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Regular Articles 
A Comparison of Procedures for the Analysis of 

Multivariate Repeated Measurements 
 

            Lisa M. Lix       Anita M. Lloyd 
           University of Manitoba   University of Alberta 

 
 
 
Three procedures for analyzing within-subjects effects in multivariate repeated measures designs are 
compared when group covariances are heterogeneous: the multiple regression model (MRM) with a 
structured covariance, Johansen’s (1980) procedure, and the multivariate Brown and Forsythe (1974) 
procedure. A preliminary likelihood ratio test of a Kronecker product covariance structure is sensitive to 
sample size and derivational assumption violations. Error rates of the procedures are generally well-
controlled except when the distribution is skewed. The MRM procedure displayed few power advantages 
over the other procedures.  
 
Key words: doubly multivariate data; robustness; Kronecker product; assumption violations; general 
linear model; Kenward-Roger approximation. 
 
 

Introduction 
 
Multivariate repeated measures data arise when 
measurements are obtained from study 
participants on P dependent variables at each of 
T occasions. The choice of a procedure for 
testing multivariate within-subjects main and 
interaction effects depends, in part, on the 
assumptions made about cov(Yij) =  Ωij, where 
Yij = [Yij11 Yij12 …  Yij1P … YijTP]T, the vector of 
measurements for the ith subject      (i = 1 ,…, 
nj) in the jth group (j = 1 ,…, J), and T is the 
transpose operator. 

Two procedures for testing within-
subjects effects in multivariate repeated 
measures data are the doubly multivariate model 
(DMM) and multivariate mixed model (MMM) 
procedures (Boik, 1988, 1991; Crawford & 
Johnson, 1994; Naik & Rao, 2001; Thomas,  
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1983), which are extensions of multivariate 
analysis of variance (MANOVA) and analysis of  
variance (ANOVA) for repeated measurements, 
respectively, to the case of two or more 
dependent variables. Both procedures define the 
multivariate mean response as a function of the 
measurement occasions and the between-
subjects (i.e., grouping) factor levels. The DMM 
makes no assumptions about the structure of Ωij 
= Ω, where Ω is the pooled covariance, other 
than it is positive definite. The MMM assumes a 
multivariate spherical (M-spherical) structure for 
Ω, in which pairs of repeated measurements 
exhibit a common variance across the dependent 
variables. The MMM is more powerful than the 
DMM for testing multivariate within-subjects 
effects if the assumption of M-sphericity is 
satisfied and the data follow a multivariate 
normal distribution (Boik, 1988; 1991). 
However if M-sphericity is not a tenable 
assumption, Type I error rates of the MMM tests 
may be substantially inflated; the magnitude of 
the deviation from the nominal level of 
significance, α, will increase as the degree of 
departure from an M-spherical structure 
increases (Boik, 1988). Accordingly, Boik 
recommended the DMM over the MMM 
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provided that total sample size is sufficiently 
large. 

The multiple regression model (MRM) 
with a structured covariance is one alternative to 
the ANOVA and MANOVA procedures for the 
analysis of repeated measures data. Jennrich and 
Schluchter (1986) and Zimmerman and Nunez-
Anton (2001) (see also Fitzmaurice, Laird, & 
Ware, 2004; Littell, Pendergast, & Natarajan, 
2000) have described this procedure for the case 
of a single dependent variable. The MRM 
procedure allows the researcher to specify a 
parametric form for both the mean and 
covariance of the repeated measurements. When 
a parsimonious structure is specified for the 
covariance, the MRM procedure should result in 
a more powerful test of within-subjects effects 
than the MANOVA procedure because there are 
fewer parameters to estimate and greater 
denominator degrees of freedom. However if the 
covariance structure is incorrectly specified, 
tests of within-subjects effects may be biased 
(Guerin & Stroup, 2000). 

In multivariate repeated measures data, 
a parsimonious structure for Ω in the MRM 
procedure is a Kronecker product structure 
(Galecki, 1994), that is, PT ΣΣΩ ⊗=  
(Chaganty & Naik, 2002; Mitchell, Genton, & 
Gumpertz, 2006; Naik & Rao, 2001), where ΣT 
is the covariance of the repeated measurements, 
ΣP is the covariance of the dependent variables 
and ⊗  is the Kronecker product operator. This 
structure is also referred to as a separable 
covariance structure (Mitchell et al., 2006). A 
likelihood ratio test (LRT) of a Kronecker 
product structure has been proposed for 
choosing between the MRM and DMM 
procedures (Naik & Rao, 2001; Roy & Khattree, 
2005; Timm, 2002). If the MRM procedure is 
adopted, selection of the best-fitting model from 
the set of candidate models with different 
covariance structures is accomplished either by 
assessing the statistical significance of a LRT for 
two nested models, or by comparing the values 
of a penalized log likelihood-based information 
criterion, such as the Akaike criterion (Akaike, 
1974), for these candidate models (Fitzmaurice 
et al., 2004; Littell et al., 2000).  

There has been only limited 
investigation of the MRM with a structured 

covariance when P ≥ 2 (e.g., Chinchilli & 
Carter, 1984; Reinsel, 1982), and not for the 
case when group covariances are heterogeneous. 
Previous research on methods for the analysis of 
multivariate repeated measures data when 
covariances are heterogeneous has focused on 
the properties of DMM tests of multivariate 
within-subjects main and interaction effects and 
robust alternatives to DMM tests. Robust 
alternatives include Johansen’s (1980) 
approximate degrees of freedom (ADF) 
multivariate test and a multivariate extension of 
the Brown and Forsythe (1974) ADF test 
(Keselman & Lix, 1997; Lix, Algina, & 
Keselman, 2003; Vallejo, Fidalgo, & Fernandez, 
2001). These ADF tests have been implemented 
with least-squares estimators when the data 
follow a multivariate normal distribution, as well 
as with trimmed estimators (i.e., trimmed means 
and Winsorized covariances) for the case when 
the data follow a multivariate heavy-tailed or 
skewed distribution. While the Johansen and 
Brown and Forsythe ADF tests are insensitive to 
covariance heterogeneity, they assume an 
unstructured form for Ω and should, in theory, 
be less powerful than the MRM, provided that 
all procedures can control the rate of Type I 
errors to α. However, Johansen’s procedure is 
also known to produce inflated error rates when 
sample size is small (Keselman & Lix, 1997). 
Thus, at present it is not clear which 
procedure(s) should be recommended for 
analyzing multivariate repeated measurements 
data when covariances are heterogeneous. 

The objectives of this article are to: (a) 
examine the Type I error performance of a LRT 
of a Kronecker product structure for Ω, and (b) 
compare the Type I error and power of the 
MRM, Johansen (1980), and multivariate Brown 
and Forsythe (1974) procedures for testing 
multivariate within-subjects main and 
interaction effects when covariances are 
heterogeneous. As part of the second objective, 
several information criteria are investigated for 
selecting the best-fitting model from amongst 
candidate models with different covariance 
structures for the MRM in the presence of 
covariance heterogeneity.  
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Description of Procedures 
 
Notation 

The procedures are described for a 
multivariate design with T repeated 
measurements, P dependent variables, and J 
levels of a between-subjects factor. Consider the 
general linear model  

 
               ,+= εβXY                         (1) 

 

where [ ]TTT
11 ... JnJ

YYY =  is the N x TP matrix of 
responses with Yij as defined previously, X is an 
N x q design matrix, β is the q x TP matrix of 
fixed effect parameters to be estimated, and ε is 
the N x TP matrix of residual errors. The rows of 
ε are assumed to be independent and to follow a 
normal distribution with mean 0 and covariance 
Ωij = Ωj, the covariance for the jth group.  
 
