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LQ-Moments for Statistical Analysis of Extreme Events

Ani Shabri
Universiti Teknologi Malaysia

Abdul Aziz Jemain

Universiti Kebangsaan Malaysia

Statistical analysis of extremes is conducted for predicting large return periods events. LQ-moments that
are based on linear combinations are reviewed for characterizing the upper quantiles of distributions and
larger events in data. The LQ-moments method is presented based on a new quick estimator using five
points quantiles and the weighted kernel estimator to estimate the parameters of the generalized extreme
value (GEV) distribution. Monte Carlo methods illustrate the performance of LQ-moments in fitting the
GEV distribution to both GEV and non-GEV samples. The proposed estimators of the GEV distribution
were compared with conventional L-moments and LQ-moments based on linear interpolation quantiles
for various sample sizes and return periods. The results indicate that the new method has generally good
performance and makes it an attractive option for estimating quantiles in the GEV distribution.

Key words: LQ-moments, L-moments, quick estimator, generalized extreme value, weighted kernel.

Introduction

Statistical analysis of extremes is often
interested for predicting large return period
events. Thus, the more relevant analysis is the
upper quantiles of the distributions and the
extreme sample events (Wang, 1997). The
method of classical moments (MOM) is mostly
used because of its relative ease of application
but it is generally not as efficient as the
maximum likelihood (ML) method estimates
and it is too sensitive to the upper quantiles of
distributions (Vogel & Fennessey, 1993).

The ML method is the most important
method because it leads to efficient parameter
estimators  with Gaussian ~ asymptotic
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distributions. However, this method sometimes
under-estimates and so causes large bias and
variance of extreme upper quantile and does not
always work well in small samples (Park, 2005).

The L-moments (LMOM), certain linear
functions of the expectations of order statistics,
were introduced and comprehensively reviewed
by Hosking (1990). Hosking (1990) presented
the LMOM estimators for some common
distributions and demonstrates that in some
cases, the LMOM method may give even better
fit than ML method. Hosking and Wallis (1997)
illustrated that LMOM are efficient in estimating
parameters of a wide range of distributions. In
general, the bias of small sample estimates of
higher-order LMOM is fairly small as compared
to traditional moment estimates. This method
has become a standard procedure in hydrology
for estimating the parameters of certain
statistical distributions. The LMOM have found
wide applications in such fields of applied
research as civil engineering, meteorology,
hydrology, quality control and engineering
(Sankarasubramanian &  Srinivasan, 1999;
Karvanen, 2005).

Mudolkar and Hutson (1998) extended
LMOM to new moment like entitiles called LQ-
moments (LQMOM). The LQMOM are
constructed by using functional defining the
quick estimators, such as the median, trimean or
Gastwirth, in places of expectations in LMOM.
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The LQMOM that are based on the quick
estimators, namely the trimean and the linear
interpolation quantile estimator are used to fit a
GEV to observed flood frequencies. They found
the LQMOM are often easier to compute than
LMOM, and in general behave similarly to the
LMOM.

In this article, LQMOM that are based
on the trimean and the linear interpolation
quantile (LIQ) estimator are reviewed for
characterizing the upper part of distributions and
larger events in data. The objective of this article
is to revisit the LQMOM, presents the LQMOM
method based on the new quick estimator using
five-points quantiles and the weighted kernel
estimator (WK5) to estimate the parameters of
the generalized extreme value (GEV)
distribution. Estimation of the GEV distribution
by wusing LQMOM is formulated. The
performance of the LQMOM based on the new
estimator is compared to LMOM and LIQ
methods, by using both GEV and non-GEV
simulated sample data.

