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Practical Unit-Root Analysis Using Information Criteria: 
Simulation Evidence 

 
Kosei Fukuda 

Nihon University  
 

 
The information-criterion-based model selection method for detecting a unit root is proposed. The 
simulation results suggest that the performances of the proposed method are usually comparable to and 
sometimes better than those of the conventional unit-root tests. The advantages of the proposed method in 
practical applications are also discussed. 
 
Key words: Information criteria, model selection, Monte Carlo simulation, pre-testing problem, unit root 
 

 
Introduction 

 
Since the seminal work of Dickey and Fuller 
(1979), numerous alternative methods have been 
developed to improve the size and power 
properties of unit-root tests. However, little 
attention has been paid to two practical problems 
encountered in unit-root tests. Consider the 
following augmented DF (ADF) regression for 
an observed time series ),...,1( Ttyt = : 
 

∑ = −− +Δ+++=Δ k

i tititt eyyty
11 ,φρβμ                                    

                                                                   (1) 
 
where ~te NID ).,0( 2σ  Three model classes 
and the corresponding -t statistics (denoted byτ̂ ) 
for a unit root are obtained by considering 
parameter restrictions on (1). 
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Model 1 (Statistics, Null, and Alternative)    
τ̂       0=== ρβμ   0== βμ  and 0<ρ  
 
Model 2 (Statistics, Null, and Alternative)    

μτ̂       0=== ρβμ    0=β  and 0<ρ  
 
Model 3 (Statistics, Null, and Alternative)    

ττ̂       0== ρβ         0<ρ  
 
Although there is no discussion on a statistical 
method for selecting a suitable model class from 
among these three alternatives, different 
statistics can lead to different conclusions. For 
example, in the seminal work of Nelson and 
Plosser (1982), the result obtained applying 
Model 3 suggested that the annual time series of 
U.S. unemployment rate is generated from the 
trend-stationary process. Forecasting the 
unemployment rate with the trend-stationary 
model in the very long horizon would provide a 
value less than zero or more than 1. If Model 1 
is applied in place of Model 3, the null 
hypothesis of a unit root cannot be rejected. 
Which conclusion should be embraced? As 
discussed by Phillips (2005), there is little 
guidance from economic theory about the source 
and nature of the trending behavior. Thus, model 
selection criteria are expected to be applied in 
selecting a suitable model from among three 
alternatives. 

Furthermore, the pretesting problem also 
arises. In the conventional ADF regression, the 
lag length k  is selected by applying the Ng and 
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Perron (1995) (NP) general-to-specific 
procedure. In this procedure, given the 
maximum lag length ,maxk  by working 
backward from ,maxkk =  the first value of k is 

selected such that the -t statistic on kφ̂  is 
significant. Thus, in total, hypothesis testing has 
to be implemented at two stages. Every test has 
a nonzero frequency of rejecting the null 
hypothesis, thus causing Type Ι errors to 
accumulate. As discussed by Krolzig and 
Hendry (2001), it is important to distinguish 
between the individual test sizes and the overall 
test size. 

These two practical problems have 
remained even in the recent literature. For 
example, although Elliott et al. (1996) have 
proposed more powerful unit root tests, there is 
no criterion in selecting deterministic 
components and there is the pretesting problem 
in selecting the lag length. The ADF test still has 
the most popularity even now in empirical 
analyses, while it is the oldest unit-root test and 
has low power. Thus, the ADF test remains a 
benchmark method in the present study. 
  The purpose of this article is to propose 
an information criterion (IC)-based model 
selection method for detecting a unit root in 
order to provide a solution to the above two 
problems. In this method, the following three 
steps are taken. First, several alternative models 
are considered by changing the model class 
(Models 1, 2, and 3 with and without a unit root) 
and the lag length, and each model is estimated 
with the corresponding IC. Second, the best 
model is selected from among the alternative 
models by using the minimum IC procedure. 
Finally, on the basis of the selected model, it is 
determined whether the observed data contain a 
unit root. In this article, the Akaike information 
criterion (AIC) proposed by Akaike (1974) and 
the Bayesian information criterion (BIC) 
proposed by Schwartz (1978) are applied. The 
AIC and BIC for Model (1) are obtained as 
follows: 
 

AIC = ,2ˆln)1( 2 pkT +−− σ  
BIC = ),1ln(ˆln)1( 2 −−+−− kTpkT σ  

 

where p  denotes the number of parameters. In 
the full model (Model 3 without a unit root), 

,3 kp +=  and the other values of p  are 
obtained in correspondence with the number of 
parameter restrictions. 
 
