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Optimal Trimming and Outlier Elimination 
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Patricia P. Ramsey 
Fordham University 

              
 
Five data sets with known true values are used to determine the optimal number of pairs that should be 
trimmed in order to produce the minimum relative error. The optimal trimming in the five data sets is 
found to be 1%, 5%, 7%, 10% and 28%. The 28% rate is shown to be an outlier among the five data sets. 
Results of four data sets are used to establish cutoff values for outlier detection in two robust methods of 
outlier detection. 
 
Key words: Median absolute deviation, Box-and-whisker plot, MAD statistic. 
 

 
Introduction 

 
Outliers have been considered a serious problem 
for the application of many statistical 
procedures, especially when assuming an 
underlying normal distribution. Barnett and 
Lewis (1978) provided a detailed treatment of 
outliers and a number of procedures for outlier 
detection. Barnett and Lewis state, “We shall 
define   an   outlier  in  a  set  of data   to    be  an 
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observation (or set of observations) which 
appears to be inconsistent with the remainder of 
that set of data” (p. 4). Similar definitions have 
been provided by others (Everitt, 2002; Marriott, 
1990). 

The presence of outliers has been shown 
to seriously bias traditional statistical procedures 
(Wilcox, 2001). Symmetric trimming of a data 
set by removing a specified percentage of data 
points from each tail of a distribution is a simple 
method of removing outliers. A 10% trim would 
remove the top and bottom 10% of the data. In 
general, 100α% trimming of a sample of size N 
would remove [100αN] from the top and bottom 
of the N ordered observations where [ ] implies 
the greatest lower integer. 

Trimming the data biases the standard 
deviation of a data set but that problem can be 
overcome (Wilcox, 2001). However, the number 



OPTIMAL TRIMMING AND OUTLIER ELIMINATION 
 
356 

of pairs trimmed (i.e. the value of α) must be 
determined. Wilcox as argued for α = .20. Some  
researchers may find eliminating 40% of the 
data to be excessive. Some others may even 
resist any trimming unless outlier detection can 
be objectively confirmed. Trimming has been 
found to be beneficial in testing differences in 
means (Kowalchuk, Keselman, Wilcox, & 
Algina, 2006; Lix & Keselman, 1998). 

 
Methodology 

 
One of the simplest methods for evaluating an 
observation as a possible outlier would be to 
divide the deviation from the mean by the 
standard deviation. The problem is that an 
outlier biases the standard deviation upward thus 
reducing the ratio and making the observation 
appear less extreme. This “masking” effect is 
particularly strong when more than one outlier is 
present (Barnett & Lewis, 1978; Wilcox, 2001). 

If a set of N observations, X1, …, XN, is 
placed in order by size, the set can be identified 
by the order statistics, X(1), …, X(N). If N is odd, 
the median, M, becomes the middle value, 
X N +1
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median of the absolute deviations from the 
median (MAD), can be taken as a measure of 
variability. In particular, MAD/.6745 can be 
taken as an estimate of the population standard 
deviation, σ, in a normal distribution. Dividing 
an observation’s absolute deviation from M by 
MAD/.6745, defines the MAD statistic which 
can be taken as an estimated value in a standard 
normal deviate (Wilcox, 2001. p. 36). Wilcox 
suggests that a ratio exceeding 2.0 identifies the 
observation as an outlier. The use of the MAD 
statistic removes the problem of masking. 
However, the criterion value, 2.0, may be too 
small, identifying too many observations as 
outliers. For example, if one is drawing random 
samples from a perfectly, normally distributed 
population then the probability of a standard 
normal deviate exceeding 2.0 is .0455. A sample 
of size, N = 100, could be expected to have four 

or five observations identified as outliers (i.e. 4 
or 5 false positives). 

Another approach using the median, M, 
can be raced back to Tukey’s (1977) box-and-
whisker plots. For N even, the ordered values, 
X(i), are divided into the top and bottom half. 
The median of the bottom half is Q1, the first 
quartile of the original data. The median of the 
top half is Q3, the third quartile of the original 
data. For N odd, the ordered values, X(i), are 
again divided into the top and bottom halves but 
the middle value (i.e. M) is included in both the 
top and bottom half. The values of Q1 and Q3 are 
again taken as the medians of the respective 
subgroups. 