Likelihood Ratio Test of a Kronecker Product 
Structure for Ω 

There are T(T + 1)/2 + P(P + 1)/2 
parameters to estimate when Ω has a Kronecker 
product structure, compared to TP(TP + 1)/2 
parameters to estimate when Ω is unstructured. 
For example, with   T = 4 and P = 2, there are a 
total of 10 + 3 = 13 parameters to be estimated 
in the former case, compared to 8(9)/2 = 36 
parameters to be estimated in the latter case. 

Tests of different forms of a Kronecker 
product structure have been described in the 
literature (e.g., Boik, 1991; Naik & Rao, 2001). 
Mitchell et al. (2006) derived a LRT for a 
general Kronecker product structure, which 
makes no assumptions about the form of either 
ΣT or ΣP. To test the null hypothesis 

PTH ΣΣΩ ⊗=:01  against the alternative 

PTAH ΣΣ  ⊗≠Ω:1      the test     statistic       is  
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where 
 

      [ ]YXXXXIYE 1TTT )(1 −−= NN
          (3)   

 
and IN  is an identity matrix of dimension N. The 
statistic -2lnλ asymptotically follows a 

2
fχ distribution, where f = PT(PT + 1)/2 – P(P + 

1)/2 – T(T + 1)/2, under the assumptions of a 
multivariate normal distribution of responses 
and covariance homogeneity. Maximum 
likelihood (ML) estimates of ΣP and ΣT can be 
obtained via algorithms proposed by Boik 
(1991), Dutilleul (1999), or Mardia & Goodall 
(1993). 
 
The Multiple Regression Model, Johansen 
(1980), and Multivariate Brown and Forsythe 
(1974) Procedures 

For multivariate repeated measures data, 
the MRM procedure with a structured 
covariance is defined as 

 
    ( ) )vec()(vec)(vec TTT εβIXY +⊗= TP  (4) 
 
where vec ( )⋅  is the vec operator, and 
 

                
,

))(veccov( T

V
ΩIY

=
⊗= N               (5) 

when homogeneity of group covariances is 
assumed. If V is known, the least-squares 
estimator of β is  
 

( ) ( ) ( )

T

1T T1 1 T

ˆvec(

vec( )TP TP TP

−
− −

=

⎡ ⎤⊗ ⊗ ⊗⎣ ⎦

β )

X I V X I X I V Y
  (6) 

 
When the data follow a multivariate normal 
distribution, β̂  also follows a multivariate 
normal distribution with mean β and covariance  
 

        ( ) ( )[ ] .)ˆ(
1T −1− ⊗⊗= TPTP IXVIXβΣ    (7) 

 
When V is unknown, covariance 

parameters (i.e., V̂ ) are estimated using ML or 
restricted maximum likelihood (REML). Then 
V̂  is substituted for V in equations 6 and 7. 
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When this substitution is made, β̂  is an unbiased 
estimate of β under asymptotic theory 
(Fitzmaurice et al., 2004). Kackar and Harville 
(1981) have also shown that, provided the 
population distribution is symmetric, β̂  is an 
asymptotically unbiased estimate of β. However, 
for small sample sizes, the accuracy of the 
approximation may be poor, particularly when T 
and/or P are large. When covariances are not 
assumed homogeneous across groups, separate 
parameters are estimated for each level of the 
between-subjects factor, such that jΩ̂ denotes 
the estimated covariance for the jth group. 

Hypotheses about multivariate within-
subjects main and interaction effects are of the 
form H02: Lvec(βT) = 0 where L of dimension r 
x qTP contains weights that define one or more 
linear contrasts among the elements of β. To test 
hypotheses about the individual βm (m = 1 ,…, 
qTP), a number of different test statistics may be 
adopted (Fouladi & Shieh, 2004), including an 
approximate t statistic. If the rank of L is greater 
than one, an F statistic to test the null hypothesis 
is, 
 

     
( ) ( )T 1T T1 ˆ ˆ ˆˆvec( ( ) vec(

rank( )

F
−

=

⎡ ⎤
⎣ ⎦L β ) LΣ β L L β)

L

  (8) 

 
where )ˆ(ˆ βΣ  estimates )ˆ(βΣ . This statistic is 
compared to the critical value, F[(1 – α); ν1, ν2], 
where ν1 = rank(L) and ν2 is approximated from 
the data (Kenward & Roger, 1997; 
Satterthwaite; 1946). Guerin and Stroup (2000) 
recommend adopting the Kenward-Roger 
approximation because the former can result in 
inflated error rates for small sample sizes. 

As noted previously, for the MRM 
procedure applied to P ≥ 2 dependent variables, 

PT ΣΣΩ ⊗=  defines a parsimonious structure 
for Ω. The matrix ΣP is typically assumed to 
have an unstructured form with P(P + 1)/2 
unique elements σll′ (l, l′ = 1 ,…, P), while the 
parameters in ΣT are assumed to be a function of 
the measurement occasions u and v (u, v = 1 ,…, 
T) and the levels of one or more between-
subjects factor(s) when covariance homogeneity 
is not assumed (Zimmerman & Nunez-Anton, 

2001). Examples of possible structures for ΣT 
have been enumerated in several sources, 
including Fitzmaurice et al. (2004), Littell et al. 
(2000), and Littell, Stroup, and Freund (2002). 
For example, the compound symmetric (CS) 
structure has the following variance and 
correlation specification: σkk = σ2 and ρkk′ = ρ (k = 
1 ,…, T ; k ≠ k′). This parsimonious structure 
assumes constant variances and correlations 
across measurement occasions. Multivariate 
compound symmetry is a more restrictive 
assumption than that of M-sphericity (Crawford 
& Johnson, 1994). The variance and correlation 
specifications for the first order autoregressive 
(AR-1) structure is σkk = σ2, for k = 1 ,…, T and 
ρkk′ = ρk′- k for k′ > k and  k′  = 2, …, T. The 
unstructured (UN) covariance has T(T + 1)/2 
unique elements denoted σkk′ (k, k′ = 1 ,…, T). 

Several information criteria for 
assessing model fit have been proposed, 
including the Akaike (AIC; Akaike, 1974), 
Bayesian-Schwarz (BIC: Schwarz, 1978), finite 
population-corrected AIC (CAIC; Bozdogan, 
1987), and Hannan & Quinn (HQIC; Hannan & 
Quin, 1979) criteria. These are respectively 
defined as  

 

    

*),log(log22HQIC
),1*log(2CAIC

*),log(2BIC
,22AIC

Ndl
Ndl

Ndl
dl

+−=
++−=

+−=
+−=

    (9) 

 
where l is the logarithm of the ML or REML 
function for the specified model, d is the number 
of covariance parameters to be estimated, N*= N 
for ML estimation and N* = N – q for REML 
estimation. Amongst candidate models with 
different covariance structures, the best-fitting 
model is the one with the smallest value for the 
selected information criterion. The criteria will 
not always select the same model. For example, 
the BIC penalizes the model more severely for 
the number of parameters than does the AIC, 
and therefore tends to choose less complex 
models than the AIC. 
 Computational formulae for the 
Johansen (1980) and multivariate Brown and 
Forsythe (1974) ADF procedures have been 
enumerated in a number of sources, and 
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therefore have not been repeated in this 
manuscript (e.g., Keselman & Lix, 1997; Lix et 
al., 2003). Vallejo, Fidalgo, and Fernandez 
(2001) extended the Brown and Forsythe (1974) 
procedure to the case of multivariate repeated 
measurements, but a recent modification 
proposed by Vallejo and Ato (2006), to address 
the conservative Type I error properties of this 
procedure for testing within-subjects effects, 
was adopted in the current study. 
 

