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Modeling Longitudinal Ordinal Response Variables for Educational Data 
 

Ann A. O’Connell   Heather Levitt Doucette 
                                The Ohio State University                 University of Connecticut 

 
 
 
This article presents applications for the analysis of multilevel ordinal response data through the 
proportional odds model. Data are drawn from the public-use Early Childhood Longitudinal Study. 
Results showed that gender, number of family risk characteristics, and age at kindergarten entry were 
associated with initial reading proficiency (0 to 5 scale). The number of family risks and age were 
associated with time-slopes. Three issues are highlighted: building multilevel ordinal models, 
interpretation of multilevel effects; and determination of predicted probabilities based on results of the 
multilevel proportional odds models. 
 
Key words: Proportional odds models, multilevel models, ordinal data. 
 
 

Introduction 
 
Prior to the fitting of statistical models to 
investigate relational characteristics of data, 
researchers must first consider the much more 
fundamental  process  of  measurement.  Stevens  
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(1946) referred to the measurement process as 
the development of a model that “represent[s] 
aspects of the empirical world” (p. 677) that are 
consistent with the nature of the objects under 
study. In education as well as the social and 
behavioral sciences, many outcomes are 
measured on an ordinal rather than an interval or 
ratio scale, reflecting of course the underlying 
nature of the phenomenon under study. As an 
example of an ordinal scale, consider the 
Concerns-Based Adoption Model (CBAM), 
developed to characterize the progression of 
teacher and administrator concerns regarding 
implementation of innovations within their 
classrooms or schools (Hall, George & 
Rutherford, 1986; van den Berg, Sleegers & 
Pelkmans, 2002, etc.).  

Responses on the CBAM correspond to 
eight ordinal categories, representing 
progressive stages ranging from self-concern, 
task-concern to other-concern. This stage-based 
model is currently being adapted to characterize 
agency capacity for implementation of evidence-
based HIV prevention interventions (O’Connell, 
Cornman & Heybruck, 2003). Examples of 
ordinal scales can be found in many different 
contexts. Proficiency on statewide educational 
assessments has been characterized as ordinal, 
with students identified as below basic, basic, 
proficient, goal, and advanced in mathematics 
and reading (Beaudin, 2003). The goals set by 
No Child Left Behind (http://www.nclb.org/) 
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require 100% of students within schools to attain 
proficiency in order to demonstrate 
effectiveness, making an understanding of 
ordinal measures and their statistical treatment 
important for schools, teachers, administrators, 
districts and state personnel.   

In fact, most variables that are used to 
detect educational or behavior change are 
ordinal in nature. For example, change in 
proficiency during the kindergarten year in early 
reading or mathematics can be characterized as 
ordinal (i.e., achieved or did not achieve a 
particular level within a hierarchy of proficiency 
goals, pre- and post-school year); so can 
frequency of condom use before and after an 
intervention (never, sometimes, almost always, 
always). Many health intervention studies have 
relied on the transtheoretical model to 
characterize individual change before and after 
participation (Bowen & Trotter, 1995; Hedeker 
& Mermelstein, 1998; Lauby et al., 1998; 
Prochaska & DiClemente, 1983, 1986; 
Prochaska, DiClemente, & Norcross, 1992; 
Prochaska, Redding, Harlow, Rossi, & Velicer, 
1994; Stark et. al, 1996).  Other examples 
include change in severity of illness or physical 
condition with scale categories such as mild, 
moderate, and severe (Knapp, 1999), and the 
common approach of using endorsement of 
responses to a particular statement (strongly 
disagree, disagree, neutral, agree, strongly agree) 
to assess attitudes before and after an event or 
period of time.   
 As these examples suggest, the use of 
ordinal-level variables in education and the 
social sciences are abundant. This should not be 
surprising, as Cliff (2003, 1996, and 1993) has 
consistently pointed out in much of his work on 
ordinal measurement that the questions we ask 
of our data are primarily ordinal in nature as 
well (Did students perform better after a school-
based intervention?). However, there is 
inconsistency in the fidelity between ordinal 
measurement of a behavioral or cognitive 
outcome and how these quantities are analyzed 
in statistical models (Cliff, 2003, 1996, 1993; 
O’Connell, 2000; Clogg & Shihadeh, 1994; 
Long,   1997;   Agresti,   1996).    The    accurate  
 
 
 

interpretation of relationships among variables is 
dependent on the application of appropriate 
statistical techniques, yet the treatment of 
ordinal responses present challenges for many 
applied researchers in the educational and 
behavioral sciences. Similar to the field of 
biomedical and epidemiological research, the 
underutilization of ordinal regression models in 
the educational and behavioral sciences may be 
partially explained by researcher unfamiliarity 
with software programs capable of fitting these 
models, confusion about model assumptions and 
how to investigate these assumptions, and 
problems in interpretation of model results 
(Bender & Benner, 2000). These challenges are 
multiplied when the study purports to consider 
change in an ordinal outcome over time. In this 
paper, the hierarchical generalized linear model 
(HGLM; Goldstein, 2003; McCullagh & Nelder, 
1989; Raudenbush & Bryk, 2002) for ordinal 
responses is demonstrated and explained, using a 
small number of potential explanatory variables 
for illustration purposes.    
 Data applications that characterize an 
approach to analyzing change over time in 
ordinal response variables are presented. The 
data used is drawn from the Early Childhood 
Longitudinal Study (ECLS), a national database 
developed and managed through the National 
Center for Education Statistics (NCES). The 
ECLS-K (Kindergarten cohort) follows nearly 
20,000 students from kindergarten through the 
first grade, with additional follow-ups in 3rd and 
5th grade. The outcome of interest in the models 
constructed is student proficiency for early 
reading and literacy assessed across kindergarten 
and 1st grade, which was measured using six 
ordinal categories (Table 1). Particular attention 
is paid to interpretation of the model estimates 
and assumptions, and the effects of independent 
variables on proficiency over time. HLM version 
6.03 is used for these analyses (Raudenbush, 
Bryk, Cheong & Congdon, 2004). The goal is to 
make a contribution to the applied literature on 
use and interpretation of hierarchical ordinal 
models, as well as to highlight the 
methodological challenges of modeling 
longitudinal ordinal outcomes.   
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Methodology 
 