Definition of LQ-Moment

Let X,,X,,.,X, be a random sample
from a continuous distribution function F()
with quantile function Q(u)=F~'(u), and let
X, £X,, <..£X,, denote the corresponding

order statistics. Hosking (1990) defined the rth
L-moment A as

A, =

N |-

i(_ l)k(rlzle(Xr—k:r )9 I"=1,2,,,,
k=0
(M

Mudholkar and Hutson (1998) suggested a
robust modification in which the mean of the
distribution of X, .., in (1) is replaced by its
median or some others population location
measure. In particular, they defined the rth LQ-
moments &, as

_lr—l ~ . 7"—1 ~
i,—rggl)(k}mJX;mx r=12,..
2)

where T, (X, ,) is a quick measure of the

r—kr
location of the sampling distribution of the order
X They introduced 7 based on a

three-points quantiles of the sample calculated
from the order statistics and defined as

r—k:r* p,a

Tp,ot (Xr—k:r)
=pQy (o)
+(1-2p)Qy , (1/2)
+pQx  (1-0)

3)

where 0<o<1/2,0<p<1/2. 1,, is called

the median for p=0,00=1, the trimean for
p=1/4,0=1/4 and Gastwirth for
p=030=1/3.

The quick measures of location T, , for

five-points quantiles is defined as

Ty Xk
=pQx . ()
+pQx ,, (5)
+(1-4p)Qy , (1/2)
+pQy , (1-500)
+pQy , (1-a)
4

where 0< 0 <0.1 and 0< p<1/4.

The first four LQ-moments of the
random variable X are defined as

&lsz,(x(X)’ (5)
&.'2 = E[Tp,ot (Xz:z)_ oo (X1:2 )], (6)

§3 = %[Tp,(x (X3:3) _2Tp,a (X2:3)+ Tp,(x (X1:3 )] H
(7

E.~4 = %[Tp,(x (Xya)— 3Tp,(l (X54)
+3Tp,0( (X2:4 ) - Tp,oc (X1:4 )]
(®)
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The skewness and kurtosis based upon the ratios
of LQ-moments to be called LQ skewness and
LQ kurtosis are given respectively by

n; =&;/&, ©
and

Ny =8,/8, (10)

Estimation of LQ-moments
For samples of size n, the rth sample
LQ-moment &, is given by

r—1

1 -1,
3 =;;(—1)k(r L er,a(x,._k:,), r=12,.
(1)

where the quick estimator %, (x 4, ) Of the

location of the order statistic X,_,, for five-
points quantiles is given by

Ty (Xiier)
=pQ[B.y, ()]+pQ[B., (50)]
+(1-4p)QB.,,(1/2)]
+pQ[B,,, (1-501)]
+pQ[B,, (1~ )]
(12)

where B, (a) is the quantile of a beta random
variable with parameter »—k and k+1, and
0O(.) denotes the quantile estimator. The sample

LQ skewness and LQ kurtosis are given
respectively by

JYO

&/

M 2 (13)

and

A, =8, /6, (14)

The Quantile Estimator

David and Nagaraja (2003), Sheather
and Marron (1990), Huang and Brill (1999) and
Huang (2001) discussed several quantile
estimators for estimating the values of the
population quantile. In this study, only the linear
interpolation quantile estimator and the weighted
kernel quantile estimator are presented.

The Linear Interpolation Quantile Estimator

Mudholkar and Hutson (1998) proposed
the simplest quantile function estimator based on
the linear interpolation (LIQ). This quantiles is
used commonly in statistical packages such as
MINITAB, SAS, IMSL and S-PLUS. The LIQ
estimator is given by

Q(u) = (1 —E)X[n,u}n + SX[
O<u<l

n'u]+l:n

(15)

where
e=n'u —[n’u] and n'=n+1.

The Weighted Kernel Quantile Estimator

A popular class of L quantile estimators
is called kernel quantile estimators has been
widely applied (Sheather & Marron, 1990;
Huang & Brill, 1999; Huang, 2001). The L
quantile estimators is given by

i=l| (i-1)/n

n iln
O(u) = Z[ [Kit —u)dr] X,

(16)

where K is a density function symmetric about 0
and
K, (®)=(1/h)K(e/h)

(17)
The approximation of the L quantile estimator is

called as the weighted kernel quantile estimator
(WKQ) is given by

Ou)= i{n_lKh (Zilwm _MHXW O<u<1

(18)
where
1 _ _n=2 _
) e
. X o _
Jn(n-1)’ i=2,3n =1
(19)
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h=[u(l—u)/n]"? (20)

and K(f)=(2m)""'* exp(-1/2¢)is the Gaussian
Kernel.