Simulation Studies: The Case Where the Model 
Specification is Known 

Unlike the ADF tests described earlier, 
the DF likelihood ratio (DFLR, Dickey & Fuller, 
1981) tests are now considered. This is because 
the AIC and BIC are both penalized likelihoods. 
However, DF argued that the limiting 
distribution of the LR test statistics is too 
complex to provide an analytical solution. DF 
presented empirical distributions using Monte 
Carlo simulations. In their simulation study, the 
following three cases are considered: 

 
Null Alternative   
 
Case1: ttt eyy += −1       ttt eyy ++= −1ρμ  
 
Case 2: ttt eyy += −1       ttt eyty +++= −1ρβμ  
 
Case 3: ttt eyy ++= −1α    .1 ttt eyty +++= −ρβμ  
 
In the subsequent study presented in this section, 
it is assumed that the model specification is 
known in each case. In the Monte Carlo 
simulation, the assumed data generating process 
(DGP) is 
 

ttt eyy += −1θ  and ~te NID(0,1). 
 
Each experiment is performed as follows. First, 
artificial time series are generated from the 
assumed DGP. Second, in each case, the DFLR 
test and the IC-based model selection are 
performed. Finally, the presence or absence of a 
unit root is determined in each method. In the 
DFLR test, three significance levels—10%, 5%, 
and 1%—are applied. In each experiment, three 
values of θ  (0.9, 0.95, 1) and two values of T  
(100, 250) are considered. The number of 
replications in each experiment is 5,000. 
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Table 1 shows the frequency count of 
selecting stationary models. In Case 1, the 
frequency count of incorrectly selecting 
stationary models, which corresponds to test size 
in the terminology of hypothesis testing, is high 
in the AIC-based method. In the case of 

100=T , this count is 0.41 and it is 0.43 in the 
case of 250=T . On the other hand, the 
performances of the BIC-based method are 
comparable to those of the DFLR tests. 
Interestingly, in the case of ,100=T  the 
performances of the BIC-based method are 
identical to those of the DFLR tests at the 5% 
significance level. This is because the penalty on 
the likelihood of the stationary model in the 
BIC-based  method  is  accidentally  identical  to 
that in the DFLR test. In Case 2, similar results 
are obtained. However, in Case 3, the frequency 
count of incorrectly selecting  stationary  models  
is slightly high in the BIC-based method in the 
case of .100=T  Thus, it can be concluded that  
 
 

the performances of the BIC-based method are 
roughly comparable to those of the DFLR tests. 
 
The Case Where Only the Lag Length is 
Unknown 

The IC-based method is compared with 
the ADF tests using the NP lag length selection. 
The DGP considered here is partially similar to 
that considered by NP. Artificial time series are 
generated using the following process: 

 

∑ = −− +Δ+= 3

11 ,
i tititt eyyy φρ  

 
where ~te NID(0,1). Three values of ρ —

0.85, 0.95, 1ρ = —are considered, and four 
vectors of ),,( 321 φφφ — =),,( 321 φφφ (0.6, 0, 0), 
(–0.6, 0, 0), (0.4, 0.2, 0), (0.2, 0.2, 0.2)—are 
considered. The maximum lag length maxk  is 
assumed  to  be  .8max =k  Given   the  observed  
 
 

 

10% 5% 1% AIC BIC

0.9 100 0.39 0.24 0.06 0.86 0.24
0.9 250 0.99 0.93 0.64 1.00 0.80

0.95 100 0.15 0.08 0.01 0.56 0.08
0.95 250 0.54 0.36 0.11 0.95 0.20

1 100 0.10 0.05 0.01 0.41 0.05
1 250 0.10 0.05 0.01 0.43 0.02

0.9 100 0.18 0.09 0.02 0.78 0.10
0.9 250 0.82 0.64 0.28 1.00 0.41

0.95 100 0.09 0.04 0.01 0.57 0.04
0.95 250 0.25 0.13 0.03 0.88 0.05

1 100 0.10 0.05 0.01 0.58 0.05
1 250 0.10 0.05 0.01 0.58 0.02

0.9 100 0.28 0.15 0.04 0.96 0.39
0.9 250 0.90 0.77 0.41 1.00 0.88

0.95 100 0.13 0.07 0.01 0.83 0.21
0.95 250 0.36 0.22 0.06 0.98 0.33

1 100 0.11 0.06 0.01 0.75 0.18
1 250 0.09 0.05 0.01 0.74 0.08

Note: DGP:

Table 1. Frequency count of selecting stationary models
Methods

.:,: 11 tttttt eyyeAlternativeyyNull ++=+= −− ρμ

θ T

.:,: 11 tttttt eytyeAlternativeyyNull +++=+= −− ρβμ

.:,: 11 tttttt eytyeAlternativeyyNull +++=++= −− ρβμα

.1 ttt eyy += −θ
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time series, the lag length selection is performed 
as follows. In the ADF tests, by working 
backward from ,maxkk =  the first value of k  is 

selected such that the -t statistic on kφ̂  is 
significant. Three significance levels—10%, 5%, 
and 1%—are applied in the case of the ADF 
unit-root tests and the -t tests for the lag length 
selection.  

