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On the Product of Maxwell and Rice Random Variables 
 

               M Shakil                B. M. Golam Kibria 
Miami Dade College  Florida International University 

 
 
The distributions of the product of independent random variables arise in many applied problems. These 
have been extensively studied by many researchers. In this paper, the exact distributions of the product 
XY  have been derived when X  and Y  are Maxwell and Rice random variables respectively, and are 

distributed independently of each other. The associated cdfs, pdfs, and kth moments have been given. 
 
Key words: Maxwelll distribution, products, Rice distribution. 
 

 
Introduction 

 
The distributions of the product YX , when X  
and Y  are independent random variables, arise 
in many applied problems of biology, 
economics, engineering, genetics, hydrology, 
medicine, number theory, order statistics, 
physics, psychology, etc, (see, for example, 
Cigizoglu & Bayazit (2000), Galambos & 
Simonelli (2005), Grubel (1968), Ladekarl, et al. 
(1997), and Rokeach & Kliejunas (1972), among 
others, and references therein). The distributions 
of the product YX , when X  and Y  are 
independent random variables and come from 
the same family, have been extensively studied 
by many researchers, (see, for example, 
Bhargava & Khatri (1981), Malik & Trudel 
(1986), Rathie & Rohrer (1987), Springer & 
Thompson (1970), Stuart (1962), and Wallgren 
(1980), among others,). In recent years, there has 
been  a  great  interest  in  the  study of the above  
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kind when X  and Y  belong to different 
families, (see, for example, Nadarajah (2005), 
and Nadarajah & Kotz (2005), among others). In 
this paper, the distributions of the product YX , 
when X  and Y are independent random 
variables having Maxwell and Rice distributions 
respectively, have been investigated.  

The derivation of the cdf, pdf, and kth  
moment of YXZ =  involve some special 
functions, which are defined as follows, (see, for 
example, Abramowitz & Stegun, 1970, 
Gradshteyn & Ryzhik, 2000, and Prudnikov, et 
al., 1986, among others, for details). The series 
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is called a generalized hypergeometric series of 
order ),( qp , where k)(α  and k)(β represent 
Pochhammer symbols. For 1=p  and 2=q , 
we have generalized hypergeometric function 

21 F  of order )2,1( , given by  
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The integral  
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is defined as a (complete) gamma function, 
whereas the integrals 
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are respectively known as  incomplete gamma 
and complementary incomplete gamma 
functions. For negative values, gamma function 
can be defined as  
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is an integer (e.g., Andrews, et al., 1999, and 
Bohr & Mollerup, 1922).The error function is 
defined by  
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whereas the complementary error, ( )xerfc , is  
defined as 
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The modified Bessel function of first kind, 

)(xIν , for a real number ν , is defined by 
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where (.)Γ  denotes gamma function. Also,  
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where 11 F  denotes the confluent 
hypergeometric function. When 0=ν , 
modified Bessel function of first kind, )(0 xI , of 
order 0  is obtained as follows: 
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or  
 

0)(Re =z   
and  
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the modified Bessel function of second kind 

 

of 
order ν is given by  
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For non-integer ν ,  
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The following Lemmas will also be needed in 
our calculations. 
 
LEMMA 1 (Gradshteyn & Ryzhik (2000), 
Equation (3.381.4), Page 317). For ( ) 0Re >μ , 
and ( ) 0Re >ν , 
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LEMMA 2 (Prudnikov et al. (1986), Volume 2, 
Equation (2.8.5.15), Page 106). For 0>a ,  
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LEMMA 3 (Prudnikov et al., 1986, Volume 2, 
Equations 2.10.3.14, Page 151). For 

0)(Re,0)(Re,0)(Re >>< να p , and ( ) 0Re >c ,   
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where 21 F  denotes generalized hypergeometric 
function of order )2,1( , (see definition above). 
 
LEMMA 4 (Gradshteyn & Ryzhik (2000), 
Equation (3.471.9), Page 340). For 

( ) ( ) ,0Re,0Re >> γβ  
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where (.)νK  denotes modified Bessel function 
of the second kind, (see definition above). 
 
Distribution of the Product |XY| 

Let X  and Y  be Maxwell and Rice 
random variables respectively, distributed 
independently of each other and defined as 
follows. 

 
Maxwell Distribution:  

A continuous random variable X  is 
said to have a Maxwell distribution if its pdf 

)(xf X  and cdf )(xFX  are, respectively, given 
by 
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where ( )xa,γ  and ( )xerf  denote incomplete 
gamma and error functions respectively, (see 
definition above).     
 
