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Extensions Of The Concept Of Exchangeability And Their Applications 
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Permutation tests provide exact p-values in a wide variety of practical testing situations. But permutation tests 
rely on the assumption of exchangeability, that is, under the hypothesis, the joint distribution of the 
observations is invariant under permutations of the subscripts. Observations are exchangeable if they are 
independent, identically distributed (i.i.d.), or if they are jointly normal with identical covariances. The range 
of applications of these exact, powerful, distribution-free tests can be enlarged through  exchangeability-
preserving transforms, asymptotic exchangeability, partial exchangeability, and weak exchangeability. 
Original exact tests for comparing the slopes of two regression lines and for the analysis of two-factor 
experimental designs are presented. 
 
Key words: Permutation test, exchangeable, weak exchangeability, exact test, groups.  
 

Introduction 
 
Because the permutation tests can provide exact 
significance levels and are powerful and 
distribution free, they have an enormous number 
of applications.. See, for example,  Manly(1997). 
The observations on which these tests are based 
may be drawn from finite populations or represent 
a particular realization of a set of random 
variables. Rank tests are permutation tests based 
on the ranks of the observations rather than their 
original values.  
 Permutation tests rely on the assumption of 
exchangeability, that is, under the hypothesis, the 
joint  distribution  of  the  observations is invariant  
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under permutations of the subscripts. Observations 
are exchangeable if they are independent, 
identically distributed (i.i.d.), or if they are jointly 
normal with identical covariances. For additional 
examples, see Galambos (1986) or Draper et al. 
(1993). 
 A caveat is that a set of units may be 
exchangeable for some purposes and not for 
others, depending on what is measured and the 
questions of interest. A simple example suggested 
by Draper et al (1993) is a circadian series in 
which observations within days are not 
exchangeable because of serial correlation, while  
observations between days (at the same point in 
time) are exchangeable as are the residuals from a 
model incorporating serial correlation. 

The range of applications of these exact, 
powerful, distribution-free tests are enlarged 
below through exchangeability - preserving 
transforms, asymptotic exchangeability, partial 
exchangeability, and weak exchangeability. 
Original exact tests for comparing the slopes of 
two regression lines and for the analysis of two-
factor experimental designs are presented. 

Exchangeable Variables 
  Let G{x; y1,y2, …yn-1} be a distribution 
function in x and symmetric in its remaining 
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arguments—that is, permuting the remaining 
arguments would not affect the value of G. Let the 
conditional distribution function of xi given x1, …, 
xi-1,xi+1, …., xn be G for all i. Then the {xi} are 
exchangeable. 
  It is easy to see that a set of i.i.d. variables 
is exchangeable. Or that the joint distribution of a 
set of normally distributed random variables 
whose covariance matrix is such that all diagonal 
elements have the same value σ2 and all the off-
diagonal elements have the same value ρ2 is 
invariant under permutations of the variable 
subscripts. 
 Polya's urn or contagion model variables 
are also exchangeable.  An urn contains b black 
balls,  r red balls, y yellow balls, … and so forth.  
A series of balls is extracted from the urn.  After 
the ith extraction, the color of the ball Xi is noted 
and k balls of the same color are added to the urn., 
where k can be any integer, positive, negative, or 
zero. The set of random events {Xi} form an 
exchangeable sequence.  See, also, Dubins and 
Freedman (1979). 

Transformably Exchangeable  
   Suggesting the concept of transformably 
exchangeable is the procedure for testing a non-
null two-sample hypothesis H: F[x] =G[x−d]; for 
if there are two sets of independent observations 
{Zi} and {Yi} with Zi distributed as F and Yi as G, 
an exact test of H can be obtained by first 
transforming the variables by subtracting 0 from 
each of the Zi's and d from each of the Yi's. 

A set of observations (random variables) 
X will be said to be transformably exchangeable if 
there exists a transformation (measureable 
transformation) T, such that TX is exchangeable 
(Commenges, 2001). 

If there are a set of observations {X[t], t= 
1, 2,…n} where X[t] = a + bX[t−1] + zt and the 
{zt} are i.i.d., then the variables {Y[t], t= 2,…n} 
where Y[t] = X[t] − bX[t−1] are exchangeable. 

Dependent non-collinear normally 
distributed variables with the same mean are 
transformably exchangeable for as the covariance 
matrix is non-singular, use the inverse of this 
matrix may be used to transform the original 
variables to independent (and hence exchangeable) 
normal ones. By applying two successive 
transformations, an exact permutation test can be 
obtained of the non-null two-sample univariate 

hypothesis for dependent normally distributed 
variables providing the covariance matrix is 
known. Unfortunately, as Commenges (2001) 
showed, the decision to accept or reject in a 
specific case may depend on the transformation 
that was chosen. 
 Michael Chernick notes the preceding 
result applies even if the variables are collinear. 
Let R denote the rank of the covariance matrix in 
the singular case.  Then, there exists a projection 
onto an R-dimensional subspace where R normal 
random variables are independent.  So if there is 
an N dimensional (N > R) correlated and singular 
multivariate normal distribution, there exists a set 
of R linear combinations of the original N 
variables so that the R linear combinations are 
each univariate normal and independent of one 
other. 