The interquartile range, IR, is Q3 – Q1. 
Any observation Xi exceeding Q3 + mIR (with m 
usually taken to be 1.5), is identified as an 
outlier. Likewise, any observation Xi less than 
Q1 - mIR, is identified as an outlier. In sampling 
from a normal distribution, the probability of 
obtaining a single observation outside this 
interval (with m = 1.5) would be .0070. In a 
sample of size, N = 100, one  should expect only 
about one such observation identified as an 
outlier (i.e. one false positive). The multiplier, 
m, could be increased to reduce the number of 
false positives but how high should it be and 
what balance should be set between false 
positives and false negatives? 

Some authors have presented illustrative 
data sets when defining outliers. Everitt (2002, 
p. 274) identified the value 198 as an outlier in 
the data set {125. 128, 130, 131, 198}. For that 
data set, M = 130 and MAD = 2. The MAD 
statistic for the observation, 198, would be 22.5 
and well above the 2.0 cutoff value. If Everitt’s 
data set were to be taken as a defining criterion 
for an outlier then the MAD statistic would need 
to exceed 22.5. The values Q3 = 131 and IR = 3 
would require an IR multiplier of m = 22.4 to 
match the value 198. It is unlikely that Everitt or 
any other author intended to use a data set to 
define a cutoff point for an outlier but Everitt is 
using a much more extreme example than has 
been recommended for outlier detection. 
 

Results 
 

Stigler (1977) reported 24 data sets that may be 
of use in the present investigation. Most of the 
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data sets were subsets of larger sets. Each data 
set contained observations of 18th and 19th 
century investigations of physical phenomena 
for which nearly exact values are now known. 
Such data sets make it possible to compare 
statistical estimates to ‘true values’ in real data. 
Data Sets 1 to 8 all estimated the parallax of the 
sun with a ‘true value’ of 8.798. The 158 values 
were combined and designated Data Set 25 for 
the present investigation. Data Set 17 included 
23 observations from Michelson’s 1882 data 
estimating the velocity of light with a ‘true 
value’ of 710.5. Data Set 23 included 66 
observations from Newcomb’s measurements of 
the passage of light with a ‘true value’ of 33.02. 
Data Set 19 included 29 observations from 
Cavendish’s 1798 determinations of the density 
of the earth with a ‘true value’ of 5.517. Data 
Set 24 included 100 observations from 
Michelson’s 1879 estimation of the velocity of 
light in air with a ‘true value’ of 734.5. These 
five data sets include all of the data reported by 
Stigler. 

Stigler (1977) reported trimming at 
10%, 15%, and 25%. Stigler included eight other 
robust estimators for a total of 11. For each data 
set the 11 estimators were used to estimate the 
true value. The mean absolute deviation of the 
11 estimators from the true value was designated 
sj for data set j. For a given data set j, each of the 
eleven estimators had a relative error computed 
as the deviation of the estimated value and true 
value then divided by sj. These relative errors 
were one criterion used to compare the 11 
estimators. 

The five data sets selected for the 
present investigation were used to evaluate 
various degrees of trimming. The present 
approach is to remove one observation from 
each end of the ordered data set and calculate the 
relative error just as was done by Stigler. 
Additional pairs were removed until the 
minimum relative error was determined. The 
minimum relative error satisfied two objectives. 
First, it established an ideal degree of trimming 
for each data set. Second, it provided an 
estimator of an outlier detection   criterion.   
That   is,   if   outliers are responsible for poor 
estimation then the point at which estimation is 
best might be taken as the point at which an 
outlier or multiple outliers have been eliminated. 

Table 1 presents all 23 observations for 
Data Set 17 and the analysis needed for outlier 
detection. The largest observation, 1051, 
produces a MAD statistic of 4.061 as the most 
extreme of the 23 observations. Table 2 presents 
the relative errors (REs) for the mean, trimmed 
means eliminating one to five pairs of 
observations, and the median. The minimum RE 
is .8418 and occurs with a single pair of means 
removed or 5% trimming.  

From Table 1 the largest and smallest 
observations, 1051 and 573, are considered to be 
potential outliers. Their elimination produces the 
minimum RE. The criterion for MAD statistic 
must be less than 4.061 in order to ensure that 
this most extreme pair is rejected. However, if 
the criterion is less than 2.874 then a second pair 
of means would be trimmed. The midpoint, 
3.468, of 4.062 and 2.874 could be taken as the 
best estimate for outlier detection for Data Set 
17 to reject one and only one pair of means.  

The interquartile range, IR, in Table 1 is 
IR = 803 – 703.5 = 99.5. The maximum IR 
multiplier, m, to ensure that either Q3 + mIR or 
Q1 - mIR will lead to the rejection of the most 
extreme pair, 1051 and 573, is 2.5. Similarly, the 
minimum value of m to prevent the detection of 
a second pair of means is 1.261. The midpoint is 
m = (1.261 + 2.5)/2 = 1.88. 