Methodology 
 

Methods for Investigating the Properties of a 
Likelihood Ratio Test of a Kronecker Product 
Covariance Structure 

Monte Carlo techniques were used to 
investigate the Type I error properties of the 
LRT for testing the null hypothesis that Ω has a 
Kronecker product structure. The data were 
generated for a multivariate design containing a 
single between-subjects factor with two levels 
and a single within-subjects factor. The 
parameters manipulated in the study were: (a) 
total sample size, (b) number of repeated 
measurements, (c) number of dependent 
variables, (d) degree of covariance 
heterogeneity, and (e) degree of departure from 
a multivariate normal distribution. The value of 
the LRT statistic does not depend on the form of 
either ΣT or ΣP (Mitchell et al., 2003), so the 
data were generated from a population in which 
both ΣT or ΣP had CS covariance structures. 

Dutilleul’s (1999) algorithm (see also 
Dutilleul & Pinel-Alloul, 1996) was used to 
obtain ML estimates of ΣT and ΣP. This 
algorithm finds solutions to the following 
system of equations, 

 

            
1 T

1 1

ˆ

1 ˆ( ) ( )
j

P
n J

ij T ij
i jTN

−

= =

=

− −∑∑

Σ

W W Σ W W
    (10) 

and 
 

            
1 T

1 1

ˆ

1 ˆ( ) ( )
j

T
n J

ij P ij
i jPN

−

= =

=

− −∑∑

Σ

W W Σ W W
    (11) 

 

where Wij is the P x T matrix obtained by re-
shaping Yij, and W  is the matrix of means 
obtained by averaging across all such 
observation matrices.  

Three levels of total sample size were 
investigated: N = 40, 60, and 100. The number 
of repeated measurements was set at T = 4 and 
6, while the number of dependent variables was 
set at P = 2, 3, 4, and 6.  These conditions reflect 
the range of simulation parameters that have 
been investigated in previous research on 
methods for the analysis of multivariate repeated 
measures data (Boik, 1991; Lix et al., 2003; 
Vallejo et al., 2001).  

The tests were investigated for 
homogeneous covariances (i.e., Ω1 = Ω2), as 
well as for two cases of covariance 
heterogeneity: Ω1 = 5Ω2, and  Ω1 = 9Ω2. 

Multivariate data were generated from 
both normal and non-normal distributions. 
Pseudorandom observation vectors Yij from a 
multivariate normal distribution with mean 
vector jβ  and covariance matrix Ωj were 
obtained by the following method. A column 
vector of standard normal deviates (i.e., dij) was 
transformed to a vector of multivariate 
observations via ijjij RdβY += where R is an 
upper triangular matrix of dimension TP with 
the property jΩRR =T .  

Two multivariate non-normal 
distributions were investigated (Lix, Keselman, 
& Hinds, 2005). The first was a symmetric 
distribution with a mild degree of heavy-
tailedness and skewness (γ1) and kurtosis (γ2) 
values of 0 and 1.7 respectively, (the normal 
distribution has γ1 = 0 and γ2 = 0) while the 
second distribution had γ1 = 2.0 and γ2 = 6.0, 
which are equivalent to the shape parameters of 
an exponential distribution. A vector of 
constants w = [a b c d]T was obtained using 
Fleishman’s (1978) method, to provide the 
desired degree of skewness and kurtosis for each 
of these distributions. An intermediate 
covariance matrix (i.e., ζ) was then computed so 
that Yij would have the desired final covariance 
structure. Elements of this intermediate matrix 
were computed using Vale and Maurelli’s 
(1983) method. The vector of univariate deviates 
was transformed to a vector of multivariate 
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normal deviates via, ,)( ijjij dRβζZ ζ+=  where 
Z(ζ)ij is the vector of transformed variates, and 
Rζ is an upper triangular matrix such that 

ζRR =ζ
Τ
ζ . Next, each element of Yij was 

obtained by computing the zero through third 
powers of the corresponding elements of Z(ζ)ij, 
so that ])()()(1[( 32

ijmijmijmijm ζZζZζZζZ =)  (m 
= 1 ,…, TP) represents the vector of powers. 
From this, Yijkl = Z(ζ)imw  (k = 1 ,…, T; l = 1 ,…, 
P). 

Five thousand replications of each 
combination of conditions were performed using 
α = .05 as the criterion for assessing statistical 
significance. The simulation program was 
written in SAS/IML (SAS Institute Inc., 2004a).  
Descriptive techniques were used to summarize 
the Type I error rates. 
 
Methods for Investigating the Properties of the 
Multiple Regression Model, Johansen, and 
Multivariate Brown and Forsythe Procedures 

Monte Carlo techniques were used to 
evaluate the Type I error and power of the 
MRM, Johansen (1980), and multivariate Brown 
and Forsythe (1974) procedures for testing 
multivariate within-subjects main and 
interaction effects as well as to investigate the 
properties of the information criteria for 
assessing model fit. The data were generated for 
a design with a single between-subjects factor 
with two levels, a single within-subjects factor 
with four levels, and three dependent variables. 
The simulation parameters were: (a) total sample 
size, (b) degree of group size imbalance, (c) 
degree of covariance heterogeneity, (d) pairing 
of group sizes and covariances, (e) degree of 
departure from a multivariate normal 
distribution, (f) structure of Ω, and (g) 
configuration of the population means.  

The analyses were conducted for total 
sample size conditions of 60 and 100. Group 
sizes were both equal and unequal. Table 1 lists 
the group sizes that were investigated for each 
value of N. The tests were investigated for 
homogeneous covariances (i.e., Ω1 =  Ω2), as 
well as for  two cases of covariance 
heterogeneity: Ω1 =  5Ω2, and  Ω1 =  9Ω2. 

Positive and negative pairings of group 
sizes and group covariances were investigated. 

A positive pairing refers to the case in which the 
largest nj is associated with the covariance 
matrix containing the largest element values; a 
negative pairing refers to the case in which the 
largest nj is associated with the covariance 
matrix with the smallest element values.  

Multivariate normal and non-normal 
data were generated using the method described 
in the previous section. Two multivariate non-
normal distributions were investigated. The first 
was a symmetric heavy-tailed distribution with 
shape parameters equivalent to those of a double 
exponential distribution (i.e., γ1 = 0; γ2 = 3.0.) 
The second was a skewed distribution that 
represented an extreme degree of departure from 
multivariate normality, with shape parameters 
equivalent to those of a multivariate lognormal 
distribution (i.e., γ1 = 6.2; γ2 = 110.9). 