Exchangeability-Preserving Transforms 
  Suppose it is desired to test whether two 
regression curves are parallel, even though the 
value of the intercepts are not known. Given that 
  

   1, 2; k 1,...,ik i i ik ik iy a b x for i nε= + + = =  
 
where the errors {εij} are exchangeable. To obtain 
an exact permutation test for H: b1= b2, the {ai} are 
needed to be eliminated, while preserving the 
exchangeability of the residuals. It is known that 
under the null hypothesis 
 

 . . .i i i iy a bx ε= + +  
 

1 2 1 2 1 2 1 2
1 1 1 1' ( ); ' ( ); ' ( ); ' ( ).
2 2 2 2

y y y x x x a a aε ε ε= − = − = − = +
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1 1 1

2 2 2

' '   for  k 1    , and
 ' '   for  k 1    .

k k
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y y y to n
y y y to n

= − =

= + =
 

 
Define 

1 1 1 2 2 2' ' for k 1   and x' ' for k 1  .k k k kx x x ton x x ton= − = = + =
 
 
Then 
 

' ' ' '   1,2; k 1,...,ik ik ik iy a bx for i nε= + + = =  
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Two cases arise. If the original predictors were the 
same for both sets of observations, that is, if x1k= 
x2k for all k, then the errors {ε'i k} are 
exchangeable and the method of matched pairs can 
be applied; see, for example, Good (2000, p51). 
Otherwise, proceed as follows: First, estimate the 
two parameters a' and b by least-squares means. 
Use these estimates to derive the transformed 
observations {y'ik}. Then test the hypothesis that 
b1=b2 using a two-sample comparison. If the 
original errors were exchangeable, then the errors 
{ε'ik} though not independent are exchangeable 
also and this test is exact. 

Now suppose  
 

  1, 2; k 1,...,ik i k i ik ik iy A Z b x for i nε= + + = =  
 
where Zk is a column vector of covariates with Ai 
a row vector of the corresponding coefficients. 
Defining A'i as the mean of A1 and A2, then 
 

 ' ' ' '   1, 2; k 1,...,ik k ik ik iy A Z bx for i nε= + + = =  
 
which are analogous results for the general case. 
 Dean and Verducci (1990) characterized 
the linear transformations that preserve 
exchangeability. Commenges (2001) characterized 
the linear transformations that also preserve the 
permutation distribution. Clearly any 
transformation which preserves the ordering of the 
order statistics preserves exchangeability. 
 
Asymptotic Exchangeability  
  Illustrating the concept of asymptotic 
exchangeability are the residuals in a two-way 
complete balanced experimental design. Our 
model is that  
 

 ijk i j ij ijkX µ α β γ ε= + + + +  
 
where 
 

 0i j ij iji j
α β γ γ= = = =∑ ∑ ∑ ∑  

 

and the { }ijkε are exchangeable. Eliminating the 
main effects in the traditional manner, that is, 
setting  

.. . . ...'ijk ijk i jX X X X X= − − + , 
 
the test statistic obtained is  
                I= 2( ' )i j k ijkX∑ ∑ ∑ , 
 
which was first derived by Still and White (1981). 
A permutation test based on this statistic will not 
be exact for finite samples as the residuals    

                .. . . ...'ijk ijk i jε ε ε ε ε= − − +  
 
are weakly correlated, the correlation depending 
on the subscripts. It is easy to show the 
Studentized correlations converge to a common 
value as the sample size increases, thus the 
residuals are asymptotically exchangeable, and the 

permutation test of the hypothesis 0ijγ = for all i 
and j based on I is asymptotically exact.  
 Romano (1990) proved asymptotic 
exchangeability for the two-sample comparison of 
independent observations with not necessarily 
identical distributions providing the underlying 
variables have the same mean and variance under 
the hypothesis. Baker (1995) used simulations to 
demonstrate the asymptotic exchangeability of the 
deviates about the sample median that are used in 
Good's test for equal variances. 
 
Exchangeability and Invariance 
  The requirement for exchangeability in 
testing arises in either of two ways: 
 

�    Sufficiency—the order statistics are 
sufficient for a wide variety of problems. 

�    Invariance—the joint distribution of the 
observations is invariant under 
permutation of the subscripts. 

 
For many testing problems, the underlying model 
must remain invariant under permutations of the 
subscripts. This can only be accomplished in many 
cases if the set of permutations are restricted. 
Recall that in the classic definition (de Finetti, 
1930; Galambos, 1986) a set of n random variables 
is said to be exchangeable if the joint distribution 
of the variables is invariant with respect to the 
group Sn of all possible permutations of the 
subscripts. 
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 Define the weak exchangeability of a set 
of random variables as the invariance of their joint 
distribution with respect to a subset of 
permutations.  Clearly, a set of variables that is 
exchangeable is also weakly exchangeable. 
 Exchangeability is a necessary and 
sufficient condition for exactness in the classic 
testing problems to which permutation methods 
have been applied such as the 2- and k-sample 
tests.   But in the two-factor experimental design 
considered in the previous section, only the error 

terms { }ijkε are exchangeable; the { }ijkX are not.  