In the IC-based method, alternative 
models are considered by changing the lag 
length as max,...,1,0 kk = , and the best model is  
selected from )1( maxk+  alternative models. 
Two values of T  (100, 250) are considered, and 
each experiment is replicated 5,000 times. 

 
 

 
 
 
 

Table 2 shows the frequency count of 
selecting stationary models. First, the size 
distortion does not occur, while it is well known 
that the incorrect lag length can cause the size 
distortion. As shown by NP, the general-to-
specific procedure in selecting the lag length can 
prevent the size distortion. Second, the 
pretesting problem is not shown, similar to the 
results obtained by NP. Finally, the 
performances of the BIC-based method are 
roughly comparable to those of the ADF 5% 
tests in the case of 100=T  and to those of the 
ADF 1% tests in the case of 250T = . 
 
 
 
 
 

 
 
 

10% 5% 1% AIC BIC

0.85 0.6 0 0 0.99 0.98 0.97 1.00 0.97
0.85 -0.6 0 0 0.78 0.63 0.26 0.89 0.49
0.85 0.4 0.2 0 0.98 0.97 0.90 0.99 0.95
0.85 0.2 0.2 0.2 0.98 0.94 0.64 0.99 0.78
0.95 0.6 0 0 0.86 0.76 0.43 0.94 0.66
0.95 -0.6 0 0 0.35 0.19 0.05 0.44 0.11
0.95 0.4 0.2 0 0.84 0.68 0.27 0.92 0.51
0.95 0.2 0.2 0.2 0.80 0.63 0.22 0.87 0.37

1 0.6 0 0 0.12 0.05 0.01 0.20 0.03
1 -0.6 0 0 0.11 0.05 0.01 0.19 0.04
1 0.4 0.2 0 0.11 0.06 0.01 0.19 0.04
1 0.2 0.2 0.2 0.11 0.05 0.01 0.20 0.06

0.85 0.6 0 0 1.00 1.00 1.00 1.00 1.00
0.85 -0.6 0 0 1.00 0.99 0.95 1.00 0.95
0.85 0.4 0.2 0 1.00 1.00 1.00 1.00 1.00
0.85 0.2 0.2 0.2 1.00 1.00 1.00 1.00 0.99
0.95 0.6 0 0 1.00 1.00 0.98 1.00 0.96
0.95 -0.6 0 0 0.76 0.55 0.20 0.87 0.28
0.95 0.4 0.2 0 1.00 1.00 0.96 1.00 0.96
0.95 0.2 0.2 0.2 1.00 0.99 0.92 1.00 0.93

1 0.6 0 0 0.11 0.05 0.01 0.20 0.02
1 -0.6 0 0 0.10 0.05 0.01 0.19 0.02
1 0.4 0.2 0 0.11 0.05 0.01 0.19 0.02
1 0.2 0.2 0.2 0.11 0.05 0.01 0.19 0.02

Note: DGP:

Table 2. Frequency count of selecting stationary models

T = 100

T = 250

MethodsParameters

∑ +Δ+= = −
3

1 .i tititt eyyy φρ

ρ 1φ 2φ 3φ
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The Case Where the Model Class as Well as the 
Lag Length is Unknown 

In this phase, the model class (Models 1, 
2, and 3 in Section 1) as well as the lag length is 
unknown. Thus, the ADF tests should determine 
which model class is applied. No study has been 
devoted to this problem. Furthermore, there is 
little guidance from economic theory about the 
source and nature of the trending behavior. In 
the present study, therefore, the selection of the 
model class is performed based on statistical 
tests. Motivated by NP, general-to-specific 
modeling is performed in this subsection as 
follows. First, using Model 3, the ADF 
regression is performed with the NP lag length 
selection. If the -t statistic on β̂  of the selected 
model is significant, Model 3 is obtained and the 
unit-root test is implemented. Otherwise, the 
ADF regression is performed using Model 2. If 
the -t statistic on μ̂  of the selected model is 
significant, Model 2 is obtained and the unit-root 
test is implemented. Otherwise, the ADF unit-
root test is performed using Model 1. Three 
significance levels—10%, 5%, and 1%—are 
applied in the case of the ADF unit-root tests, 
the -t tests for the lag length selection, and the 
-t tests for β̂  and μ̂ . If each test is independent 

at three stages and is evaluated at the 10% 
significance level, the overall rejection 
probability under the null is 