In this phase of the study, ΣT had either 
a CS or AR-1 structure. Both structures had σ2 = 
1 and ρ = 0.5. ΣP had a CS structure with σ2 = 1 
and ρ = 0.4.  

All procedures were investigated when 
the configuration of population means was null 
and non-null. For the non-null case, the 
following configuration of means was 
investigated: β1 = [.25 0 0 -.25 0 0 0 0 .25 0 0 -
.25]T and β2 = [.25 0 0 .25 0 0 0 0 .25 0 0 .25]T. 

Multivariate datasets were generated 
using a program written in SAS/IML (SAS 
Institute Inc., 2004a). A SAS/IML program was 
also written to analyze each dataset with the 
Johansen (1980) and multivariate Brown and 
Forsythe (1974) procedures. A PROC MIXED 
(SAS Institute Inc., 2004b) macro was written to 
analyze each dataset using the MRM procedure, 
and output the F statistics, p-values, and degrees 
of freedom for tests of the within-subjects main 
and interaction effects, as well as the numeric 
values for each of the four investigated 
information criterion. Only one thousand 
replications were performed for each 
combination of conditions because of the 
lengthy execution time required for PROC 
MIXED. The syntax to implement the MRM  
procedure is reported in Appendix A; it is the 
same as that reported by Timm (2002) and 
Thiebaut, Jacquim-Gadda, Chene, Leport and 
Commenges (2002). All parameters were 
estimated using REML. In the PROC MIXED 
macro, each dataset was analyzed using 
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Three different models; each model had the 
same fixed effects, but a different Kronecker 
product covariance structure in the REPEATED 
statement (see Appendix A). The best-fitting 
model, among the three models that were fit to 
the data, was the model that resulted in the 
lowest numeric value of an information 
criterion. The percentage of times that the best-
fitting model had the same covariance structure 
as the population covariance structure was 
recorded for each criterion; this is denoted as the 
percentage of correct model selection.  

Type I error and power rates were 
calculated for the MRM, Johansen (1980), and 
multivariate Brown and Forsythe (1974) 
procedures. The percent bias in Type I error 
rates, ( ) α/ˆ100 ααB −= , where α̂ is the 
empirical error rate for a test, was also 
calculated. Type I error rates, percentages of 
bias, and power rates were summarized 
descriptively. For each of the three procedures, 
regression analyses were used to model the 
effect of the simulation parameters on the Type I 
error rates. For the MRM, the regression model 
had a random simulation effect, because there 
were repeated measurements on each model 
covariance structure. For each procedure, 
separate models were defined for equal and 
unequal group size cases for within-subjects 
main and interaction effects, respectively. All  
models included main effects as well as two-way 
interactions among the simulation parameters.  
 

 
 
 

Results 
 

Likelihood Ratio Test of a Kronecker Product 
Covariance Structure 

Figure 1 contains the empirical Type I 
error rates for the LRT for each of the 
investigated values of P when T = 4 and Ω1 = 
Ω2. The sensitivity of the LRT to total sample 
size is apparent. When the data were 
multivariate normal and P = 2, the empirical 
error rate was 0.11 for N = 40, but quickly 
converged to 0.05 when N = 100. As the 
dimension of Ω increased from TP = 8 to 36, 
error rates also increased across the range of 
values of N. For example, with P = 3 and N = 
100, the error rate was 0.09. As the dimension of 
the data increased, Type I error rates of the LRT 
rapidly approached the upper bound of 1.00. 

Error rates were also highly sensitive to 
the presence of multivariate non-normality. For 
example, when the data were sampled from a 
heavy-tailed distribution when P = 2, the error 
rate was 0.18 for N = 40 and 0.12 for N = 100. 
Error rates were also more inflated for the 
skewed distribution than the heavy-tailed 
distribution. For the latter distribution, error 
rates attained or approached the upper bound of 
1.00 for many of the investigated conditions.  

When the number of repeated 
measurements increased to six and Ω1 = Ω2, the 
same pattern of results was observed, although 
error rates were even more inflated than for T = 
4. For example, for N = 100, the empirical error  
 

Table 1. Group Sizes Investigated in the Simulation Study 
 

N n1, n2 Δnj 
60 30, 30 0.0 

 24, 36 0.2 
 20, 40 0.3 

100 50, 50 0.0 
 40, 60 0.2 
 35, 65 0.3 

 
Note. N = total sample size. jnΔ is the coefficient of variation for group sizes (see Lix & Keselman, 1997). 
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rate was 0.07 for P = 2 but increased to 0.89 for 
P = 6 when the data were sampled from a 
multivariate normal distribution. When the data 
were from multivariate non-normal 
distributions, error rates always exceeded α and 
frequently attained the upper bound of 1.00. 

When covariances were heterogeneous,  
the error rates of the LRT were always inflated  
regardless of the total sample size, dimension of 
Ω, or degree of departure from a multivariate 
normal distribution. For example, when the data 

were multivariate normal with T = 4 and P = 2, 
the error rate was 0.52 for N = 40 and 0.37 for N 
= 100. 
 
Information Criteria for Assessing Model Fit 

The results for the four information 
criteria are reported in Table 2; they have been 
averaged over the conditions of total sample 
size, degree of covariance heterogeneity, and 
degree of group size imbalance because a similar 

 
  
 

Figure 1. Type I Error Rates for the Likelihood Ratio Test (LRT) of a Kronecker Product Structure, Ω1 = 
Ω2, T = 4 
Note.  Heavy-tailed distribution has γ1 = 0 and γ2 = 1.7. Skewed distribution has γ1 = 2.0 and γ2 = 6.0. 
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pattern of results was observed for these 
conditions. 

When the data followed a multivariate 
normal distribution and Ω1 = Ω2, the differences 
among the four criteria were small and on 
average, the correct (i.e., population) covariance 
structure was selected in as many as 96.4% of 
the models. When covariances were 
heterogeneous and the distribution was 
multivariate normal, the percentages of correct 
model selection were lower when ΣT had a CS 
structure (approximately 65% for all criteria) 
than when ΣT had an AR-1 structure 
(approximately 90% for all criteria). 

When Ω1 = Ω2 and the data were 
sampled from non-normal distributions, the 
average percentages of correct model selection 
were lower than when the data were sampled 
from a multivariate normal distribution. For the 
heavy-tailed distribution when ΣT had a CS 
structure, correct model selection was observed, 
on average, for 64.8% of the models for the AIC 
and 75.2% of the models for the BIC. When ΣT  
had an AR-1 structure, the average percentages 
for the AIC and BIC were 77.4% and 90.3%, 
respectively, for this distribution. For the 
skewed distribution, the percentages were 
substantially lower; for example, when ΣT had a 
CS structure, correct model selection was 
observed for only 22.2% of the models for the 
AIC. Moreover, the AIC and HQIC were more 
sensitive to multivariate non-normality than the 
BIC and CAIC. The latter two procedures 
always resulted in higher average percentages of 
correct models than the former two procedures 
when the data were obtained from heavy-tailed 
or skewed distributions. 

When covariances were heterogeneous 
and the data were obtained from multivariate 
non-normal distributions, a similar pattern of 
results was observed. All four information 
criteria produced similar average percentages of 
correct model selection regardless of whether 
group sizes were equal or unequal. The values 
obtained when ΣT had an AR-1 structure were 
higher than those obtained when ΣT had a CS 
structure. The AIC and HQIC were more 
sensitive to multivariate non-normality than the 
BIC and CAIC. 
 

