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Optimal Lp-Metric for Minimizing Powered Deviations in Regression 
 

Stan Lipovetsky 
GfK Custom Research North America 

Minneapolis, Minnesota 
 
 
Minimizations by least squares or by least absolute deviations are well known criteria in regression 
modeling. In this work the criterion of generalized mean by powered deviations is suggested. If the 
parameter of the generalized mean equals one or two, the fitting corresponds to the least absolute or the 
least squared deviations, respectively. Varying the power parameter yields an optimum value for the 
objective with a minimum possible residual error. Estimation of a most favorable value of the generalized 
mean parameter shows that it almost does not depend on data. The optimal power always occurs to be 
close to 1.7, so these powered deviations should be used for a better regression fit. 
 
Key words: Regression, absolute and squared deviations, Lp-metric, gamma-function. 
 

 
Introduction 

 
The criterion of generalized mean by powered 
deviations is considered for regression 
modeling. Usually regressions are constructed 
by minimization of squared deviations of the 
observations to a theoretical surface, although 
some other measures, particularly, absolute 
deviations are also applied in regression, 
multidimensional scaling, clustering, and other 
distance-based techniques (Armstrong & Frome, 
1976; Hastie & Tibshirani, 1990; McCullagh & 
Nelder, 1997; Venables & Ripley, 1997). Robust 
regression modeling and kernel smoothing use 
different measures of distance for smaller and 
bigger deviations (Huber, 1972, 1981; Hill & 
Holland, 1977; Hampel et al., 1986; Ripley, 
1996). Particularly, the Lp-metric, or the 
generalized mean, is widely used as so called M-
estimator (Maximum likelihood)   for   robust   
evaluations   (Ramsay, 1977; Sposito, 1982).  
 In other fields it is also called Lp-metric 
for operators spaces, vector and matrix norms, 
Hölder's  mean,  power mean, exponential mean,  
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Kolmogorov's mean, or Minkowski distance 
(Hardy,  Littelwood, &  Polya,  1934;  Daykin & 
Eliezer, 1969; Borwein & Borwein, 1987; Korn 
& Korn, 1988; Alvarez, 1992; Rooij & Heiser, 
2005). Power means are related to Box-Cox 
transformation often used in applied statistics 
aims (Weisberg, 1985; McCullagh & Nelder, 
1997; Tishler & Lipovetsky, 1997, 2000; 
Lipovetsky & Conklin, 2000).  

If the parameter of the generalized mean 
equals one or two, p=1 or p=2, the fitting 
corresponds to the least absolute L1 or the least 
squared L2 deviations, respectively. Theoretical 
properties of the Lp-metrics in the range from 1 
to 2 were studied in works on approximation 
theory, Banach's conjecture, and random 
processes (Breiman, 1968; Fletcher et al., 1971; 
Kanter, 1973). It is also known due to Jensen's 
inequality that a generalized mean of a lower 
power is smaller than a generalized mean of a 
larger power (Beckenbach, 1946; Korn & Korn, 
1988) that is true for the constant set of the 
averaging values. However, the estimates of the 
model parameters and the corresponding 
residual errors depend on a power parameter, so 
the better generalized power mean can be 
reached for a smaller power value. In the 
literature, known numerical simulations 
indicated that the minimal residuals correspond 
to the p-powered deviations close to L1.5 or L1.8 
metrics (Gentleman, 1965; Forsythe, 1972; 
Ramsay, 1977). 
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In the current work, trying an objective 
of least powered deviations in a wide range of 
the power parameter, it was possible to find an 
optimum value for the objective by minimizing 
the residual error. Numerical estimation of an 
optimum value of the generalized mean 
parameter indicates a remarkable outcome – this 
optimum value is almost a constant that does not 
depend on the data. Analytical derivation shows 
that the optimal metric parameter is defined via 
the gamma function of this parameter, and the 
optimal value occurs to be close to 7.1≈p . 
Thus, the optimum metric for fitting any data 
can be suggested – it is neither the mostly used 
squared deviations L2, nor the absolute 
deviations L1, but the intermediate powered 
deviations of L1.7.  
           