Context: Proficiency in Early Literacy 
 In the ECLS-K, proficiency in early 
literacy is represented as a series of stepping-
stones, which reflect the skills that form the 
foundation for further learning in reading (West, 
Denton, & Germino-Hausken, 2000). The 
categorization of early literacy proficiencies 
represented in the ECLS-K assessment 
instrument is consistent with the skills that have 
been identified as the building blocks of reading 
mastery: phonemic awareness (the 
understanding that letters represent spoken 
sounds), phonics (understanding the sounds of 
letters in combination), fluency, vocabulary and 
text-comprehension (CIERA, 2001). Six 
categories of hierarchical skill levels are used to 
establish the proficiency scale (Table 1). 
Mastery is defined as passing 3 out of 4 items in 
a cluster representing each successive 
proficiency level.   

Research has indicated that children 
who experience difficulty learning to read in the 
early primary grades tend to begin school with 
limited proficiency for early-literacy skills 
(Burns, Snow & Griffen, 1998). These early 
skills in reading carry-over to performance at 
later   grades   in   reading   as   well   as  in other  

 

 
 

subjects, and children who experience 
difficulties early in school tend to experience 
continuation of these difficulties as they 
progress through school (Bayder, Brooks-Gunn, 
& Furstenberg, 1993; Butler, Marsh, Sheppard 
& Sheppard, 1985; Juel, 1988; McCoach, 
O’Connell, Reis, & Levitt, 2006). Even prior to 
formal schooling, much is happening in the way 
of literacy skill development via the interaction 
between life experience and language 
development. The notion of emergent literacy 
suggests that children do indeed enter 
kindergarten with diverse literacy skills that may 
have an important predictive relationship with 
later reading abilities (Lonigan, Burgess, & 
Anthony, 2000).  

Initial data summaries from the Early 
Childhood Longitudinal Study-Kindergarten 
(ECLS-K) cohort indicate that some children do 
enter kindergarten with greater preparedness and 
readiness to learn relative to other children, 
perhaps putting them a step ahead of their peers 
for the important early grades at school (West, 
Denton, Germino-Hausken, 2000). ECLS-K 
studies have shown that children entering 
kindergarten from families with particular 
characteristics (living in a single parent 
household, living in a family that receives 
welfare payments or food stamps, having a 

 
Table 1. Percent of Sample Reaching Reading Proficiency Levels Across Four Waves of ECLS-K. 

 
 
 
Proficiency Level 

Baseline  
0 months 
n = 3242 

 
8 months 
n =3346 

 
12 months 
n =3380 

 
20 months 
n =3425 

0.  Did not pass level 1 28.0 4.5 2.0 0.2 
1.  Identifying upper/lower case 
letters 

34.6 14.8 8.3 1.1 

2.  Associating letters with 
sounds at the beginning of 
words 

17.2 23.3 17.6 3.0 

3.  Associating letters with 
sounds at the end of words 

17.0 40.9 44.0 11.8 

4.  Recognizing words by sight 2.1 11.3 17.5 37.9 
5.  Recognizing words in 
context 

1.2 5.2 10.6 46.0 
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mother with less than a high school education, or 
having parents whose primary language is not 
English) tended to be at risk for low reading 
skills (Zill & West, 2001). Pre-kindergarten 
experiences related to family life, pre-school or 
daycare and personal characteristics (e.g., 
gender, persistence) may relate to children’s 
initial proficiency in reading as well as their 
potential growth in skills and abilities across the 
kindergarten year and beyond.  For example, 
girls typically enter kindergarten with slightly 
greater early literacy ability than boys. Child-
focused predictors of success and failure in early 
reading are helpful for understanding how 
individual children may be at risk for reading 
difficulties. From a policy and practice 
perspective it is clearly desirable that teachers, 
school administrators, parents, and other 
stakeholders be aware of these individual factors 
related to entry-level proficiency as well as to 
growth in proficiency in order to develop 
curriculum and instructional practices that can 
promote achievement for all students relative to 
their kindergarten entry skills. 

School and instructional characteristics 
have also been shown to be associated with 
student ability in early literacy, but it is not 
entirely clear how the differing educational 
experiences of children across schools (teacher 
and school effects) might affect growth in 
proficiency. The National Research Council 
(1998) reviewed predictors of success and 
failure in early reading at the neighborhood, 
school, and community level. In the continuing 
work using the ECLS-K, the effects of specific 
school-level variables on proficiency have been 
modeled separately across the four years of 
available data. These models included frequency 
of use of ability-grouping in kindergarten, 
principals’ ratings on the success of various 
teacher instructional practice, attendance at 
public versus private schools, school 
socioeconomic status, and neighborhood climate 
including the presence of racial tensions, litter, 
drug/alcohol use in the neighborhood, and extent 
of crime (Levitt & O’Connell, 2002; McCoach, 
O’Connell, Levitt & Reis, 2006; O’Connell & 
Levitt, 2002).  