Tests of Multivariate Within-Subjects Main and 
Interaction Effects 
 
Type I error rates 

 Percentages of bias in Type I error rates 
are reported in Tables 3 and 4; the results are 
averaged across the two values of total sample 
size because a similar pattern of results was 
observed. For both the main and interaction 
effect tests when group sizes were equal (Table 
3), the average bias was small for Johansen’s 
(1980) procedure as well as for the multivariate 
Brown and Forsythe (1974) procedure when the 
data were from symmetric distributions. For 
Johansen’s test, average bias ranged from 10.0% 
to 19.5% for the within-subjects main effect and 
from -1.5% to 22.0% for the within-subjects 
interaction effect. For the Brown and Forsythe 
(1974) test, average bias ranged from         -2.0% 
to 13.0% for the within-subjects main effect and 
from -11.0% to 7.5% for the within-subjects 
interaction. Overall, the Type I error rates of the 
MRM procedure were more biased than error 
rates of either ADF procedure when the 
distribution was symmetric. Average bias ranged 
from -28.0% to 29.0% for the within-subjects 
main effect and from -15.0% to 23.0% for the 
within-subjects interaction effect. However, the 
results for symmetric distributions reveal that 
the magnitude of bias varied across the three 
model covariance structures. As expected, when 
ΣT had a CS structure, there was generally less 
bias in the error rates when a model with a CS or 
UN covariance structure for the repeated 
measurements was adopted than when a model 
with an AR-1 structure was adopted. Similarly, 
when ΣT had an AR-1 structure, there was less 
bias when a model with either an AR-1 or UN 
structure was selected than when a model with a 
CS structure was selected. However, for the 
former case, the AR-1 structure tended to result 
in negatively biased error rates for the within-
subjects main effect and positively biased results 
for the within-subjects interaction effect, while 
in the latter case the CS structure results in  
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positively biased error rates for both main and 
interaction tests. For the multivariate skewed 
distribution, Type I error rates were almost 
always negatively biased for all procedures 
when group sizes were equal. This finding was 
observed for both main and interaction effects. 
For example, for the multivariate within-subjects 
interaction, average bias for Johansen’s (1980) 
procedure ranged from -23.0% to -48.0% and for 
the multivariate Brown and Forsythe (1974) 
procedure average bias ranged from -31.0% to  

 

 
-51.0%.  For the MRM procedure, average bias 
was similar, and ranged from -13.5% to -45.0% 
across the three models for the interaction effect. 

Percentages of bias for unequal group 
sizes are reported in Table 4; separate 
summaries are given for positive and negative 
pairings of group sizes and covariances and the 
results are averaged across conditions of total 
sample size, degree of covariance heterogeneity, 
and degree of group size imbalance because  

Table 2. Average Percentages of Correct Model Selection for Four Information Criteria 
 

  AIC HQIC BIC CAIC 
  ΣT = CS 
Nor =nj/=Ωj 86.4 87.5 87.5 87.5 
 =nj/≠Ωj 63.0 63.2 63.3 63.3 
 + pair 65.9 66.3 66.3 66.3 
 - pair 64.9 65.3 65.3 65.3 
HT =nj/=Ωj 64.8 73.7 75.2 75.3 
 =nj/≠Ωj 59.2 63.8 64.5 64.5 
 + pair 58.9 64.5 65.2 65.2 
 - pair 58.9 64.5 65.3 65.3 
SK =nj/=Ωj 22.2 24.3 30.6 38.4 
 =nj/≠Ωj 20.6 22.4 29.2 36.5 
 + pair 21.6 23.4 30.4 37.9 
 - pair 21.5 23.6 31.0 38.8 
  ΣT = AR-1 
Nor =nj/=Ωj 95.6 96.4 96.4 96.4 
 =nj/≠Ωj 89.9 90.4 90.4 90.4 
 + pair 92.1 92.8 92.8 92.8 
 - pair 90.5 91.1 91.1 91.1 
HT =nj/=Ωj 77.4 88.5 90.3 90.4 
 =nj/≠Ωj 75.5 83.5 84.6 84.6 
 + pair 75.4 85.8 87.3 87.4 
 - pair 75.6 83.0 84.1 84.2 
SK =nj/=Ωj 20.4 23.1 30.5 38.4 
 =nj/≠Ωj 19.8 22.0 30.0 37.8 
 + pair 20.0 22.9 31.9 40.1 
 - pair 20.8 23.7 31.9 40.7 

 
 

 
Note. CS = compound symmetric; AR-1 = first-order autoregressive. Nor = multivariate normal 
distribution with γ1 = 0 and γ2 = 0; HT = multivariate heavy-tailed distribution with γ1 = 0 and γ2 = 3; 
SK= multivariate skewed distribution with γ1 = 6.2 and γ2 = 110.9. =nj/=Ωj = equal group sizes and 
equal group covariances; =nj/≠Ωj = equal group sizes and unequal covariances; + pair = positive 
pairing of group sizes and covariances; - pair = negative pairing of group sizes and covariances. 
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similar patterns of results were observed. For 
Johansen’s (1980) procedure, bias was almost 
always positive for the multivariate normal and 
heavy-tailed distributions for both within-
subjects main and interaction effects; it was 
highest for negative pairings, where average bias 
ranged from 31.8% to 51.5%. For the 
multivariate Brown and Forsythe (1974) 
procedure, bias was small for the normal and 
heavy-tailed distributions and ranged from            
-9.0% to 8.5% across the main and interaction 
effects. For the MRM procedure, average bias 
ranged from -29.0% to 23.5% for the main effect 
and from -14.4% to 28.3% for the interaction 
effect for symmetric distributions across the 
three model covariance structures. The same 
pattern of results was observed for unequal 
group sizes as was observed for equal group  
 

 

 
sizes. When ΣT = AR-1 and a model with a CS 
structure was adopted, positive bias was  
observed for both the multivariate normal and 
heavy-tailed distributions. However, when ΣT = 
AR-1 and a model with either an AR-1 or UN  
covariance structure was adopted, error rates 
were less biased and ranged from -6.0% to  
10.8% for the main effect and from 1.5% to 
14.8% for the interaction effect. When  ΣT = CS 
and a model  with an AR-1 structure was  
adopted, bias ranged from -29.0% to -19.9% for 
the main effect and from -5.9% to 7.1% for the 
interaction effect.  