31 (1 0.1) 0.271,− − =  which is substantial. 
In this simulation, artificial time series 

are generated using the following process: 
 

3
1 1

,t t i t i ti
y t y y eμ β ρ φ− −=

= + + + Δ +∑  

 
where ~te NID(0,1). In order to obtain the 
stationary Models 1–3, the parameter vectors 
considered are ( 0, 0),μ β= = ( 1, 0),μ β= =  
and ( 0, 0.1),μ β= =  respectively. With regard 
to the nonstationary models, the parameter 
vectors considered are 
( 0, 0)μ β= = and ( 0.1, 0)μ β= = . The other 
parameter setting is implemented as follows. 
Two values of ρ — 0.95, 1ρ = —are 
considered, and four vectors of 1 2 3( , , )φ φ φ —

1 2 3( , , )φ φ φ = (0.6, 0, 0), (–0.6, 0, 0), (0.4, 0.2, 0), 
(0.2, 0.2, 0.2)—are considered. The maximum 
lag length maxk  is assumed to be max 8.k =  Two 
values of T  (100, 250) are considered, and each 
experiment is replicated 5,000 times. 

Table 3 shows the frequency count of 
selecting stationary models. Unlike in the 
preceding subsection, in this case, the pretesting 
problem is clearly shown. Consider the results of 
applying the 10% significance level for eight 
unit-root processes with 100.T =  The 
frequency count of incorrectly selecting 
stationary models is from 26% to 31%. In the 
preceding subsection, it was shown that the lag 
length selection has little effect on the results of 
the unit-root tests under the assumption of the 
known model class. The size distortion is caused 
by the assumed method for selecting the model 
class. The selection of the model class with 
statistically significant deterministic components 
such as μ  and β  has a bias toward selecting a 
stationary model. The same results are obtained 
in the case of 250T = ; however, in this case, 
the extent of size distortion is smaller. The 
frequency count of incorrectly selecting 
stationary models by the BIC-based method is 
from 12% to 19% in the case of 100T =  and 
from 5% to 9% in the case of 250.T =  The 
performances of the BIC-based method are 
roughly comparable to those of the ADF 5% 
tests in the case of 100T =  and to those of the 
ADF 2.5% tests (not shown here) in the case of 

250T = . 
In particular, in the case of the trending 

process, it can be concluded that the BIC-based 
method outperforms the hypothesis-testing 
method. For example, compare the two cases of 

),,,,,( 321 φφφβμρ )0,0,6.0,0,1.0,1(=  and 
)0,0,6.0,1.0,0,95.0(  with .100=T  In the case 

of the 10% significance level, the frequency 
counts of incorrectly and correctly selecting 
stationary models are 0.27 and 0.45, 
respectively. On the other hand, in the case of 
the BIC-based method, the frequency counts of 
incorrectly and correctly selecting stationary 
models are 0.15 and 0.49, respectively. In the 
terminology of hypothesis testing, the BIC-
based method shows lower size and higher  
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10% 5% 1% AIC BIC

0.95 0 0 0.6 0 0 0.84 0.78 0.46 0.98 0.72
0.95 0 0 -0.6 0 0 0.45 0.29 0.07 0.76 0.18
0.95 0 0 0.4 0.2 0 0.83 0.71 0.29 0.96 0.55
0.95 0 0 0.2 0.2 0.2 0.80 0.66 0.25 0.94 0.40
0.95 1 0 0.6 0 0 0.64 0.48 0.18 0.91 0.34
0.95 1 0 -0.6 0 0 0.29 0.17 0.04 0.65 0.08
0.95 1 0 0.4 0.2 0 0.58 0.40 0.11 0.88 0.22
0.95 1 0 0.2 0.2 0.2 0.55 0.36 0.10 0.84 0.15
0.95 0 0.1 0.6 0 0 0.45 0.32 0.10 0.96 0.49
0.95 0 0.1 -0.6 0 0 0.36 0.24 0.09 1.00 1.00
0.95 0 0.1 0.4 0.2 0 0.41 0.26 0.07 0.93 0.35
0.95 0 0.1 0.2 0.2 0.2 0.39 0.24 0.06 0.91 0.27