Although instructional, organizational 
and neighborhood effects on children’s entry-
level reading ability and growth in reading are 

critical to understanding how to create and 
implement effective school-supported teaching 
strategies, these effects have not been modeled 
here. Instead, as the purpose of this article is on 
the methodology for developing and interpreting 
multilevel models for ordinal responses, the 
focus herein is on the development and 
interpretation of two-level models investigating 
the effect of child-level characteristics on 
reading growth across four time points (fall and 
spring of kindergarten, and fall and spring of 
first grade); extensions to the three-level case are 
relatively straightforward. 

 
Hierarchical Ordinal Regression Models 

Explanatory models for ordinal outcome 
data collected during a single time frame have 
been previously reviewed by O’Connell (2000; 
2006) and others (e.g., Agresti, 1989, 1990, 
1996; Bender & Benner, 2000; Clogg & 
Shihadeh, 1994; Long, 1997; McCullagh, 1980). 
This work can be adapted to fit the needs of a 
hierarchical context. Wong and Mason (1985) 
and Hedeker and Mermelstein (1998) provided 
examples of extensions of models for 
dichotomous and ordinal outcomes for 
hierarchical data. In addition, the latest version 
of the HLM program (HLMv6.03; Raudenbush, 
Bryk, Cheong, and Congdon, 2004) includes 
options for modeling the cumulative odds for 
ordinal hierarchical data. An article by Plewis 
(2002) in the Multilevel Modeling Newsletter 
describes the fitting of multilevel ordinal data 
using MLwiN. 
 The most common ordinal outcome 
model is the regression-type proportional or 
cumulative odds (PO) model (Agresti, 1996; 
Armstrong & Sloan, 1989; Long, 1997; 
McCullagh, 1980). In this approach, the (log of 
the) odds of a response at or below each of the 
ordinal categories form the quantities of interest. 
For example, with a six-category ordinal 
outcome (K=6), the K-1 formulas shown in 
Table 2 would be used to compute the 
cumulative probabilities and consequently the 
cumulative odds (note: consistent with the 
ECLS-K categories, the possible outcomes are 0 
through 5). The cumulative probabilities are the 
probabilities that the response for the ith student 
nested within the jth school (or, for longitudinal 
data, the ith student at the tth time point) is at or  
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below a given proficiency level. The odds is a 
ratio of the probability of an event occurring to 
the probability of an event not occurring. 
Accordingly, the cumulative odds 
[ ]ktiY ′ represent the odds that any given response 
would be in at most category k (rather than 
beyond category k), for the ith child at the tth 
wave of data collection. From Table 2, it may be 
seen that the cumulative odds, in order, 
correspond to the probability of being in 
proficiency level 0 relative to all categories 
above it; the probability of being in proficiency 
level 0 or 1 relative to all above it; and so on 
until arriving at the probability of being in 
categories 0, 1, …4 relative to being in category 
5. The Kth or final cumulative probability would 
always be 1.0 (being at or below the last 
possible level), and its probability and associated 
odds are therefore not included in the table. It is 
common to refer to the value marking each of 
these binary comparisons as cutpoints or 
cumulative splits. For example, the cutpoint for 
the first comparison is 0 (proficiency level 0 
versus  above  0);  the  cutpoint  for   the  second  
 

 

 
 
comparison is 1 (proficiency 0 and 1 versus 
above 1), etc.   

To better understand how the PO model 
works, imagine if the separate comparisons 
indicated in the last column of Table 2 were 
investigated using corresponding binary 
(hierarchical) logistic regressions at each of the 
associated cumulative splits. The simultaneous 
fitting of each of these separate K-1 (in this 
example, K-1=5) logistic models represents the 
overall PO approach. For this approach to be 
valid, a critical assumption must be made of the 
data. This assumption of proportionality states 
that the effects of the explanatory variables 
cannot be statistically different across these 
cutpoint comparisons. This is also called the 
cumulative odds assumption or the equal slopes 
assumption and can be restrictive but is the most 
common choice for ordinal regression models 
(Hedeker & Gibbons, 2006; O’Connell, 2006). 
For non-hierarchical data, the assumption of 
equal slopes can easily be tested within SAS or 
SPSS, for example. However, in a multi-level 
context direct tests of this assumption are not 
currently available. Interaction terms can be 

 
Table 2. Cumulative Odds Model for K=6 (K=0, 1, …5), Where Rti Represents the Proficiency Outcome 

(Response) for the Ith Student at the Tth Wave. 
 

Category Cumulative Probability Cumulative Odds [ ktiY ′ ] Probability Comparison 

k=0 
(Proficiency 0) 

( )0tiP R ≤  ( )
( )

0
0

ti

ti

P R
P R

=
>

 
Proficiency 0 versus all 
levels above 

k=1 
(Proficiency 1) 

( )1tiP R ≤  ( )
( )

1
1

ti

ti

P R
P R

≤
>

 
Proficiency 0 and 1 
combined versus all levels 
above 

k=2 
(Proficiency 2) 

( )2tiP R ≤  ( )
( )

2
2

ti

ti

P R
P R

≤
>

 
Proficiency 0,1,2 
combined versus 3, 4, 5 
combined 

k=3 
(Proficiency 3) 

( )3tiP R ≤  ( )
( )

3
3

ti

ti

P R
P R

≤
>

 
Proficiency 0,1,2,3 
combined versus 4,5 
combined 

k=4 
(Proficiency 4) 

( )4tiP R ≤  ( )
( )

4
4

ti

ti

P R
P R

≤
>

 
Proficiency 0,1,2,3,4 
versus proficiency 5 
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used to test for non-proportionality of some or 
all of the predictors, or an ad hoc approach can 
be applied that investigates the consistency of 
slope estimates across the cumulative splits 
described in Table 2. Space does not allow for a 
demonstration of this assessment here; interested 
readers can find further discussion and examples 
in O’Connell, Goldstein, Rogers & Peng (in 
press), as well as in Hedeker, et al., 2006). 