When the distribution was multivariate 
skewed and group sizes were unequal, error 
rates were almost always negatively biased for 
the three multivariate procedures. For example, 
for the MRM procedure, bias ranged from          
-50.8% to -5.6% for the main effect and from      

 
 
 
 
 
 
 

Table 4. Average Percentages of Bias in Type I Error Rates for Multivariate Within-Subjects Effects  
when Group Sizes are Unequal 

 
  

 

  ΣT = CS ΣT = AR-1 
  MRM 

CS 
MRM 
AR-1 

MRM 
UN J BF 

MRM 
CS 

MRM 
AR-1 

MRM 
UN J BF 

  Main Effect 
Nor Ω1 = Ω2 7.0 -4.0 4.0 18.0 13.0 24.0 7.0 16.0 6.0 4.0
 Ω1 ≠ Ω2 9.7 -23.2 6.6 11.5 4.0 29.0 4.0 17.0 19.5 7.5
HT Ω1 = Ω2 -5.0 -28.0 -22.0 11.0 7.0 27.0 10.0 -1.0 10.0 9.0
 Ω1 ≠ Ω2 -11.9 -23.4 -11.4 10.0 -1.5 19.0 -4.0 8.0 11.0 -2.0
SK Ω1 = Ω2 -17.0 -47.0 -24.0 -39.0 -39.0 -16.0 -29.0 -32.0 -44.0 -46.0
 Ω1 ≠ Ω2 -36.0 -54.0 -40.5 -22.0 -29.0 4.5 -12.0 -31.5 -26.5 -35.5
  Interaction Effect 
Nor Ω1 = Ω2 10.0 13.0 -11.0 5.0 1.0 13.0 -4.0 -14.0 10.0 6.0
 Ω1 ≠ Ω2 -3.6 9.6 -3.1 9.0 -1.5 21.5 2.0 10.0 22.0 7.5
HT Ω1 = Ω2 -15.0 12.0 -10.0 8.0 4.0 8.0 -11.0 -4.0 3.0 0.0
 Ω1 ≠ Ω2 -7.6 -7.7 -9.1 -1.5 -11.0 23.0 -0.5 8.5 8.5 -2.5
SK Ω1 = Ω2 -23.0 -14.0 -36.0 -46.0 -50.0 -19.0 -44.0 -45.0 -48.0 -51.0
 Ω1 ≠ Ω2 -29.5 -31.5 -39.0 -24.5 -33.0 -13.5 -20.5 -32.0 -23.0 -31.0

 

Note. CS = compound symmetric; AR-1 = first-order autoregressive; UN = unstructured. MRM = multiple 
regression model; J = Johansen’s (1980) procedure; BF = multivariate Brown and Forsythe (1974) 
procedure; Nor = multivariate normal distribution with γ1 = 0 and γ2 = 0; HT = multivariate heavy-tailed 
distribution with γ1 = 0 and γ2 = 3; SK = multivariate skewed distribution with γ1 = 6.2 and γ2 = 110.9. + 
pair = positive pairing of group sizes and covariances; - pair = negative pairing of group sizes and 
covariances. 
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-86.5% to -19.0% for the interaction effect. The 
range of values for average bias was similar for 
equal and unequal group sizes. 

As noted previously, for both balanced 
and unbalanced designs, it was generally the 
case that less bias was observed in Type I error 
rates when the model covariance structure 
corresponded to the population covariance 
structure. For MRM tests of the multivariate 
within-subjects main effect, the average bias 
across equal group sizes for ΣT = CS when the 
data were multivariate normal was 8.8% for the 
model with the CS covariance structure, -16.8% 
for the AR-1 model, and 5.8% for the UN 
structure. When ΣT = AR-1 under a normal 
multivariate distribution, the average bias across 
equal group size conditions was 5.0% for the 
model with the AR-1 covariance structure, 
27.3% for the model with the CS structure, and 
16.7% for the model with the UN covariance 
structure. The average percentages of bias were 
similar for multivariate within-subjects main and 
interaction effects. As sample size increased 
from N = 60 to 100 when group sizes were 
equal, bias tended to decrease for both the 
normal and skewed distributions under either 
population covariance structure while bias 
tended to increase when data were from a heavy-
tailed distribution. When group sizes were 
unequal and sample size increased from N = 60 
to 100, bias tended to increase when data was 
from a normal distribution while bias tended to 
decrease when data was from a skewed 
distribution. For data from a heavy-tailed 
distribution, a trend in average bias values was 
not evident. 

When group sizes were equal, the 
regression model for Johansen’s (1980) 
procedure accounted for 87.7% of the variation 
in Type I error rates for the within-subjects main 
effect and 90.5% of the variation in error rates 
for the within-subjects interaction effect. For the 
multivariate Brown and Forsythe (1974) 
procedure, the model accounted for 87.5% of the 
variation in Type I error rates for the within-
subjects main effect and 86.2% of the variation 
in Type I error rates for the interaction effect. 
For both procedures, the majority of this 
variation was attributed to the main effect of 
population distribution (i.e., between 85.5% and 
99.0% of the total explained variation). For 

Johansen’s procedure for the test of the within-
subjects interaction, total sample size and the 
two-way interaction of population distribution 
and degree of covariance heterogeneity 
accounted for 6.1% and 5.1% of the variation in 
error rates, respectively. Other main and two-
way interaction effects in the models accounted 
for a small percentage of the explained variation.   

For the MRM when group sizes were 
equal, the regression model that contained main 
effects and two-way interactions accounted for 
92.8% of the variation in Type I error rates for 
the within-subjects main effect test and 91.5% of 
the variation in error rates for the within-subjects 
interaction effect test. For the main effect test, 
population distribution, population covariance 
structure for ΣT, and model covariance structure 
respectively accounted for 39.1%, 20.1%, and 
12.1% of the explained variation. None of the 
other model effects individually accounted for 
more than 5% of the variation. For the within-
subjects interaction effect test, the type of 
population distribution, two-way interaction 
between total sample size and degree of 
covariance heterogeneity, two-way interaction 
between population covariance structure and 
model covariance structure, and two-way 
interaction of total sample size and type of 
population distribution accounted for 47.5%, 
6.6% and 5.7%, and 5.4% of the explained 
variance, respectively. None of the other model 
effects accounted for more than 5% of the 
variation. 

When group sizes were unequal, the 
regression analyses for Johansen’s (1980) 
procedure revealed that the model containing 
main effects and two-way interactions accounted 
for 90.2% of the variation in Type I error rates 
for the within-subjects main effect and 89.3% of 
the variation for the within-subjects interaction. 
For both tests, the majority of the explained 
variation was due to the main effects of 
population distribution, total sample size, and 
pairing of group sizes and covariances, and to 
the two-way interaction of total sample size and 
pairing of group sizes and covariances for the 
within-subjects interaction effect tests. For the 
multivariate Brown and Forsythe (1974) 
procedure, the regression model accounted for 
80.3% and 84.3% of the variation in Type I error 
rates for the multivariate within-subjects main 
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and interaction effects, respectively. Almost all 
of this explained variation (i.e., > 90%) was due 
to the main effect of population distribution, 
although the two-way interaction of degree of 
covariance heterogeneity and degree of group 
size imbalance also accounted for slightly more 
than 5% of the explained variation.  

For the MRM procedure, the regression 
model accounted for 91.5% of the variation in 
Type I error rates for the test of the within-
subjects main effect and 93.9% of the variation 
in error rates for the within-subjects interaction 
effect. The model effects that accounted for the 
most explained variation for the within-subjects 
main effect were population type (34.1%), 
population covariance structure (21.2%), and 
model covariance structure (10.8%). For the 
within-subjects interaction, variables that 
accounted for most of the explained variance 
were population type (55.2%) and population 
covariance structure (6.8%). 
 
Power 

 Percentages of power are reported in 
Table 5. They are summarized separately for 
equal and unequal group sizes for multivariate 
normal and heavy-tailed distributions. Power 
results are not reported for the skewed 
distribution because the three procedures could 
not control the Type I error rate for this 
condition. Only the results for N = 60 are 
reported because the pattern of results was 
similar for N = 100, and because power 
approached its upper bound for several of the 
simulation conditions for this latter value.  