Powered Deviations in Regression Modeling 
          Consider a multiple linear regression 
model of the dependent variable y by n 
independent variables nxxx ...,,, 21 : 
 

iinniii xaxaxaay ε+++++= ...22110  , 
                                                                         (1) 
 
where i denotes observations (i = 1, 2, …, N), 
and iε  are deviations of the empirical values iy  
from the theoretical model. Least squares 
minimization corresponds to the objective: 
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This distance is equivalent to the squared 
Euclidean norm of the errors, or the L2 metric. 
Absolute deviations minimization corresponds 
to the objective of the mean module: 
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                                                                         (3) 
 
It is the Hamming distance (also known as 
Manhattan, or taxi-driver distance), or L1 metric. 

          Generalized powered mean of the 
deviations can be expressed as follows: 
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In this definition, if power parameter q equals 
one, than the generalized mean (4) is reducing to 
the squared mean (2). If q equals one half, the 
generalized mean (4) is presented as a square 
root of squared deviation that coincides with 
absolute value of the deviations in the objective 
(3). The definition (4) emphasizes that only 
positive items are summed, and the parameter p 
of Lp metric equals doubled q-parameter. Then 
(4) can be simplified by using 2q parameter, and 
represented as the power-mean deviation itself: 
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                                                                         (5) 
 
where the intercept's variable 0x  identically 
equals one. 
          For a given value of power parameter q, 
minimization of the objective (5) by the 
parameters of regressions yields a system of the 
first order partial derivatives: 
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                                                                      (6) 
 
with errors defined as in (5): 
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Non-linear system of equations (6) can be solved 
numerically by the Newton-Raphson procedure 
in the Iteratively Re-Weighted Least Squares 
(IRLS) approach (Bender, 2000; Lipovetsky & 
Conklin, 2005). For this algorithm the elements 
of Hessian, or the matrix of second derivatives, 
are constructed using the derivatives of (6): 
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                                                                         (8) 
 
where the elements mkG  are defined by the 
expression: 
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                                                                         (9) 
           

Newton-Raphson procedure for finding 
vector of coefficients a (5) can be presented as: 

 
UHaa tt 1)()1( −+ −= , 

                                                                       (10) 
 
where t denotes iteration steps, 1−H  is the 
inverted Hessian, and U  is the gradient-vector 
with the elements (6). The round parentheses in 
(6) and in (8) contain the same constant that is 
canceled in the expression (10), and also the 
constant N is canceled, so (10) can be reduced 
to: 
 

1211)()1( )12( −−−+ ′−+= qtt XGqaa ε , 
                                                                       (11) 
 
where 1−G  is the inverted matrix of elements 
(9), X ′  denotes the transposed matrix of all the 

regressors  in (5), and 12 −′ qX ε  is matrix notation 
for the sum in the squared parentheses (6). 
          It is convenient to introduce a diagonal 
matrix of powered errors by all observations: 

2q 2

2q 2 2q 2 2q 2
1 2 N
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= ε
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                                                                       (12) 
 
where ε  is the N-th order vector-column of the 
deviations (7). Then (9) in the matrix form is:  
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                                                                       (13) 
 
The subtracted outer product in (13) is arranged 
of the vector εWX ′  of the weighted product of 
regressors and residuals. Such a product is 
always close to zero due to the relations of 
orthogonality between regressors x and residual 
errors ε . This property is exact for linear and 
approximate for a nonlinear regression 
(Lipovetsky & Conklin, 2006).  