Generalized Extreme Value

The generalized extreme value (GEV)
distribution has been used widely and
importantly in the modeling of extreme events in
several areas including hydrology, meteorology,
finance and insurance, and reliability
engineering (Park, 2005). It was recommended
for at-site flood frequency analysis in the United
Kingdom, for rainfall frequency and for sea
waves in the United States. Many studies in
regional frequency have wused the GEV
distribution (Hosking et al., 1985b; Chowdhury
et al., 1991). In practice, it has been used to
model a wide variety of natural extremes,
including floods, rainfall, wind speeds, and wave
height. Mathematically, the GEV distribution is
very attractive because its inverse has a closed
form, and parameters are easily estimated by
LMOM (Martin & Stedinger, 2000). The GEV
distribution has cumulative distribution function
(CDF)

FUJ:em%—P—k(x_MI] }k¢0
c
= exp{— exp{— LH)}} k=0
c

e2))

where W+6/k<x<e for k<0 and
—oo<x<U+06/k for k>0. Here, i, &, and

k are location, scale, and shape parameters,
respectively. Quantiles function of GEV
distribution are given in terms of the parameters
and the cumulative probability /' by

O(F)=p+060,(F)

where

0, (F)=[1-(=log Y"1/k k#0

=—In(-In(F)) k=0
(22)

L-Moments of GEV Distribution
The LMOM estimators for GEV
distribution (Martins & Stedinger, 2000) are

k=7.8590c+2.9544¢2,

c=2/(3+%;)-log(2)/log(3),

(23)
Y
A-25ra+k)
n=il—%{1—r(l+1€)}
(24)

The & function is a very good approximation
for k in the range (-0.5, 0.5). The LMOM
estimators  A,,A,, A, and 1%, :7:,3/712 were
obtained by using an unbiased estimator of the

first three probability weighted moment (PWM)
defined as

B =u +%[1 () TA+ O +1). (25)

The unbiased estimator of B3, is

b, = Z": (-DE-2)@i=3)...(i—r) X,
= n(n-1(n-2)..(n—r)
r=0,1,2,...
(26)

where the X,, are the ordered observations
from a sample of size and

A =By, A, =2B, -y, and X; =63, —6B, +B,.
(27)

The LQ moments of GEV Distribution
The LQ-moment estimators for the GEV
distribution behave similarly to the L-moments.
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From equations (5)-(9) and equation (22), the
first three LQ-moments of the GEV distribution
for the quick estimator based on five-points
quantiles can be written as

E.,1Zl~l+6tp,a(X1;1) (28)
&, = %G[tp,(x (Xp0) =1, (X15)]  (29)

a3 = %G[tp,(x (X3:3) - 2tp,0c (X2:3) + ZLp,oc (Xl:3 )]

to (X))
=pQ, [B. k. ()] +pQ, By, (501)]
+(1-4p)Q,[B,,, (1/2)]
+pQ0 [B;_lk;r (1 - 50()] + on [B;_lk:r (1 - OC)]
(32)
and
Qy(F)=[1-(=log F)*]/k

The LQMOM estimators (i, 6and k of the
parameters are the solution of (28)-(30), when
€, are replaced by their estimators é,,. The
relationship between m; and k& from Eq. (31)

(for example p = 0.2 and o =0.05) is shown in
Figure 1. The following approximation
relationships between the value of & and mn,

obtained through regression analysis

k=0.2801—1.7130, +0.8377 7
—1.0491 1} +0.6495 7y —0.29341]

-0.126813 +0.27651] —0.0963 7y}
(33)

(30)
N, = %[tp,ot(XS:S) =2, 4 (Xp3)+1,,(X3)]
’ %[tp,a (X2:2) - tp,oc (X1:2 )]
(31)
where
06 A

Figure 1: Relationship between 1, and & for the GEV distribution.
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distribution is used to generate GEV samples.
Monte Carlo simulations were performed for
sample sizes 15, 25, 50 and 100, and parameters

The k function is a very good approximation
for k in the range [-1.0, 1.0] and 7}; in the

range [-0.336, 0.854]. Once the value of £ is of GEV are u=0 and o=1with different
obtained, 6 and [ <can be estimated values of k between —0.4 and 0.4. The samples
successively from Equation (29) and (28) as are fitted by the GEV distribution function using

the method of LMOM, LIQ, and WKS5.
For each sample size, 10,000 replicates
2% were generated, and quantile estimators of
2