The Johansen (1980) and multivariate 
Brown and Forsythe (1974) procedures 
produced similar percentages of power for all 
conditions, except when group sizes and 
covariances were negatively paired. In this case, 
the Johansen (1980) procedure was more 
powerful than the multivariate Brown and 
Forsythe (1974) procedure. This is likely a result 
of the slightly liberal Type I error rates that were 
observed for the former procedure for negative 
pairing conditions. Average power was 56.9% 
and 56.2% for Johansen’s procedure for the 
within-subjects main and interaction effects, 
respectively, and the corresponding values for 
the multivariate Brown and Forsythe (1974) 
procedure were 53.3% and 51.9%. 

In general, the MRM procedure resulted 
in lower power than either the Johansen (1980) 
or multivariate Brown and Forsythe (1974) 
procedures for the within-subjects main effect; 
the average differences ranged between 5% and 
20% for most of the investigated conditions 
although the difference was occasionally greater 
than this.  For the interaction effect, the MRM 
procedure was often more powerful than either 
of the ADF tests, although the differences were 
never more than 10%. However, Johansen’s 
procedure for testing the interaction effect was, 
on average, more powerful than the MRM 
procedure when group sizes and covariances 
were negatively paired. 

When ΣT  = CS, the MRM procedure 
with either a CS or UN model covariance 
structure resulted in substantially higher power 
than the MRM with an AR-1 model structure. 
For example, when the data were normally 
distributed and group sizes were equal, the 
average power was 41.1% and 40.2%, 
respectively for the CS and UN model 
covariance structures, and only 26.5% for the 
AR-1 structure. This large difference in power 
was observed for both equal and unequal group 
sizes regardless of the shape of the population 
distribution. In contrast, when ΣT  = AR-1, the 
MRM procedure resulted in similar percentages 
of power for the CS, UN, and AR-1 structures.  
For example, when the data were from a heavy-
tailed distribution and group sizes and 
covariances were negatively paired, the average 
power was 33.1%, 32.7%, and 33.2% for the 
multivariate interaction effect under CS, AR-1 
and UN structures respectively. 

 
                  Conclusion 

Multivariate repeated measurements arise in the 
social, behavioral, and health sciences when 
researchers collect data on multiple 
psychological or physiological characteristics of 
study participants over time or across multiple 
experimental conditions. Global tests of 
hypotheses for multivariate within-subjects main 
or interaction effects take account of the 
correlation that exists among the repeated 
measurements and dependent variables. These 
tests may be conducted within the context of the  
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general linear model using one of several 
procedures, including multivariate extensions of  
ANOVA and MANOVA. The choice of a 
procedure depends, in part, on the assumptions  
the researcher is willing to make about the 
covariance structure of the data.  

A likelihood ratio test of a Kronecker 
product covariance structure, which might be 
used as a preliminary test to choose between the 
multiple regression model procedure that 
assumes a structured covariance and a procedure 
that makes no assumptions about the structure of 
the covariance matrix, requires a large sample 
size, relative to the dimension of the data, to 
control the rate of Type I errors to the nominal 
level of significance when the data are sampled 
from a multivariate normal distribution and 
covariances are homogeneous. When 
covariances are heterogeneous or the data are 
sampled from multivariate non-normal  

 
 

distributions, this test can result in severely 
inflated Type I error rates. Thus, the likelihood 
ratio test is not useful as a preliminary test 
because it will almost always reject the null  
hypothesis of a Kronecker product structure in 
favor of the alternative hypothesis of an 
unstructured covariance.  

Consistent with the results of previous 
research, the Johansen (1980) and multivariate 
Brown and Forsythe (1974) procedures provided 
good control of the Type I error rate across the 
majority of the investigated conditions when the 
data were sampled from multivariate normal and 
heavy-tailed distributions. When group sizes and 
covariance matrices were negatively paired, 
Johansen’s (1980) test produced slightly inflated 
Type I error rates, although the magnitude of 
this positive bias decreased as total sample size 
increased. Both procedures produced 
conservative Type I error rates when the data 

Table 5. Average Percentages of Power for Multivariate Within-Subjects Effects when Group Sizes are 
Equal and Unequal, N = 60 

 
Note. CS = compound symmetric; AR-1 = first-order autoregressive; UN = unstructured. MRM = multiple 
regression model; J = Johansen’s(1980) procedure; BF = multivariate Brown and Forsythe (1974) procedure; 
Nor = multivariate normal distribution with γ1 = 0 and γ2 = 0; HT = multivariate heavy-tailed distribution 
with γ1 = 0 and γ2 = 3. =nj =  equal group sizes; + pair = positive pairing of group sizes and covariances; - 
pair= negative pairing of group sizes and covariances. 

 
 

  ΣT = CS ΣT = AR-1 
  

 
MRM 

CS 
MRM 
AR-1 

MRM 
UN J BF 

MRM 
CS 

MRM 
AR-1 

MRM 
UN J BF 

  Multivariate Main Effect 
Nor = nj 41.1 26.5 40.2 50.2 47.3 30.9 30.7 30.1 38.2 35.5 

 + pair 47.3 31.0 46.1 57.5 55.8 35.5 34.2 33.5 43.9 42.2 
 - pair 31.3 19.5 30.0 41.2 32.6 24.1 22.5 22.0 32.2 24.3 

HT = nj 39.1 25.5 38.6 52.2 49.4 31.5 30.2 29.9 40.1 37.2 
 + pair 47.1 32.3 46.6 59.3 57.9 36.8 35.0 35.8 44.7 42.9 
 - pair 30.8 19.7 30.6 42.5 34.5 24.9 23.1 23.3 33.2 25.8 
  Multivariate Interaction Effect 

Nor = nj 55.5 42.2 53.6 50.7 48.3 42.5 43.9 41.5 37.23 34.8 
 + pair 61.8 48.7 60.2 58.5 57.2 50.4 51.2 48.0 43.8 42.5 
 - pair 39.4 29.3 38.0 42.3 31.1 31.7 32.0 29.6 31.5 22.7 

HT = nj 54.0 42.2 54.8 53.0 50.4 42.5 42.4 42.2 39.8 36.9 
 + pair 61.5 47.9 60.2 59.8 58.6 50.2 51.7 49.6 45.0 43.9 
 - pair 40.7 31.5 38.8 43.9 33.8 33.1 32.7 33.2 33.5 24.6 



LIX & LLOYD 394 

were sampled from a multivariate skewed 
distribution.  

The multiple regression model 
procedure also provided good control of Type I 
error rates across the majority of the investigated 
conditions when the data were sampled from 
multivariate normal and heavy-tailed 
distributions. Like the other two procedures, it 
resulted in conservative error rates when the data 
were sampled from a multivariate skewed 
distribution. As expected, Type I error rates 
deviated less from the nominal level of 
significance when the selected model covariance 
structure corresponded to the population 
covariance structure, or when an unstructured 
covariance was selected.  