It is always advisable to keep in only the 
stable part of the Hessian (Becker & Le Cun, 
1988), so it makes sense to reduce (13) to the 
main first item of the weighted second moment 
matrix WXX ′ . Then the solution (11) can be 
simplified to:  
 

εWXWXXqaa tt ′′−+= −−+ 11)()1( )()12( ,                             
                                                                       (14) 
 
where due to (12) the equality εε WXX q ′=′ −12  
is used. It is interesting to note that the exact 
expression (14) yields if instead of the mean 
deviation objective S (5) the powered-deviation 
S2q objective (4) is minimized. With (7) in the 
matrix form, the expression (14) becomes: 
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where the working variable is denoted as:  
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                                                                       (16) 
The working variable (16) is a combination of 
the empirical dependent variable (vector y) and 
the predicted values of the dependent variable 
(vector )(tXa ) at any t-th iteration step. The 
right-hand side (15) shows that the solution is 
presented as a weighted linear regression of the 
dependent variable )(tz  by all the predictors, so 
(15)-(16) define the IRLS algorithm. 
          It is interesting to note that if q=1 then 

)(tz  (16) is reducing to the constant vector y, 
and W (12) is reducing to the scalar matrix of 
identical ones, so the problem (5) and solution 
(15) coincide with a regular linear regression. 
For q=0.5 the Hessian (8) degenerates to zero, so 
the approach (10) does not work, and the 
methods of linear programming are mostly 
applied. The process of minimization (5)-(16) 
can include the power parameter q as well. 
However, the residuals are usually only weakly 
dependable on this parameter. So, it is better to 
find parameters of regression for each fixed q, 
trying q in a wide range of its values. 
          To explain the results on stability of the 
power parameter that yields the minimum 
residual errors in regression modeling, assume 
the normal distribution for the residual errors 
using the probability density function: 
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                                                                      (17) 
 
where ε  are the residuals (7) and σ  is the 
standard error. For a new random variable of the 
powered error q2εδ = , its probability density 
function can be defined by the technique of 
variables transformation (Hogg & Craig, 1969), 
that yields: 
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                                                                       (18) 
 

Such a distribution corresponds to a badness of 
fit function for M-estimates in robust regression 
(Huber, 1972, 1981; Ramsay, 1977). 
Approximation of the generalized powered mean 
(4) by the integral of the random variable 

q2εδ =  (18), can be expressed as follows: 
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with the parameters denoted as: 
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The integral in (19) can be expressed via gamma 
function (Gradshteyn & Ryzhik, 1965; Gordon, 
1994): 
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                                                                       (21) 
 
so (19) can be simplified to: 
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For the case q=1, when the generalized 
power mean (4) is reducing to the least squares, 
the expression (22) is simplifying to: 
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where the properties ( ) ( )xxΓxΓ =+1  and 

( ) π=2/1Γ  of gamma function are applied 
(Abramowitz & Stegun, 1974). The result (23) 
proves that the residual mean error estimates the 
theoretical standard error of the distribution (17). 
For the case q=1/2, when the generalized power 
mean (4) reduces to the least absolute 
deviations, the expression (22) is: 
 

( ) σσ
ππ

σ 8.0212 ≅== ΓS .                                           

                                                                      (24) 
 
It is the mean absolute deviation that equals 
about 80% of the standard deviation (see 
Abraham & Ledolter, 1983, p. 133). For a 
positive x, gamma function reaches its minimum 

( ) 886.0=xΓ  at the point x=1.462 
(Abramowitz & Stegun, 1974). The q value (22) 
is by 0.5 less at this point, or q =0.962, so 
p=2q=1.924 suggests a better powered 
approximation than the least squares with p=2. 
Taking the 2q-th root of the expression (22) 
shows that the generalized residual mean S is 
proportional to the value of the standard error σ  
itself. The residual mean S in the units of σ , 
can be presented up to a constant as the 2q-th 
root of the gamma function: 
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                                                                       (25) 
 
This function reaches its minimum at the 
value 83.0≈q . A difference between 
theoretical estimate and empirical numerical 
trying for the best power parameter can be 
explained by a not exactly normal distribution of 
the empirical residual errors assumed in the 
theoretical derivation. Thus, the metric of the 
smallest residual deviation (4) or (22) 
equals 7.12 ≈= qp . Although the evaluation 
via gamma function is a rough approximation, 
but it supports the empirical results that not the 
least-squares but a slightly-less-than-least-

squares powered deviations produce minimum 
residual error estimations. 
 