 
General Model: Students Nested Within 
Schools.   

A brief description of the ordinal 
HGLM is presented for analyses focused at one 
point in time; in the next section it is expanded 
this to cover repeated ordinal measures. For the 
ith student in the jth school, the hierarchical 
proportional odds model is fit according to the 
following equations (Raudenbush & Bryk, 
2002): 
 
Student level:      
 

ij
kij

ij

Q K 1
0j qij kijq 1 k 2 kqj

P(R k)
ln(Y ) ln

P(R k)

β β X D δ−

= =

⎛ ⎞≤
′ = ⎜ ⎟⎜ ⎟>⎝ ⎠

= + +∑ ∑
                 

                                                                         (1) 
   
School or Context level:           
 

qj
S

1s sjqsq0qj uWγγβ q∑ =
++=                                                 

                                                                        (2) 
 
where ][ kijY ′  represents the cumulative odds for 
each category k, with k=1…K-1 levels of the 
ordinal response and q = 1…Q independent 
variables at the student level. For these models, 
the term on the left side of equation (1) is the log 
of the cumulative odds for each category k, and 
is referred to as the logit for the cumulative 
distribution. The terms on the right can be 
interpreted similar to any logistic regression 
model, with the βqj representing the expected 
change in the logit for each one unit change in 
the qth explanatory variable, Xq. Its 
exponentiation will provide the estimate of the 
cumulative odds for that variable. However, an 

important difference between an ordinal model 
and a binary logistic regression model is that 
with K-1 ways to characterize the cumulative 
odds, the slope parameters for each of the 
independent variables are restricted to be 
constant across all the separate possible 
cumulative splits derived according to the 
second column of Table 2. That is, the model 
assumes that the effect of any independent 
variable can be represented by a common 
cumulative odds ratio, exp(β); this is the 
assumption of proportional odds. If this 
assumption does not hold, then the PO model is 
not a plausible one for the data and less 
restrictive models should be investigated.  
 The collection of estimates at the far 
right of equation (1) are referred to as thresholds 
or delta coefficients, and they operate as 
deviations from the baseline intercept for each of 
the K-1 separate binary comparisons beyond the 
first, with 0 jβ  as the baseline intercept (i.e., for 
the first cumulative comparison). Dkij is the 
indicator variable for each category beyond the 
first. In other words, each cumulative 
comparison has its own intercept, while the 
effects of the explanatory variables are assumed 
to be constant across each comparison.    
  
Changes Over Time in an Ordinal Response.   

When data are gathered over time, 
methodologies for the treatment of ordinal 
outcomes need to be combined with methods 
that address the multilevel nature of longitudinal 
data. As with other studies of growth, change 
was modeled in the logit as a linear effect. With 
only four time points, this approach is 
reasonable (Murray, 1998). At level one, the 
repeated measures are modeled over time, and at 
level two student characteristics are used to look 
at changes in intercepts or growth trajectories 
across children. For demonstration purposes, the 
focus is on the two-level model in this article 
rather than include a third level for modeling 
school effects. To investigate child-level 
variability in baseline (entry) proficiency and in 
the trajectory of change, we considered the 
following child-level variables: age at 
kindergarten entry, gender (boys = 1), attending 
half-day rather than full-day kindergarten (half-
day = 1), previously attending any center-based 
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care (yes = 1), frequency with which parents 
read books to their child, socio-economic status, 
count of family risks, and a model-based 
approach was used to adjust for oversampling of 
Asian and Pacific Islanders (API) by including 
API (yes = 1) in all preliminary analyses.  The 
general level one and level two models are 
provided below.   
 
Time level:      

1
1 2

( )) ln
( )

−

=

⎛ ⎞≤′ = ⎜ ⎟>⎝ ⎠

= + +∑

ti
kti

ti

K
0i i ti ktik k

P R kln(Y
P R k

T D δπ π
                 

                                                                         (3) 
  Student level:           

qS
qj q0 qs si qis 1

X uπ β β
=

= + +∑                                                 

                                                                        (4) 
  
The last term in equation 3 is used to estimate 
the increasing intercepts for each of the 
underlying cumulative models, and is described 
in depth in the next section. Not unsurprisingly, 
these multilevel ordinal models were difficult to 
converge. Therefore, each independent variable 
was considered separately, consistent with 
Raudenbush and Bryk’s (2002) suggestions 
regarding strategies for building complex 
multilevel models. Based on these preliminary 
analyses, two were selected that were found to 
be associated with proficiency in the simpler 
(univariate) models, and known to be associated 
with early literacy: gender and family-risk 
characteristics. The sum of the number of 
family-risk characteristics was used as a 
contextual variable in models predicting baseline 
proficiency (intercept) as well as change in 
proficiency (slope) over time. Once the 
contextual model was derived, age at 
kindergarten entry was included to control for 
age-effects. These few variables were selected to 
illustrate how contextual models may be 
developed and interpreted for longitudinal 
ordinal outcomes, and below an application of 
the PO model is presented in the prediction of 
change in reading proficiency across four years 
of data using the ECLS-K.   
  