Applying the same analysis as was 
applied to Data Set 17 to the other four data sets 
produces the results summarized in Table 3. 
Averages are calculated for four data sets (17, 
19, 23 & 25). Data Set 24 is separated and 
appears to be a possible outlier among the five 
data sets. The averages of the four relevant data 
sets are shown and the midpoints of maximum 
and minimum averages are presented as well. 
The value of 3.5 for MAD statistic cutoffs is 
well above the 2.0 value suggested by Wilcox. 
The 2.0 value for m, the IR multiplier, is well 
above the original value of 1.5.   

The optimal trimming percentages of the 
five data sets are 1, 5, 7, 10, and 28. The MAD 
statistic for the value 28 is 4.72. That exceeds 
the original 2.0 criterion as well as the 3.5 
criterion derived from the other four data sets. 
The cutoff point for the IR multiplier, m = 2.0, 
would be Q3 + 2.0IR = 10 + 2.0(5) = 20.0. The 
28% trimming of Data Set 24 is well above this 
20.0 cutoff. 
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Table 1. Analysis of Data Set 17, Michelson’s 1882 Data Estimating the Velocity of Light with a 
‘true value’ of 710.5 

 
  Order D = Ordered 

 X Sequence |X-M| D Values D(.6745/MAD) 

 1051 1 277 277 4.061 
 883 2 109 201 1.598 
 851 3 77 196 1.129 
 820 4 46 175 0.674 
 816 5 42 163 0.616 
Q3 = 803 809 6 35 109 0.513 
 797 7 23 92 0.337 
 796 8 22 78 0.323 
 796 9 22 77 0.323 
 781 10 7 63 0.103 
 778 11 4 51 0.059 
M = 774 774 12 0 46 0.000 
 772 11 2 42 0.029 
 748 10 26 35 0.381 
 748 9 26 26 0.381 
 723 8 51 26 0.748 
 711 7 63 23 0.924 
Q1 = 703.5 696 6 78 22 1.144 
 682 5 92 22 1.349 
 611 4 163 7 2.390 
 599 3 175 4 2.566 
 578 2 196 2 2.874 
 573 1 201 0 2.947 
 
 MAD = 46 
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Conclusions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table 2. Trimmed Means and Relative Errors (REs) for Data Set 17 with sj = 48 with RE Calculated for 

the Mean and Up to Five Pairs of Values Trimmed. Optimal trimming occurs at 5% with RE = 0.8418. 

 
 
 
 

 Value RE Trimming 

Mean = 756.217 .9524 0% 

Mean – 1 = 750.905 0.8418 5% 

Mean – 2 = 753.053 0.8865 10% 

Mean – 3 = 756.353 0.9553 15% 

Mean – 4 = 761.800 1.0688 20% 

Mean – 5 = 763.769 1.1098 25% 

Median = 774 1.3229 

Table 3. Maximum and Minimum Values Needed for the Optimal Trimming 
 
 
         DS25         DS 17        DS23 DS19 Ave. DS24 
 
Opt. Trim 1% 5% 7% 10% 5.75% 28% 

 

MAD-MAX 7.05 4.062 2.474 1.64 3.805 0.5395 

Midpoint 6.695 3.468 2.2485 1.58 3.5 0.5395 

MAD-MIN 6.34 2.874 2.023 1.52 3.189 0.5395 

 

IR-MAX 5.479 2.5 1.143 0.646 2.439 -0.0556 

Midpoint 4.6175 1.8805 0.9285 0.549 2.0 -0.11 

IR-MIN 3.756 1.261 0.714 0.452 1.547 -0.1667 
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The cutoff from the original, m = 1.5, would be 
Q3 + 1.5IR = 10 + 1.5(5) = 17.5. Of course, 
28exceeds this more conservative value of 17.5. 

 
Conclusion 

 
In sampling from a standard normal distribution 
the probability of exceeding a value of 3.5 is 
approximately .0005. Even in a sample of size, 
N = 1000, a single, false-positive indication of 
an outlier would not be expected. Again 
sampling from a standard normal distribution the 
probability of identifying an outlier with the m = 
2.0 multiplier for IR would be approximately 
0.0008. In that case a sample of size, N = 1000, 
might be expected to produce one, false-positive 
observation. 

As a final point, note that Data Set 24 
does suggest that trimming even in excess of 
20% may sometimes be justified. However, to 
the extent that present results are applicable, 
trimming by no more than 10% is more likely to 
be optimal. 
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