For tests of the within-subjects main 
effect, the Johansen (1980) and multivariate 
Brown and Forsythe (1974) procedures were 
more powerful than the multiple regression 
model procedure regardless of which model 
covariance structure was selected for the latter. 
The differences in power were moderate to 
large. For the multiple regression model, power 
was higher when the selected model covariance 
structure was the same as the population 
covariance structure, than when an unstructured 
covariance model was selected, but the 
differences were small (i.e., less than five 
percentage points). For tests of the within-
subjects interaction effect, the multiple 
regression model procedure was often more 
powerful than the other two procedures, but the 
differences were modest. Moreover, the multiple 
regression model procedure could also be less 
powerful than the Johansen or the multivariate 
Brown and Forsythe procedures if the 
covariance structure was misspecified. 

For both within-subjects main and 
interaction effects, the magnitude of power 
differences among the multiple regression model 
procedures when the three model covariance 
structures for the repeated measurements were 
compared indicated that the power advantages 
gained by correctly specifying the covariance 
structure varies as a function of the form of the 
population covariance. When the population 
covariance structure of the repeated 
measurements was compound symmetric, the 
model with a compound symmetric structure 
was much more powerful than the model with an 

autoregressive structure. However, when the 
population covariance structure of the repeated 
measurements was autoregressive, there was 
only a small difference in power between the 
models with compound symmetric and 
autoregressive covariance structures.  

Comparison of four penalized log-
likelihood information criteria for assessing 
model fit revealed that all of the criterion 
performed better when group covariances were 
homogeneous than when they were 
heterogeneous, and when the data were sampled 
from symmetric distributions than when they 
were sampled from skewed distributions. The 
BIC and CAIC more often selected the model 
with the correct covariance structure than the 
AIC and HQIC. 

Given these results, there appear to be 
limited benefits associated with adopting a 
multiple regression model procedure for testing 
multivariate within-subjects main and 
interaction effects in multivariate repeated 
measurement designs when covariances are 
heterogeneous and sample size is small or 
moderate. The Johansen (1980) and multivariate 
Brown and Forsythe (1974) approximate degrees 
of freedom procedures controlled the Type I 
error rates and were often more powerful than 
the multiple regression model procedures. 
Moreover, previous research has demonstrated 
that when the distribution is non-normal, robust 
versions of both procedures can control the rate 
of Type I errors to the nominal level of 
significance and can result in increased power to 
detect within-subjects effects.  

While the results of this study suggest 
that either of the Johansen (1980) or multivariate 
Brown and Forsythe (1974) procedures could be 
recommended for analyzing within-subjects 
effects, researchers should be cautious in 
generalizing these results to all data-analytic 
conditions encountered in the analysis of 
multivariate repeated measures data.  First, the 
properties of the three test procedures were only 
examined when the covariance of the repeated 
measurements and dependent variables had a 
Kronecker product structure. There have been no 
studies of the degree to which data encountered 
in the social, behavioral, and health sciences 
conform to a Kronecker product structure, nor of 
the magnitude of positive or negative bias in 
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error rates of the multiple regression model 
procedure when the data do not conform to a 
Kronecker product structure. Second, the test 
procedures were compared only for datasets 
with no missing observations. Unbiased 
estimates of regression parameters can be 
obtained for the multiple regression model 
procedure provided the observations are either 
missing completely at random or missing at 
random (Little & Rubin, 1987). The other two 
procedures investigated in this research do not 
accommodate study participants with missing 
observations; rather, incomplete cases are 
removed from the analysis, which can result in 
reduced power to detect within-subjects effects. 
Finally, power analyses were conducted only for 
a single effect size and a single configuration of 
the population means. 

A number of opportunities for further 
research arise from this study. A likelihood ratio 
test of a Kronecker product structure that is less 
sensitive to sample size and is robust to 
multivariate non-normality and/or covariance 
heterogeneity requires investigation. Boik 
(1991) proposed an approximate likelihood ratio 
test of multivariate sphericity for small or 
moderate sample sizes under the assumption of a 
multivariate normal distribution. The 
approximation is based on the work of Box 
(1949), who proposed finding the moments of 
the likelihood statistics to derive the 
approximation. Mitchell et al. (2006) proposed a 
bootstrap likelihood ratio test that is less 
sensitive to sample size, but did not investigate 
its properties in the presence of covariance 
heterogeneity or multivariate non-normality. 
Zhu, Ng, and Jing (2002) compared likelihood 
ratio tests based on bootstrap and permutation 
re-sampling methods to test equality of 
covariances in the presence of multivariate non-
normality. They found that the permutation test 
performed better than the bootstrap test.  

Graphic techniques and statistical tests 
to assess model fit and select among candidate 
model covariance structures for the multiple 
regression model also need to be investigated 
and described for the case of multivariate 
repeated measures data. Littell et al. (2000) and 
Zimmerman and Nunez-Anton (2001) provide a 
thorough discussion of graphic and descriptive 
techniques for the case of a single dependent 

variable, but they have not been extended to 
multivariate data. Techniques for assessing 
model fit in the presence of multivariate non-
normality include bias-corrected versions of the 
AIC and empirical cross-validation techniques, 
have been proposed (e.g., Yanagihara, 2006), 
and could be investigated in the context of 
multivariate repeated measurements. 

Parametric and non-parametric 
procedures for the analysis of multivariate 
repeated measurements with structured 
covariances which are robust to the presence of 
non-normal distributions and covariance 
heterogeneity require development and 
evaluation (Wang & Zhu, 2006; Reilly, 2005). 
Furthermore, comparisons among these 
procedures under the types of data-analytic 
conditions that may be encountered in practice 
are necessary to develop recommendations on 
choosing a statistical procedure.  

Finally, models with structured 
covariances that bridge the gap between the 
restrictive compound symmetric Kronecker 
product structure and the less efficient 
unstructured Kronecker product structure require 
further development for the multivariate case. 
One flexible covariance structure described by 
Zimmerman and Nunez-Anton (2001) for 
models with a single dependent variable is the 
antedependence structure. It allows for a pattern 
of monotonically decreasing correlation among 
the repeated measurements, which is common in 
repeated measurements, as well as for non-
constant variances of the repeated 
measurements. The authors describe software to 
implement a multiple regression model with the 
antedependence covariance structure for the case 
of a single dependent variable, and this could be 
investigated for possible extension to the 
multivariate case.  
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Appendix A. PROC MIXED Code to Implement the MRM 
 

This is the syntax that was used to implement the MRM when the data are assumed to have a Kronecker 
product covariance structure, with an unstructured model for ΣT as well as an unstructured model for ΣP.  
 

 
 

proc sort data=datafin; 
by id; 
run; 
 
proc mixed data=datafin method=reml ic; 
class group id dv rm; 
model val=group dv rm dv*rm group*dv*rm /noint 
ddfm=kenwardroger; 
repeated dv rm / type=un@un subject=id(group) group=group; 
run; 

 
 

 
Where: 
id = subject identification variable 
group = variable to identify levels of between-subjects grouping factor 
dv = variable to identify “levels” of the dependent variable factor 
rm = variable to identify levels of within-subjects factor 

 
The data are assumed to be arranged in a “long” structure, with one value of the dependent 

variable val per line. Accordingly, each row of datafin contains a single observation and the 
corresponding values of the variables id, group, dv, and rm. 

A model with a compound symmetric form for ΣT is obtained by specifying type = cs@un in the 
repeated statement. A model with a first-order autoregressive form for ΣT is obtained by specifying type 
= ar(1)@un in the repeated statement. The only available model for ΣP is unstructured (UN).  
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