 

The following section describes the 
process by which the repeated measures and 
hierarchical ordinal models were developed.    
 
Procedures 

A sample of n=3440 children were 
selected from the ECLS-K. Since the primary 
purpose of this presentation is to illustrate the 
application of a multilevel approach to ordinal 
data, the sample was limited to children who did 
not change schools from kindergarten to first-
grade, had four waves of data (a 30% subsample 
of the original data were included in a fall first-
grade wave of data collection), were first-time 
kindergarteners only (no repeaters were 
included), and had no missing observations on 
the child-level (level-2) characteristics 
investigated for this study (gender, family-risk, 
and age at kindergarten entry). These criteria 
were applied to minimize complexity of the 
statistical design regarding number of data 
points available per child, convergence issues, 
and concerns regarding the impact of cross-
classification of children changing schools 
during the study period. The resulting data set 
represents a sample of first-time kindergarteners 
assessed twice in kindergarten and twice in first 
grade.  

HGLM, the non-linear counterpart to 
hierarchical linear modeling (HLM), was used to 
model the ordinal outcomes (Raudenbush and 
Bryk, 2002). The most general case of an 
HGLM for ordinal data assumes proportional 
odds across successive cumulative categories. 
Proportionality implies that the effect of an 
independent variable remains constant across the 
cumulative categories of the outcome variable.   

In the PO model, the likelihood (or 
odds) of an observation falling into category k or 
below is assessed over time. Similar to the 
familiar logistic regression model, the PO 
analysis predicts a transformation of the odds, 
i.e., the logit, which is the log of the odds. A 
logit of zero corresponds to an odds of 1.0, 
which implies that there is no difference 
between the probability of being in a certain 
category (or below) and being above that 
category (.5/.5 = 1.0, ln(1.0) = 0). A positive 
logit implies that the likelihood of being in 
lower categories is greater (e.g., .7/.3 = 2.33, 
log(2.33) = .847); and a negative logit implies 
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that the likelihood of being in higher categories 
is greater (e.g., .3/.7 = .429, log(.429) = -.847).   

Using the HLM program, the desired 
data structure is similar to that in other 
multilevel analyses of longitudinal data. The 
level-one data file represents the repeated 
measures outcomes, and contains the proficiency 
score as an ordinal-level response variable for 
each child at each of the four time points. With 
3440 children, there would be at most 4x3440 or 
13,760 observations at level one. Some children 
were missing proficiency scores at some point 
during the four waves of data collection; thus 
there were 13,393 observations overall at level 
one for the analytic sample. The level-two data 
contains the child-level characteristics, including 
gender, the number of family risk 
characteristics, and age at kindergarten entry. 
Although three level ordinal models are now 
available in HLMv6.03 (Raudenbush et al., 
2004), the models presented in this article 
illustrate the assessment of child-level effects 
(level two) on changes in proficiency over time 
(level one), and work is continuing on how these 
models might be extended to incorporate school 
effects as a third level. 

Although many different models were 
investigated, only three are reported here. The 
final models include a random coefficients 
model (Table 4), with time in months as the sole 
predictor of proficiency (more precisely, as the 
predictor of the logits for the cumulative odds 
for proficiency). Next, a contextual model was 
developed using gender and the number of risk 
factors as the explanatory child-level variables at 
level 2 (Table 4). This contextual model was 
designed to illustrate how the effects of gender 
and the number of family risk factors may 
moderate the change in cumulative odds over 
time. These effects were included as predictors 
of the intercepts or baseline values and as 
predictors of the slope for time.  This model was 
then adjusted to include age at kindergarten 
entry (grand mean centered) as a control variable 
for predicting both the intercept and the slope 
from level one, as well as deleted non-
statistically significant predictors. Results of this 
final model are provided in Table 5. 

The random coefficients analysis looks 
at the thresholds between (cumulative) adjacent 
proficiency levels and estimates the odds of a 

person being in proficiency level k or below 
over time.  If changes in proficiency can be 
reliably detected over time, the effect of time on 
the logit should be negative, so that the 
likelihood of being in higher categories 
increases over time.  With a six-category 
outcome (k = 0, 1, 2, 3, 4, 5) and time measured 
in months from baseline (t = 0, 8, 12, 20), five 
models are fit simultaneously, as shown below. 
  
Level one: 

0 0 1

1 0 1 2

2 0 1 3

3 0 1 4

4 0 1 5

ln( ) ( )
ln( ) ( )
ln( ) ( )
ln( ) ( )
ln( ) ( )

ti i i ti

ti i i ti

ti i i ti

ti i i ti

ti i i ti

Y time
Y time
Y time
Y time
Y time

π π
π π δ
π π δ
π π δ
π π δ

′ = +
′ = + +
′ = + +
′ = + +
′ = + +

 

                                                                        (5) 
 
Level two: 
   

0 00 0

1 10 1

i i

i i

u
u

π β
π β

= +
= +

    

          (6) 
 

In the collection of equations for level 
one, the terms on the left, 3ln( )tiY ′ for example, 
represents the log of the odds for being in 
category 3 or below (rather than beyond 
category 3), consistent with the approach 
described in Table 2.  