Numerical Example 
          For an illustration of the regular numerical 
output the data on cars technological solutions is 
used. This data is given in (Chambers & Hastie, 
1992), and is available in the statistical package 
(S-PLUS’2000, 1999, cu.summary file). The 
data contains the following variables of 
dimensions and mechanical specifications of 111 
various cars, supplied by manufacturers or 
measured by Consumers Union reports: Weight 
(y) – pounds (considered in hundreds); Length 
(x1) – inches; WheelBase (x2) – length of 
wheelbase, inches; Width (x3) – inches; Height 
(x4) – height of car, inches; FrontHd (x5) – 
distance between the car's head-liner and the 
head of a 5ft. 9in. front seat passenger, inches; 
RearHd (x6) – a similar distance for the rear seat 
passenger, inches; FrtLegRoom (x7) – maximum 
front leg room, inches; RearSeating (x8) – rear 
fore-and-aft seating room, inches; FrtShld (x9) – 
front shoulder room, inches; RearShld (x10) – 
rear shoulder room, inches; Turning (x11) – 
radius of the turning circle, feet; Disp (x12) – the 
engine displacement, cubic inches; HP (x13) – 
the net horsepower; Tank (x14) – fuel refill 
capacity, gallons; HPrevs (x15) – the red line, or 
the maximum safe engine speed, rpm. The 
weight can be considered as an aggregate that 
has a strong impact on a car's cumulative 
characteristics, such as mileage per gallon 
(correlation with weight equals –0.87), and price 
(correlation with weight equals 0.70). 
          Regressions were constructed by powered 
deviations (5) with various values of the 
parameter q. Several best by the residual 
characteristics models are presented in Table 1. 
Each column of Table 1 corresponds to a 
particular value of q-parameter and contains the 
coefficients   of   regression  (beginning from the  
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intercept a0) that are slowly varying across the 
power parameter q values. Below the 
coefficients, several estimates for the residual 
errors are presented: the powered residual S2q 
(4), the residual deviation S (5), the absolute 
residual Sabs (3), and the residual standard error 
Ssqr (corresponds to square root of (2) for mean 
square root deviation). Note that the last two 
estimates are obtained by the corresponding set 
of the regression coefficients. The three of the 
residual error measures – S2q, S , and Sabs – 
have minimum at the value around q=0.86. The 
residual mean square root error Ssqr, of course,  
 

 
 
reaches its minimum at the point q=1 that 
corresponds the least square solution (2). 
Behavior of these four error measures is shown 
in Figure 1 in a wide range of q. After initial 
decreasing and oscillating for q below 0.86, the 
S2q, S, and Sabs curves reach their minima, and 
then with q increase they grow as well. The 
residual mean square root error Ssqr is very flat 
beginning from the same threshold q=0.86. 
          The bottom section of Table 1 presents the 
estimate of mean value of the deviations (7), and 
all four residual error estimates centered by this 
mean value (the error estimates are denoted as 
S2q cent, S cent, Sabs cent, and Ssqr cent). It is 

 
Table 1. Regressions by several minimized powered deviations. 