6=— = (34) O(F), F = 090, 098, 0.99, and 0.999, are
[tp,(x(XZ:z)_tp,a(Xl:Z)]

examined in terms of the BIAS and root mean
. square error (RMSE). Results for BIAS for
a=¢§ -6¢ po(X11) (35) different quantiles show a very similar pattern.
Only the result for Q(F), F =0.99 is presented

here and is shown in Figure 2. For the extreme

Monte Carlo Simulations quantiles, the LMOM estimator consistently
Monte Carlo simulations have been shows the lowest BIAS followed by WKS5 and
carried out to investigate the effect of LQ- LIQ estimator for samples sizes of 25 and 50.
moments based on WK5 with p = 0.2 and RMSE has been obtained for quantiles
o =0.05 on the high quantiles estimation. O(F), F=0.9,0.98,0.99, and 0.999, estimated
by using LMOM, LIQ, and WKS5. Results are
Simulation Study For Parent Distribution presented in Table 1 in terms of estimation
Function Known efficiency in relation to using WKS5 defined as
It is still useful to look at how
estimation is affected by various methods when RMSE using WK5
the distribution function is known, although the 0= RMSE using LMOM or LIQ (36)

true underlying distribution function is never
known in practice. In this study, the GEV

Bl A% ofthe 0.99 QUEH‘t”E, n=25 Bias ofthe 0.99 Quantiles, n= 50

BlAS
BlAS

Figure 2. Bias of Q(F=0.99) Estimator Using L Moments and LQ Moments Based on WKS5 and LIQ,
Fitting the GEV Distribution to Generated GEV Samples For n =25 and n =50
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Table 1: Efficiency of Q(F), F = 0.9, 0.98, 0.99, and 0.999 Estimated By Using LMOM, LIQ, and WKS5,
Fitting the GEV Distribution Based on Generated GEV Samples

k
0.3 0.1 0 0.1 0.3
n F LMOM LIQ LMOM LIQ LMOM LIQ LMOM LIQ LMOM LIQ
15 09 099  0.00 .10 0.64 L14 072 .19 080 134 092
098 1.15  0.00 087  0.18 083 026 0.81 0.29 079 030
099 1.19  0.00 080  0.09 077  0.17 076 021 084 027
0999 1.23  0.00 070  0.00 075  0.04 087  0.09 124 020
25 09 122 071 .10 0.73 .13 077 117 082 128  0.89
098 121 0.18 094 034 0.91 0.35 088 035 084 035
099 122  0.07 090 024 087 027 085 0.8 087 031
0999 131  0.00 087 007 0.88 0.1 093  0.13 119 025
50 09 1.15 080 1.08  0.77 1.09  0.78 .12 0.79 120 0.80
098 1.19 0.0 1.01 0.47 097 045 094 043 088 039
099 123 041 099  0.40 095 039 092 037 088 035
0999 1.53  0.14 1.01 0.22 097 024 095 025 .02 031
100 09 096 0.85 .04 079 .04 077 1.06  0.76 .09  0.73
098 0.88  0.69 075 057 066 052 071 049 090 042
0.99 091  0.67 072 0.53 062 048 067 044 0.89 038
0999 133  0.62 079 041 0.64 037 067 035 091 034

Values ¢ <1 indicated that the WK5 method is

superior to the other methods. Table 1 shows the
¢ of the estimators for LMOM, and LIQ
estimators compared to WKS5 method for &
-0.3, -0.1, 0, 0.1, 0.3. For the estimation of
O(F), F > 0.9, WK5 in many cases leads to
higher efficiency especially for & > -0.3. The

LIQ estimators lead to lower efficiency than
LMOM for all #n and k.

Parent Distribution Function Unknown

In practice, the true distribution function
is never known. Thus, it will be even more
useful to look how estimation is affected by
various methods when the assumed distribution
function differs from the parent distribution
function. In this study Kappa distribution was
used to generate the random samples data.