The critical assumption of proportional 
odds implies that the effect of time is constant 
across the cumulative splits identified through 
the level one model. The level one effects, 0iπ  
and 1iπ , represent, respectively, the baseline 
estimates (at the first wave of data collection 
(entry into kindergarten)) for the log of the odds 
of being in category k or below, and the effect of 
time (slope) on these logits. These intercepts and 
slopes are free to vary from person to person. 
This variability is captured by the level two 
random effects, u0i and u1i, with variance 
components, respectively, of τ00 and τ11 (var(u0i) 
= τ00 and var(u1i) = τ11). The thresholds, δ2 to δ5, 
represent the differences in the logit for each 
successive cumulative category relative to the 
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first logit; for example, in this sample the 
estimate at baseline for the log(odds) of being in 
category 3 or below would be β00 + δ3. 

The first contextual model analysis 
considers the effects of gender (1=male) and the 
number of risk characteristics (0 through 4) on 
the baseline logits and the slopes. The level one 
model remains the same as (5), but now the 
level-two models used to describe the effects of 
gender and number of family risks on the 
intercept and slope are: 

 
( ) ( )
( ) ( )

0 00 01 02 0

1 10 11 12 1

i ii i

i ii i

gender risknum u

gender risknum u

π β β β

π β β β

= + + +

= + + +
                                                   (7) 
  

Finally, in the second contextual model 
analysis age at kindergarten entry was included 
(grand mean centered) in the level two models 
for both the intercepts and the slopes. The 
gender effect was deleted from the model for 
time-slopes due to lack of statistically significant 
results for gender in a preliminary run.    
 

Results 
 
Table 1 contains the proportion of children 
classified into each literacy proficiency level 
from kindergarten through first grade. Table 3 
shows the proportion of children making 
specific transitions in literacy proficiency across 
the four waves. Most children made a positive 
change across the kindergarten year; most did 
not change during the summer between 
kindergarten and first grade, but then children 
tended to increase again by one or two 
proficiency levels across the first grade year.  

Results of the random coefficients 
model are provided in Table 4. These results 
show that overall across children, the expected 
log odds of being in proficiency level 0 at 
baseline is negative (β00 = -1.73, p < .01), which 
implies that at baseline it is more likely for a 
child to be at least in level 1 or higher. There is a 
statistically significant linear trend in the 
cumulative logits for time (β10 = -.41, p < .01), 
indicating that as a child progresses in school, 
the likelihood of being at or below category 0 
decreases (stated differently, the negative slope 

for time implies that the probability of being 
beyond category 0 is increasing with time). This 
is consistent with what we see in Tables 1 and 3.  
At baseline, children are more likely to be 
beyond category 0, and this likelihood increases 
over time. The model estimates are predicted 
logits. To transform to odds and then to 
probabilities, odds = exp(β), and probability = 
odds/(1 + odds) are used.  For this example, the 
odds at baseline of a child being in proficiency 
level 0 or below is exp(-1.73) = .1773; this 
corresponds to a probability of .1773/(1+.1773) 
= .15. For this random coefficients model 
containing no child-level predictor variables, 
15% of children would be predicted to be at or 
below category 0 at baseline.  For the predicted 
logit of being at or below category 0 at time 2 (8 
months), the model estimates the logit as:  -1.73 
+ (-.41)(8) = -5.01. Thus, at the end of 
kindergarten, the model predicts that the odds of 
being in category 0 or below is decreased (exp(-
5.01) = .0067), and the associated probability of 
being at or below proficiency category 0  at the 
end of kindergarten is .007, or .7%.     

To examine the model predictions at 
other splits in the cumulative hierarchy, for 
example, model predictions for being at or 
below category three at baseline, δ4 is used in 
addition to the baseline intercept and the slope 
(see equation 5). For this data, the new intercept, 
or threshold, becomes β00 + δ4 = -1.73 + 7.86 = 
6.13. Accordingly, the probability of a child 
being at or below proficiency level 3 at baseline 
is .998 pr 99.8%. At time 2 (8 months), the 
predicted logit is β00 + β10*(8 months) +  δ4 = -
1.73 + (-.41)*(8) + 7.86 = 2.85, where exp(2.85) 
= 17.29, and the predicted probability of being at 
or below proficiency category three at the end of 
kindergarten is .945, or 94.5%. These 
predictions, based on a model with no 
explanatory variables, are reasonably consistent 
with the data in Table 1.   

Finally, reviewing the variance 
components for the model, it may be seen that 
considerable variation remains in the intercepts, 
τ00 = 8.35, p < .01, as well as in the slopes, τ11 = 
.003, p < .01.  

The first contextual model (Table 4) 
describes the effect of gender and the number of 
family risk factors on the baseline logits and the  
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Table 3. Change in Proficiency Across the Kindergarten (K1 & K2) and First Grade (FG1 & FG2) Years. 

Raw Change in Proficiency K2-K1 FG1-K2 FG2-FG1 

-3 0.0 0.1 0.0 
-2 0.3 0.8 0.1 
-1 1.7 7.7 0.7 
0 21.3 46.5 18.5 
1 33.6 32.6 40.9 
2 27.5 8.3 29.9 
3 9.0 1.0 7.1 
4 0.5 0.0 0.8 
5 0.01 0.0 0.0 

 
 
 

Table 4. Multilevel Ordinal Models for Prediction of Proficiency Using Four Waves Of ECLS-K; Ivs are 
Gender and Number of Family Risks. 

