma  Beta-Normal

0.02 0.12
0.443:43 0.75+4.25
2.97 3.38
11.51 11.18
29.71 28.07
57.05 55.08
87.54 87.09
112.64 114.43
125.81 128.66
125.09 127.23
112.87 113.37
93.80 9291
72.63 71.18
52.89 51.60
36.51 35.72
24.03 23.75
15.17 15.22
9.22 943
542 5.65
3.09 3.28
1.71 1.85
0.92| 6.68 1.01]|7.18
0.49 0.53
0.25 0.27
0.22 0.24
12.34
0.68
27.33
47.01
13.86
8.50
17.19 17.07
0.3076 0.1959
15 13

Beta-Gamma

0.03
0.463.69

3.20

12.30
31.23
58.77
88.39
111.90
123.66
122.40
110.58
92.45
72.29
53.29
37.27
24.87
1591
9.80
5.83

3.36
1.88
1.03]7.33
0.55
0.29
0.22
0.82
0.79

17.23

6.74
15.01

0.3067
13
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Conclusion

A Dbeta-gamma distribution is proposed that
include the gamma, exponential, and beta-
exponential distributions as its special cases.
When op >1, it is unimodal with a concave

shape. When ap <1 and f#>1, it has a
reversed-J shape. When o<1 and p<1, it
also has a reversed-J shape. When o =1 and
B <1, it can be reverse J-shaped or unimodal
with a concave shape. When op <land <1,
g(x)has a reversed-J shape except when ap is
close to 1 with & >1or p> 1 for a range of
/3 values of less than one, in which it is bimodal

with a mode of zero and a nonzero mode.

Note that the beta-normal distribution in
Eugene, et al (2002) can be bimodal with two
nonzero modes; the beta-gamma can be bimodal
with a mode of zero and a nonzero mode. Closed
forms of moments are derived when parameters
are integers. The mean and standard deviation
increase with @ and decrease with 3.

The hazard function of the proposed
beta-gamma distribution appears to be versatile
in the sense it could be constant, nondecreasing,
nonincreasing, concave, and convex. This
property is potentially useful in real word
problems. The estimation of the parameters can
be computed via maximum likelihood method.
The proposed beta-gamma distribution is a
generalization of the widely used gamma
distribution and is at least as efficient as the
beta-normal if not better.
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Appendix

Proof of Lemma 1

—x/A

Using the Taylor’s expansions of e~ ”, the gamma density function is

p-1

_ X -x/A
f(x)—lpr(p) e
xp—l X x2 (_l)nxn xpfl
= -S4 + +0(x"") | = +0(x"),
PT(p)| A 27 n 2T (p)
(A1)

and F(x) = X)dx = x7 +O(x”*"). For simplicity of presentation, let £ = f(x),
(x) !f() () T O plicity of p f=1(
g=g(x), F=F(x) and F* =[F(x)]°. Using (A.1), the density function g(x) in (1) becomes

P4 |: x° s O(Xf’“ )} - (- F)ﬁfl
AT (p)B(a, )| pAT(p)

xp—l+p(zz—1)e—x//1

= 1+ 0] (1- 7"
b g OO

xpa—le—x/ﬂ

- 1+0(x)" (1-F)"".
e ppeae OO

Lemma 1 can now be readily seen because F isa cdfand lim _,, F(x)=0.
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Proof of Theorem 1

When @ and [ are integers, the nth moment of the beta-gamma random variable with density function in

(1) is
ﬂxn=fﬂ3éﬁfwyﬂkFumﬂmmk
-1 n -1
= B mZX)(] LxF F/ f(x)dx
Z( )]( -1 J‘wanaJrj—lf(x)dx
B(a B i 0 '
J ﬂ_l h nr_(1— o+j-1
= S m2< oy !x [1-(1-F)]“ f(x)dx
& (B R& a+j- q }
I, .
B(Ol b) = 0( J { ; (
where

1. :Tx”f(x)(l—F)kdx.