Nonetheless, because the{ }ijkX are weakly 
exchangeable under any of the three null 

hypotheses (H1: 0iα = for all i, H2: 0jβ = for all 

j, and H3: 0ijγ = for all i and j), Pesarin (2001) 
and Salmaso (2001) were able to derive 
independent exact tests for each of the main 
effects and the interactions. 
 To see this, consider that the set of 

observations { }ijkX  may be thought of in terms of 
a rectangular lattice L with K colored, shaped balls 
at each vertex.  All the balls in the same column 
have the same color initially, a color which is 
distinct from the color of the balls in any other 
column.  All the balls in the same row have the 
same pattern initially, a shape which is distinct 
from the shape of the balls in any other row.  
 
  
      
 

 
 
  A 2x3 design with three observations per cell. 
 
 Let P denote the set of transformations 
that preserve the number of balls at each row and 
column of the lattice. P is a group. 
 Let PR denote the set of exchanges of balls 
among rows which a) preserve the number of balls 
at each row and column of the lattice, and b) result 
in the numbers of each shape within each row 
being the same in each column.  PR is the basis of 
a subgroup of P. 
 
 

  
 

 
 

 
A 2x3 design with three observations per cell after 
π ε PR. 

 
Let PC denote the set of exchanges of balls 

among columns which a) preserve the number of 
balls at each row and column of the lattice, and b) 
result in the numbers of each color within each 
column being the same in each row.  PC is the 
basis of a subgroup of P. 
  
 
 
 
 
   
A 2x3 design with three observations per cell after 
π ε PC. 

 
Let PRC denote the set of exchanges of 

balls which preserve the number of balls at each 
row and column of the lattice, and result in a) an 
exchange of balls between both rows and columns 
(or no exchange at all), b) the numbers of each 
color within each column being the same in each 
row, c) the numbers of each shape within each row 
being the same in each column. PRC is the basis of 
a subgroup of P.  Moreover, PRC ∩PR= PRC ∩PC = 
PR ∩PC = I and P is the group generated by the 
union of PR , PC and PRC. 
 

 Define [ ; ] [ ]j ijp X f xι κ∆ = Π Π Π − ∆ where  
 

 ,ij i j ijµ α β γ∆ = + + +  

iα =∑ jβ =∑ iji
γ =∑ 0ijj

γ =∑  
 
 and f is a density function that is continuous a.e. 
 Without loss of generality, it may be 
assumed µ=0, or, equivalently, the set of 
observations {X’ijk} obtained by subtracting µ 

from each element of { }ijkX  may be used.  

Suppose, now, the hypothesis H1:  0iα =  for all i 
holds. Then the joint distribution of the vector 
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(xi1k’, xi2k”,…, xijk*) obtained by taking an arbitrary 
element from each column of the ith row is 
identical with the joint distribution of  
 

     1 1 2 2( , ,. . ., )i i J iJz z zβ γ β γ β γ− − − − − −  
 
where f is the probability density of z.   The 
probability density of the sum of these latter 
elements is identical with the probability density 
of nz −

1
 J

jj
β

=∑ 1
 J

ijj
γ

=
− ∑  =  nz; that is, f(z/n). 

 Under H1 
�    f is the probability density of the mean of 

each of the rows of X.  
�    Applying any of the elements of PR leaves 

this density unchanged. 
�    Applying any of the elements of PR leaves 

the density of the test statistic 
2

2 ( )j k ijkF xι= Σ Σ Σ unchanged. 
 Similarly, to test H2, the permutation 
distribution over PC of any of the statistics 

2
2 ( )j i k ijkF x= Σ Σ Σ , 1 | |j i k ijkF x= Σ Σ Σ , or 

2 [ ]j i k ijkR g j x= Σ Σ Σ , where g[j] is a monotone 
function of j may be used. 
 If q ε PR and s ε PC, then under H3, the 
density of Sij = ijkxκΣ is invariant with respect to p 
= qt ε PRC, and, by induction, applying any of the 
elements of PRC leaves the density of the test 
statistic 2( )j ijS Sι= Σ Σ unchanged. As only the 
identity I is common to the corresponding 
permutation groups, the permutation tests of the 
three hypotheses are independent of one another. 
 
Partial and Weak Exchangeability 
  Consider a sequence of discrete random 
variables that represent the outcomes of a finite 
Markov Chain whose transition matrix is such that 
pij = pji for all i and j.  Such a sequence is said to 
be partially exchangeable (see, for example, 
Zaman, 1984).  If the transition matrix is 
connected then the sequence is also weakly 
exchangeable. 
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