Effect Coeff. 
(s.e.) 

t 
(df) 

Coeff. 
(s.e.) 

t  
(df) 

Intercept (π0i)     
β00  -1.73  

(.068) 
-25.41 ** 
(3439) 

-2.56   
(.097) 

-26.48 **  
(3437) 

β01  (gender (M=1))   0.62  
(.114) 

5.48 **   
(3437) 

β02  (number of risks)   1.07   
(.078) 

13.75 **  
(3437) 

Time Slope (π1i)     
β10  -.41  

(.004) 
-98.46 ** 
(3439) 

-.41   
(.005) 

-77.45 **  
(3437) 

β11  (gender (M=1))   -.001  
(.005) 

-0.21   
(3437) 

β12  (number of risks)   -.01   
(.003) 

-2.18 *   
(3437) 

For Thresholds:     
δ2  2.75   

(.053) 
51.71 ** 
(13387) 

2.78   
(.054) 

51.58 **  
(13383) 

δ3 4.69   
(.060) 

77.28 ** 
(13387) 

4.71   
(.061) 

77.03 **  
(13383) 

δ4 7.86  
(.077) 

101.46 ** 
(13387) 

7.88   
(.079) 

101.17 **  
(13383) 

δ5 10.32   
(.091) 

112.88 **  
(13387) 

10.35   
(.092) 

112.61 **  
(13383) 

Note: * p < .05; ** p < .01 
 

Random Coefficients Model  Contextual Model 
Random Effects  Variance df Chi-square Variance df Chi-square 

Variance in Base- K1 (τoo) 8.346 3391 10350.03 ** 7.75 3389 10025.82 ** 
Variance in Time slope (τ11) .003 3392 3615.27 ** .003 3392 3626.38 **  

Note: * p < .05; ** p < .01 
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slopes for time. Gender has a statistically 
significant effect on the baseline logits (β01 = 
.62, p < .01). Being a boy tends to increase the 
logit, making the likelihood of being in higher 
proficiency categories lower for boys relative to 
girls. The number of risk factors also has a 
statistically significant effect on the baseline 
logit (β02 = 1.07, p < .01). Because the logit is 
positive, it may be seen that as the number of 
family-risk characteristics increases, the 
likelihood that a child would be in lower 
proficiency categories (i.e., at or below any 
category k) increases, relative to a child with 
fewer risks.   

Attention is now turned to interpretation 
of the effects of gender and the number of risk 
characteristics on the slope for time. β10 = -.41 
may be interpreted as the estimated slope for 
girls with out any family risks. Controlling for 
the number of risk factors, gender has no effect 
on the slopes (β11 = -.001, p > .05); thus gender 
does not affect the rate of change in proficiency. 
The number of risk factors does impact rate of 
change (β12 = -.01, p < .05).  On the surface this 
would suggest that the likelihood is greater that 
a child with more risk characteristics improves 
over time even beyond that of a child with fewer 
risks. However, on closer inspection of the 
model predictions – particularly in terms of 
predicted probabilities across the four time 
points of being at or below any category k – it is 
seen that children with increased family risks 
tend not to improve as readily over time as their 
non-risk peers.  

This complexity of ordinal model 
interpretation can be overcome by estimating 
outcomes for discrete cases of children. For 
example, substituting into the prediction model, 
a female child (gender = 0) from a family with 0 
risk characteristics would be expected to have a 
predicted logit for the first cumulative 
comparison (proficiency level 0 or below) at 
baseline (time=0) of -2.56, which corresponds to 
a cumulative odds of exp(-2.56) = .08 and 
cumulative probability of being at or below 
proficiency category 0 of .072, or 7.2%. For a 
girl at baseline from a family with 1 risk 
characteristic, the predicted logit is -1.49, 
corresponding to a cumulative odds of .23, and a 
probability of .187 or 18.7%. This is a large 

proportion of girls estimated to be at or below 
proficiency level 0 (rather than beyond category 
0), given the addition of just one risk factor. In 
fact, the odds ratio for the variable number of 
risks is exp(1.07) = 2.92. The model suggests 
that, at baseline, the odds of being at or below 
any category increases by a factor of 2.92 for 
every one unit increase in a child’s number of 
family risks. Baseline is the simplest case for 
making predictions; moving to time 2 at 8 
months, the model estimates now need to 
include gender and family risk effects on the 
effect of time, but the process of estimating 
outcomes is similar to the process demonstrated 
above. Based on the parameter estimates from 
the model, probability predictions for being at or 
below proficiency category 0 at time 2 (8 
months) are .29%, 1.56%, and 13.24% for girls 
with 0, 1, and 4 family risk factors, respectively.  

The variance estimates for this 
contextual model indicates that variability in the 
baseline logits and in the time slopes continues 
to be statistically different from zero, which 
suggests that additional variables may be useful 
in understanding proficiency growth (initial 
status and rate of change). Table 5 provides the 
model estimates for an adjusted contextual 
model. In this modified model, age at 
kindergarten entry (grand-mean centered) is 
included in the models, and gender is removed 
from the level 2 models for the slope due to its 
lack of contribution to that model. The 
predictions for baseline or initial proficiency 
remain fairly similar to the contextual model 
estimates in Table 4. All three predictors 
contribute to the prediction of the baseline 
logits, with age at kindergarten entry having a 
negative effect (β03 = -.13, p < .01). This implies 
that for older children at kindergarten entry, the 
probability of being in higher categories of 
proficiency increases.  After adjusting for age at 
kindergarten entry, the number of family risks is 
still a statistically significant predictor of the 
trajectory (slope) in the proficiency logits from 
baseline through the end of first grade (β11 = -
.01, p < .05), with little change in magnitude 
from the previous model. In addition, age at 
kindergarten entry is positively related to the 
time slopes (β12 = .002, p < .01); based on model 
predictions, older children tend to improve over 
time more readily than their younger peers.   
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Despite the addition of entry age to both the 
intercept and slope models, however, significant 
variability remains in the initial status and the 
growth trajectories across children (τ00 = 7.47, p 
< .01; τ11 = .003, p < 01). 