1 0 0 0.6 0 0 0.31 0.19 0.04 0.75 0.13
1 0 0 -0.6 0 0 0.30 0.17 0.04 0.72 0.12
1 0 0 0.4 0.2 0 0.30 0.17 0.03 0.74 0.13
1 0 0 0.2 0.2 0.2 0.28 0.16 0.04 0.76 0.16
1 0.1 0 0.6 0 0 0.27 0.16 0.04 0.77 0.15
1 0.1 0 -0.6 0 0 0.26 0.15 0.03 0.74 0.14
1 0.1 0 0.4 0.2 0 0.27 0.15 0.04 0.76 0.15
1 0.1 0 0.2 0.2 0.2 0.26 0.14 0.04 0.78 0.19

0.95 0 0 0.6 0 0 1.00 1.00 0.99 1.00 1.00
0.95 0 0 -0.6 0 0 0.73 0.57 0.21 0.94 0.31
0.95 0 0 0.4 0.2 0 1.00 1.00 0.96 1.00 0.99
0.95 0 0 0.2 0.2 0.2 0.99 0.99 0.92 1.00 0.95
0.95 1 0 0.6 0 0 0.97 0.96 0.85 1.00 0.89
0.95 1 0 -0.6 0 0 0.41 0.25 0.07 0.81 0.07
0.95 1 0 0.4 0.2 0 0.97 0.94 0.73 1.00 0.77
0.95 1 0 0.2 0.2 0.2 0.97 0.92 0.67 1.00 0.70
0.95 0 0.1 0.6 0 0 0.92 0.88 0.66 1.00 0.94
0.95 0 0.1 -0.6 0 0 1.00 1.00 0.99 1.00 1.00
0.95 0 0.1 0.4 0.2 0 0.90 0.83 0.55 1.00 0.84
0.95 0 0.1 0.2 0.2 0.2 0.89 0.80 0.50 1.00 0.79

1 0 0 0.6 0 0 0.24 0.14 0.03 0.71 0.06
1 0 0 -0.6 0 0 0.24 0.14 0.03 0.70 0.05
1 0 0 0.4 0.2 0 0.25 0.13 0.03 0.71 0.05
1 0 0 0.2 0.2 0.2 0.25 0.15 0.03 0.73 0.06
1 0.1 0 0.6 0 0 0.19 0.10 0.02 0.76 0.08
1 0.1 0 -0.6 0 0 0.18 0.10 0.02 0.74 0.07
1 0.1 0 0.4 0.2 0 0.20 0.11 0.02 0.77 0.08
1 0.1 0 0.2 0.2 0.2 0.19 0.11 0.02 0.76 0.09

Note: DGP:

Table 3. Frequency count of selecting stationary models

T = 100

T = 250

MethodsParameters

∑ +Δ+++= = −
3

1 .i tititt eyyty φρβμ

ρ μ β 1φ 2φ 3φ
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power than the hypothesis-testing method. 
Similar results are obtained in other trending 
process of )1.0,1( == μρ  and 

).1.0,95.0( == βρ  
 

Conclusion 
 
This article focused on the two problems 
encountered in the conventional unit-root tests: 
the absence of a criterion for selecting a suitable 
model class and the presence of the pretesting 
problem. In order to provide a solution to these 
problems, the IC-based model selection method 
was proposed. In this method, alternative models 
with and without a unit root are considered by 
changing the model class and the lag length. All 
the possible models are estimated and the 
corresponding IC values are stored. Finally, the 
best model is selected from among the 
alternatives. Thus, on the basis of the selected 
model, it is determined whether the observed 
time series contain a unit root. The simulation 
results suggested that the performances of the 
BIC-based method are usually comparable to 
and sometimes better than those of the DFLR 
and ADF unit-root tests. 

In comparison with the conventional 
hypothesis testing methods, this BIC-based 
model selection method has two advantages. 
First, by the introduction of the minimum BIC 
procedure, the subjective judgment required in 
the hypothesis testing procedure for determining 
the levels of significance is completely 
eliminated, thus enabling a semiautomatic 
execution. The well-known criticism of the IC-
based method is that it cannot control the test 
size. However, as shown in Table 3, the 
conventional hypothesis testing method causes 
the pretesting problem and cannot control the 
overall test size. 

Second, the selection of the model class 
can be performed automatically and consistently 
using the IC-based method. Furthermore, 
flexible time-series modeling, such as the 
introduction of measurement error (Fukuda, 
2005a) and/or regime switching (Fukuda, 
2005b), is applicable in the proposed method, 
and  the  efficacy  of  a  model  change   can   be  

 

consistently evaluated via the minimum BIC 
procedure. In the case of hypothesis testing, 
different models require different statistics; this 
makes time-series analyses very complex. 
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