Rice Distribution: A continuous random variable 
Y  is said to have a Rice distribution if its pdf 

)(yfY  is given by 
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where ( )yI 0  denotes the modified Bessel 
function of the first kind, (see definition above). 
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For 0=v , the expression (4) reduces to a 
Rayleigh distribution. In what follows, we 
consider the derivation of the distribution of the 
product YX ,  when X  and Y  are Maxwell 
and Rice random variables respectively, 
distributed independently of each other and 
defined as above. An explicit expression for the 
cdf of YX  in terms of hypergeometric 
function has been derived in Theorem 1. In 
Theorem 2, another explicit expression for the 
cdf of YX  in terms of hypergeometric 
function and modified Bessel function of the 
second kind )(xKν  has been derived.  
 
Theorem 1 

Suppose X  is a Maxwell random 
variable with pdf )(xf X  as given in (2) and cdf 

)()( xXPxFX ≤=  given by (3) in terms of the 

incomplete gamma function. Also, suppose Y  is 
a Rice random variable with pdf )(yfY given by 
(4) in terms of the modified Bessel function of 
the first kind ( )yI 0 . Then the cdf of YXZ =  
can be expressed as 
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where (.)21 F denotes hypergeometric function 
of order )2,1( , (see definition above). 
 
Proof 

Using the expressions (3) for cdf of 
Maxwell random variable X and the expression 

(4) for pdf of Rice random variable Y , the cdf 
( ) ( )zYXzF ≤= Pr  can be expressed as 
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where 0,0,0,0,0 ≥>>>> vazy σ . The 
proof of Theorem 1 easily follows by using 
definition (1) of modified Bessel function of first 
kind, )(0 xI , of order 0 , and Lemma 3 in the 
integral (5) above.  
 
Theorem 2  

Suppose X  is a Maxwell random 
variable with pdf )(xf X  as given in (2) and cdf 

)()( xXPxFX ≤=  given by (3) in terms of the 

error function. Also, suppose Y  is a Rice 
random variable with pdf )(yfY given by (4) in 
terms of the modified Bessel function of the first 
kind ( )yI 0 . Then the cdf of YXZ =  can be 
expressed as 
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where (.)21 F denotes hypergeometric function 
of order )2,1( , and (.)kK  denotes the 
modified Bessel functions of the second kind of 
order k , (see definition above). 
 
Proof 

Using the expressions (3) for cdf of 
Maxwell random variable X and the expression 
(4) for pdf of Rice random variable Y , the cdf 

( ) ( )zYXzF ≤= Pr  can be expressed as 
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where 0,0,0,0,0 ≥>>>> vazy σ . The 
proof of Theorem 2 easily follows by using the 
definition (1) of modified Bessel function of the 
first kind, )(0 xI , of order 0 , substituting 

t
y 1=  in the first term and uy =2 in the second 

term of the integral (6) above, and then using 
Lemmas 2 and 4 respectively. 
 
PDF of the Product YXZ = , and kth  

Moment of RV YXZ =    
In what follows, without loss of 

generality, for simplicity of computations, this 
section discusses the derivation of the pdf of the 
product YXZ = ,  when X  and Y  are Rice 
and Maxwell random variables distributed 
according to (4) and (2), respectively, and 
independently of each other. An explicit 
expression for the pdf of the product YXZ =  

in terms of the modified Bessel function of the 
second kind )(xKν  has been derived in 
Theorem 3. The expression for the kth  moment 
of RV YXZ =  in terms of gamma functions 
has been derived in Theorem 4. 
 
Theorem 3 

Suppose X  and Y are Rice and 
Maxwell random variables having pdf given by 
(4) and (2), respectively. Then the pdf of 

YXZ =  can be expressed as 
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K  denotes the modified Bessel 
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2
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(see definition above). 
 
Proof 

The pdf of YXZ =  can be expressed 
as 
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where 0,0,0,0,0 ≥>>>> vazy σ . The 
proof of Theorem 3 easily follows by using the 
definition (1) of modified Bessel function of the 
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first kind, )(0 xI , of order 0 , substituting 

t
y 12 = , and then using Lemma 4 in the integral 

(8) above. 
 
Theorem 4 

If Z  is a random variable with pdf 
given by (7), then its kth  moment can be 
expressed as  
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By using the equation (6.621.3 / page 712) from 
Gradshteyn and Ryzhik (2000), in the integral 
(9) above, the result of Theorem 4 easily 
follows. 
 

Conclusion 
 
This article has derived the exact distributions of 
the product of two independent random 
variables X  and Y , where X  and Y  have 
Maxwell and Rice distributions respectively. 
The pdf and kth moment of the product of two 
variables are also given.  The distribution is 
obtained as a function of hypergeometric of 
order )2,1( , where as the pdf has been obtained 
as a function of Bessel  of the second kind. We 
hope the findings of the article will be useful for 
the practitioners which are indicated in the 
introduction of the article. 
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