q 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 1.0 1.1 
a0 -50.076 -48.400 -47.617 -49.880 -50.114 -50.275 -50.458 -50.641 -52.388 -54.017
a1 0.147 0.160 0.150 0.135 0.135 0.135 0.135 0.135 0.135 0.135 
a2 0.081 0.071 0.053 0.086 0.087 0.087 0.087 0.088 0.089 0.089 
a3 0.279 0.288 0.353 0.321 0.319 0.318 0.317 0.317 0.314 0.315 
a4 0.259 0.324 0.355 0.361 0.362 0.363 0.364 0.364 0.370 0.375 
a5 -0.431 -0.098 -0.283 -0.331 -0.330 -0.327 -0.323 -0.319 -0.286 -0.256
a6 0.708 0.238 0.091 0.098 0.092 0.088 0.083 0.079 0.042 0.011 
a7 0.348 0.305 0.137 0.169 0.170 0.170 0.171 0.172 0.181 0.190 
a8 -0.142 -0.135 -0.123 -0.129 -0.129 -0.129 -0.129 -0.129 -0.129 -0.129
a9 0.018 -0.107 -0.105 -0.075 -0.073 -0.071 -0.069 -0.067 -0.054 -0.045
a10 -0.001 0.008 0.019 0.017 0.017 0.017 0.017 0.017 0.018 0.019 
a11 -0.029 0.002 0.040 0.066 0.068 0.068 0.069 0.069 0.073 0.077 
a12 -0.013 -0.019 -0.009 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008
a13 0.060 0.060 0.050 0.049 0.048 0.048 0.048 0.048 0.049 0.049 
a14 0.123 0.226 0.159 0.138 0.138 0.138 0.138 0.137 0.132 0.125 
a15 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
S2q 
S 

Sabs 
Ssqr 

1.845 
1.446 
1.234 
1.543 

1.430 
1.237 
1.015 
1.327 

1.280 
1.157 
0.966 
1.229 

1.266 
1.147 
0.963 
1.213 

1.279 
1.152 
0.963 
1.213 

1.292 
1.157 
0.963 
1.213 

1.305 
1.161 
0.964 
1.213 

1.319 
1.166 
0.964 
1.212 

1.468 
1.212 
0.970 
1.212 

1.646 
1.254 
0.976 
1.212 

Mean 
S2q cent 
S cent 

Sabs cent 
Ssqr cent 

-0.733 
1.465 
1.259 
1.043 
1.357 

-0.371 
1.327 
1.183 
0.965 
1.274 

-0.122 
1.269 
1.150 
0.966 
1.223 

0.000 
1.266 
1.147 
0.963 
1.213 

0.011 
1.279 
1.152 
0.963 
1.213 

0.012 
1.292 
1.157 
0.964 
1.213 

0.011 
1.305 
1.161 
0.964 
1.213 

0.010 
1.319 
1.166 
0.965 
1.212 

0.000 
1.468 
1.212 
0.970 
1.212 

-0.010
1.646 
1.254 
0.975 
1.212 
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interesting to see that the mean of the deviations 
is at first negative, than for bigger q values the 
mean grows and reaches zero at about q=0.86, 
then it stays positive till the next reach of zero at 
the value q=1. So, these two values of q produce 
minimum centered residual error estimates. The 
mean deviation and the four centered measures 
of the residual errors are shown in Figure 2 in a 
range of q values. The behavior of the residual 
mean  stabilizes  with q above 0.86. All centered 
 

 

error measures change similarly but more flatly 
than those of non-centered measures from the 
previous graph, also with a threshold at the point 
of about q=0.86. The obtained results on the 
minimum of S2q, S , and Sabs errors in the 
vicinity of the parameter value about 0.83-0.87 
are amazingly constant. In numerous regressions 
by different data sets the same power region of q 
is obtained for the minimum residual errors by 
the powered deviations. 
 

 
 

Fig.1: Residual error estimates
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Fig.2: Residual mean and centered error estimates
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Conclusion 
 
The generalized powered deviations were 
considered to estimate minimum possible 
residual error and the corresponding value of the 
power parameter. Numerical estimations 
performed in the work support the analytical 
result that the best optimization objective 
corresponds to the metric in the vicinity of L1.7. 
Although change of coefficients and residuals in 
regressions by different power parameter is 
moderate, a metric close to the optimum L1.7 can 
be applied for tuning the model. The objective of 
powered deviations can serve both to the 
theoretical investigation and practical 
application in numerous problems of regression 
modeling. 
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