Proof: of Corollary 1

Whena =2, =1,

[ ]nk 1 nl] 2[nl'
BQD e’ :

(A.2)
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The first term 7, , is given by

oo n+p-1 )b’”p( )n+p 1 oo /1n+p n+p-1 /finl—‘
J-; e—x/l _ I lp e—x/ﬂd(%): I lp t e—td(t) — l—gn+p),
L(p) F( ) o AT(p) (p)
and [, = ]ix"f(x)(l—F)dx is
T LAY ) SPNYP N SR G 100 (L Y
. zpr(p) I'(p)
- T(Z’” D"AD a0k 0212)
) AT(p) I'(p)
2’ n+p-1 _—t (t/z)p l
=) )jt e l+/24..... o) LZERVT0)

2Wfl—r()[j " e -fdz+jz"+f" Y1 2)dt At j e (11 2)77 I T (p)dt]
0

_XT(+p)  AT(p+D) AT(n+2p-1)
2n+pr(p) 2n+p+1 F(p) 2n+2p711—w2 (p)

& AT(n+p+i)
2" T (PTG +1)

p-1 qn F 1\
When p is an integer, [, , = A"(n+p—1)---(p+1)p and I, = zﬂzf?p:(p+ll)'l")'.
i=0 p -1

Substituting 7, , and [, into (A.2), the results of (7) and (8) are obtained.
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Proof of Lemma 2:

(a) Asx goes 0, lim __,, H(x) is
1 a-1 p£-1
F&(1-F)"" f(x)
limxﬁo B(Oll’ ﬂ) X = limxao g(X) ’
1- F'(1-F)*!
Bmﬂﬁ (1= F)" f(x)dx

which is given in Lemma 1.

Proof: (b) As x goes toee, by L ’Hospital Rule,lim __,  H(x) is

lim (@=DFf)A=F)"" f(x) + F ' (B-D(1-F)"? )+ F* -F)"" [

X—>o0 _Fa—l (1 _F)ﬂ—lf

[(1—06)f(X)+(,3—1)f(X)_f'(X)
TR 1-F(x)  f(x)

=lim

]

JAC EATE)
—f@ T @

:%+(ﬁ—1)limx_m

X

-1 7
—x""e #

= _ﬂ hmx—)oo 4

| =

1'(x) +(p—1)xp_ze_4
f ()

=-flim_,_

_x
p-l, 2

X" e

. 1 p-1.
=_f1 S PTN_P
Blim___( Z+ . ) 7

Note that unlikelim _, H(x), the limit lim ,_ H(x) = /A doesnot depend on &

and p . In other word, the instantaneous failure rate will not depend on & and p in the long run.
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The Equations for Solving the Maximum Likelihood Estimates:

Ozj—é:nzy(OHﬂ)—nz,//(a)+zn:10gF(xi). (A.3)

0=§—;=nw<a+ﬁ)—nw(ﬁ)+ilog(l—F(x,->>. (Ad)
1 OJF(x,) 1 oF(x,) & 1 df(x,)

:—— - —(B- . (A5

Y e PG D Vet vealiD By e )

o _ e [x"" (log ) T (p) = x” (AT (p) + ¥ (log HT(p))]
ap 2T (p)

(log ) A”T'(p) - A"T" (p) = A (log HT'(p)

=/(x) PT(p)

= f(0)llogx -y (p)—logA],

= j f()llogx—y(p)—log Aldx.

) S L L OFGy) e 1 U
“ )ZF( ) 04 Z1 F(x,) 04 +;f(x[) Y (A.6)
l _X//ilp _e—x//iplp—l

A & T

A T(p) ez =)/ X =plA); == I el 2 = pl Ad.

The SAS IML optimization methods can be employed to solve the loglikelihood equations
(A.3) — (A.6) iteratively. The lengthy and tedious second derivatives required in the algorithm are not
presented here, but are available upon request.
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