Hosking and Wallis (1993) used the
kappa distribution to generate artificial data for
assessing the goodness of fit of different
distributions in their study on regional frequency

analysis. The cumulative distribution function of
the Kappa distribution four-parameter is

(A—hl-k(x=¢)/o]"* 3" if  k#0,h=0,

Fo) = exp{-{1-k(x=¢)/c]"*}y if  k#0,h=0,
{1—hexp[-(x—¢)/c]}"" if  k=0,h#0,
exp{—exp[-(x—¢)/c]} if k=0,h=0.

(37)

where ¢ is a location parameter, ¢ is a scale

parameter, and / and k are shape parameters
(Park and Park, 2002). The quantile function of
the kappa distribution is

O(F)=c+o{l-[(1-F"y/n)*}/k. (38)

This distribution is a special cases of the
generalized logistic (GL) (h=-landk #0),

generalized extreme-value (GEV)



SHABRI & JEMAIN

235

Table 2: Efficiency of Q(F), F = 0.9, 0.98, 0.99, and 0.999 Estimated By Using LMOM and WKS5, Fitting
the GEV Distribution Based on Generated Kappa Samples

GL EXP GP Uniform
n F LMOM WK5 LMOM WKS5 LMOM WKS5 LMOM WKS5
15 09 1.358 1.555 0.596 0.637 0.316 0.369 0.233 0.081
0.98 4.322 4.444 1.335 1.212 0.589 0.446 0.169 0.123
0.99 6.990 6.981 2.069 1.582 0.908 0.560 0.249 0.205
0.999 33.875 32.832 9.033 4.714 3.125 1.713 0.544 0.499
25 09 1.051 1.178 0.465 0.505 0.250 0.301 0.208 0.093
0.98 3.422 3.669 1.051 0.993 0.460 0.348 0.146 0.091
0.99 5.502 5.936 1.657 1.347 0.730 0.455 0.214 0.157
0.999 24.892 30.109 7.056 4.459 2.436 1.489 0.431 0.373
50 0.9 0.776 0.829 0.353 0.382 0.186 0.229 0.192 0.111
0.98 2.572 2.850 0.753 0.763 0.346 0.252 0.127 0.063
0.99 4.088 4.681 1.219 1.087 0.583 0.353 0.186 0.115
0.999 16.568 23.406 5.321 4.072 1.965 1.253 0.351 0.264
100 0.9 0.566 0.586 0.271 0.284 0.145 0.177 0.184 0.121
0.98 1.884 2.108 0.547 0.569 0.273 0.184 0.119 0.056
0.99 2.989 3.461 0.939 0.874 0.496 0.303 0.174 0.103
0.999 11.563 15.713 4.377 3.702 1.723 1.178 0.318 0.229
(h=0and k #0), generalized Pareto (GP) LMOM, and WKS5 method. The WKS5 almost

(h=1and k # 0), Gumbel (EV1)

(h=0and k =0), uniform (U) (h=1and k =1)
and  exponential (EXP) (h=0andk=1)
distributions (Sing et al, 2002).

In order to evaluate the performance of
the four-parameter estimation methods for GEV
distribution, different parameters of kappa
distribution were considered for simulation with
values of the shape parameter (4,k) were set

(-1,-0.3) for GL, (1,0.3) for GP, (1,1) for U
and (0,1) for EXP distribution. The location, ¢

and scale, ¢ parameters were set 0 and 1,
respectively. For this purpose, 10 000 random
samples of n =15, 25, 50, and 100 are used.
The performance of the LQ-moments using
WKS5 are only considered to compare with
LMOM because the LIQ estimator always has
lower efficiency in comparison to the other
estimators.

Table 2 shows the RMSE of the 7= 0.9,
0.98, 0.99, and 0.999 quantile estimators for

always perform better than LMOM except when

the data are generated by the GL distribution for
n>15.
Figure 3 shows the BIAS of Q(F), F =

0.99 estimators for n» =25 and 100. The results
are quite similar. In term of BIAS the WKS5
method is clearly superior to the LMOM method
except when the data are from the GL
distribution for n = 25.