Table 6 provides predictions based on 
the random coefficients model and the final 
contextual model for the probability of a child 
being at or below proficiency level 3 across all 
four waves, and contains the actual proportion of 
children for comparison.  Probabilities decline 
over time, as expected, because it is hoped that 
children are moving beyond category three by 
the end of first grade. Among the notable 
comparisons possible based on this simple table 
is the predicted probability at the end of first 
grade for a hypothetical male child of average 
age with no family risk characteristics (prob =  

 

 
.097) relative to the predicted probability for a 
male average-age child with four family risk 
characteristics (prob = .763). Recall that these 
probabilities are cumulative, and represent the 
probabilities of being at or below proficiency 
category 3. These differences are quite large. 
Further, at the end of first grade, the likelihood 
that boys do not achieve proficiency in the 
highest categories in comparison to girls’ 
likelihood is large as well. These predicted 
probabilities help to make clear the utility of 
hierarchical ordinal models for understanding 
effects of child-demographic variables on 
growth in proficiency for early literacy skills in 
a way that the basic interpretation of parameter 
estimates from the models in Tables 5 and 6 
cannot easily do.     

 
Table 5. Multilevel Ordinal Model for Prediction of Proficiency Controlling for Kindergarten 

Entry Age; Ivs are Gender, Number of Family Risks, and Age at Kindergarten Entry. 
 

Contextual Model 2 
Effect Coeff (s.e.) t(df) p 
Intercept (π0i)    

β00  -2.58  (.089) -28.91 **  (3436) .000 
β01  (gender (M=1)) .67 (.089) 7.514  **  (3436) .000 
β02  (number of risks) 1.05  (.077) 13.65  **  (3436) .000 
β03  (age at K entry) 
 

-.13 (.014) -9.09  **  (3436) .000 

Time Slope (π1i)    
β10  -.41  (.005) -90.98 **  (3437) .000 
β11  (number of risks) -.01 (.004) -2.08 * (3437) .037 
β12   (age at K entry) 
 

.002  (.001) 3.72  ** (3437) .000 

For Thresholds:    
δ2  2.76  (.054) 51.54  **  (13382) .000 
δ3 4.71  (.061) 76.99  **  (13382) .000 
δ4 7.88  (.078) 101.10  **(13382) .000 
δ5 10.35  (.092) 112.53  **  (13382) .000 

Note: * p < .05; ** p < .01 
 

Random Components 
Random Effects  Variance df Chi-square (p) 

Variance in Base- K1 (τoo) 7.47 3388 9818.72 (p=.000) ** 
Variance in Time slope (τ11) .003 3392 3611.19 (p=.005) ** 

Note: * p < .05; ** p < .01 
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Conclusion 
 
These examples illustrate the application and 
interpretation of ordinal regression models to 
longitudinal data. Given that ordinal responses 
are best analyzed using ordinal methods, it is 
important that educational statisticians add these 
techniques to their toolkit. The ECLS provides a 
rich data set for investigating many challenging 
statistical issues. However, some issues need 
more clarity before these models can be 
effectively applied.   

In this article, the focus has been on the 
cumulative odds or proportional odds model; 
however, this assumption may not always hold. 
Other options are routinely available for 
researchers dealing with single-level ordinal 
response data such as the continuation ratio 
model or non-proportional odds models 
(Agresti, 1989, 1990; Armstrong & Sloan, 1989; 
Cox, 1972; Greenland, 1994; Goodman, 1983;  

 
 
 

McCullagh, 1980; O’Connell, 2000, 2006). In 
addition, multilevel software programs are 
somewhat limited in terms of ordinal model 
methodology, and the default model may often 
be based on the (untested) assumption of 
proportional odds. Ultimately, the choice for 
what approach to take should be guided by 
theory or an a-priori expectation of which 
approach would be most appropriate for a given 
situation (Agresti, 1990; Armstrong & Sloan, 
1989). It is hoped that this article has helped to 
familiarize applied researchers with some of 
these issues as well as with the interpretation of 
multilevel ordinal models. Yet, further work is 
necessary to clarify model fitting for multilevel 
ordinal data when the assumption of 
proportional odds is violated, and for when 
three-level models might offer the best structure 
for the research data being analyzed.   
 

 

 
 

Table 6. Probability Predictions (at or Below Category 3) for Each Time Point Based on Models in 
Tables 5 And 6 (Age is Grand Mean Centered). 

 
 K-entry 

(0 months) 
K-completion 

(8 months) 
FG-entry 

(12 months) 
FG-completion 

(20 months) 
At or below Category 3: 
    Actual Data 

 
.967 

 
.835 

 
.719 

 
.161 
 

Random Coefficients Model .998 .945 .770 .112 
 

Contextual Model 2 
    Female  
    Average age 
    Family Risks = 0 

 
 
.995 

 
 
.883 

 
 
.594 

 
 
.052 

    Female 
    Average age 
    Family Risks = 4 

 
.999 

 
.997 

 
.984 

 
.622 

    Male 
    Average age 
    Family Risks = 0 

 
.997 

 
.936 

 
.741 

 
.097 

    Male 
    Average age 
    Family Risks = 4 

 
.999 

 
.997 

 
.992 

 
.763 
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