Data Analysis

To illustrate the use of the GEV
distribution for fitting data sets by wvarious
methods (LMOM, LQ moments using LIQ, and
WKS), two sets of annual maximum flood series
for the Feather River at Oroville and the
Blackstone River at Woonsocket, were taken
from Mudholkar and Hutson (1998). The
parameter estimates for each data set, using
various methods, are given in Table 3. Observed
and computed frequency curves for the two data
sets are plotted in Figure 4. The observed data
values are plotted against the corresponding
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EV1 reduced variates using the Cunnane
plotting position.

Bias ofthe 099 quantile ,n = 25 Bias ofthe 0989 quantik, n= 100
8 Lhd Ot

O Lhd Ok B RS

B3y B
o
[==]

r % A ) %
EXP GP Uniform EXP GP Uniform
Distibution Sanples Distribution Samples

Figure 3: Bias of Q(F=0.99) Estimator Using L-Moments and LQ-Moment Based On WK35, Fitting the
GEYV Distribution to Generated Kappa Samples For n =25 and n= 100

Table 3: Estimated Values for the GEV Distribution

(a) Blackstone River Data

Parameter L Moments LQ Moment Method

Method LIQ WKS5
U 4257.0 4495.0 4064.1
o} 1443.2 1213.4 1955.1
k -0.479 -0.468 -0.359
10 year flood (> /s) 10096.0 9335.6 10833.7
50 year flood 20764.5 18006.5 20717.1
100 year flood 28153.6 24232.2 27011.1
1000 year flood 83546.4 67657.9 63607.2
(b) Feather River Data
Parameter L Moments LQ Moment Method

Method LIQ WKS5
u 44893.6 43537.8 46385.7
o 37335.8 40146.3 34804.1
k -0.094 -0.119 -0.093
10 year flood (fc’ /s) 138501.2 147176.7 146897.9
50 year flood 221017.6 243047.3 235293.5
100 year flood 259959.9 289615.9 276951.9

1000 year flood 408508.6 474246.2 435565.3
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similarly to the L-moments. Results from fitting
the GEV distribution function to generated GEV
samples show that LQ-moments using WKS5

Feather Data
SE0000
00000 A » i) =]
(1 a] ]
60000 {  [—=— LR
= = = =S *
_ 200000
B
Py
= 150000 1
=
[T

100000 A

Gumbel Reduced “arable

Flow (f 34)

Blackstone Data
L ]
Joooon L Daa
Luan
A0000 - - - ks
0000
150000
100000
L
B-e T T
-2 0 2 4 G
Gumbel Reduced “arabk

Figure 4: Fitting the GEV Distribution To Annual Maximum Flows At Blackstone River
And Feather River.

For Feather River data, the frequency
curves obtained by the WKS5 lie much closer to
the data than LMOM and LIQ methods. For the
Blackstone River data, the frequency curves of
the WKS5 and LMOM methods are steeper than
those of LIQ method, however the fitting of
these methods are in serious error, especially for
the larger flows.

Conclusion

The LQ-moments are constructed by using a
function that defines the quick estimators, such
as the median, trimean or Gastwirth, in places of
expectations in L-moments have are re-
examined. The quick estimators based on five
points  quantiles using weighted kernel
estimators are introduced for characterizing the
upper quantiles of distributions and larger events
in a sample. The parameters of the GEV
distribution are estimated by matching LQ-
moments to their sample estimates behave

almost always perform better than L-moments
but has more BIAS than L-moments method.
Results from fitting the GEV distribution
function to samples generated from the Kappa
distribution show that the WKS5 lead to reduced
BIAS and in many cases, higher efficiency
compared to the other methods. The LIQ
estimator leads to poorer estimation of high
quantiles in terms of BIAS and RMSE.

This study has demonstrated that the
conventional L-moment is not optimal for the
estimation of GEV distribution. The new method
of estimation, denoted the LQ-moments based
on WKS5 method, in many cases represents
higher efficiency in high quantile estimation
compared the L-moments method. The
simplicity and generally good performance of
this method make it an attractive option for
estimating quantiles in the GEV distribution.
Although the linear interpolation quantile
estimator commonly used in most statistical
software packages and in the LQ-moments
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method, but it does not perform as good as the
WKS5 in estimating the parameters of the GEV
distribution.
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