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The Non-Parametric Difference Score: A Workable Solution for Analyzing 
Two-Wave Change When The Measures Themselves Change Across Waves 

 
Jennifer E. V. Lloyd     Bruno D. Zumbo 

University of British Columbia  
 
 
The non-parametric difference score is introduced. It is a workable solution to the problem of analyzing 
change over two waves (i.e., a pretest-posttest design) when the measures themselves vary over time. An 
example highlighting the solution’s implementation is provided, as is a discussion of the solution’s 
assumptions, strengths, and limitations. 
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Introduction 
 
Individual change is the subject of significant 
attention in education, health, and the social 
sciences. The analysis of such change is aimed 
at quantifying the amount by which individuals 
grow, mature, improve, and progress over time. 
By measuring and tracking changes, it is 
possible to reveal the temporal nature of 
development (Singer & Willett, 2003). 

This temporal nature of development 
may be studied over varied spans of time: hours, 
days, weeks, months, and even years. Waves are 
the   measurement  occasions  or  periods of data 
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This temporal nature of development 

may be studied over varied spans of time: hours, 
days, weeks, months, and even years. Waves are 
the measurement occasions or periods of data 
collection that are plan-fully interspersed 
throughout these spans of time. Two-wave 
designs, often known as pretest-posttest designs, 
are the specific focus of this article. Such 
designs allow for relatively straightforward 
appraisal of a treatment effect by detecting 
differences   in a     given outcome    across two 
waves – typically before the treatment and after 
it. Such differences normally represent the 
comparison of test-takers’ scores at the second 
wave of data collection to their respective 
baseline or initial measure scores (Zumbo, 
1999). Lloyd (2006) and Lloyd, Zumbo, and 
Siegel (2007) explore the problem of analyzing 
change and growth when the measures 
themselves change across multiple (i.e., three or 
more) waves. 
 
Repeated Measures Analyses: Three Research 
Scenarios 

Several familiar parametric 
methodologies, called repeated measures 
analyses, centre upon quantifying change over 
time. As described by Lloyd (2006) and Lloyd, 
Zumbo, and Siegel (2006), these methodologies 
are generally used in three research scenarios:    

 
Scenario 1: Exact same measure across both 
waves  

In this scenario, one’s construct of 
choice makes possible the use and re-use of the 
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exact same measure across both waves, 
regardless of the ever-emergent age, cognitive 
development, and personal and scholarly 
experiences of one’s test-takers. The measures’ 
content, item wording, response categories, and 
response formats do not change whatsoever 
across waves.  
 
Scenario 2: Linkable time-variable measures 

Time-variable measures are those whose 
content, wording, response categories, and/or 
response formats vary across waves in repeated 
measures designs. In this scenario, although the 
time-variable measures are not completely 
identical across waves, there is at least one 
anchor item shared by each of the measures, on 
whose linked (or equated) scores traditional 
analyses can be performed (Kolen & Brennan, 
2004).  
 
Scenario 3: Non-linkable time-variable measures  

This scenario involves using measures 
whose content, item wording, response 
categories, and/or response formats vary 
completely across waves. Imagine, for example, 
a reading achievement test administered at 
Grade 5 and then Grade 6: The measure 
administered at Grade 5 cannot be same as that 
used in Grade 6. If they were the same, the 
reliability and validity of the test scores would 
likely be compromised, rendering the study 
ineffectual (Singer & Willett, 2003). This 
scenario may also be encountered when one’s 
sample size is small or when one cannot 
compare the sample’s scores to those of a 
norming group. In such cases, even if the 
measures share common items, it is not always 
advisable to link or equate the measures’ scores.  
 
Objective 

Repeated measures analyses are often 
characterized by one set of individuals being 
measured more than once on the same or 
commensurable dependent variable. Many 
researchers understand the phrase “same or 
commensurable dependent variable” to mean 
that the exact same measure must be used across 
all waves study.  

As Scenario 1 (exact same measure 
across both waves) illustrates, some constructs 
can in fact be measured using the exact same 

measure over time. As Scenario 2 (linkable 
time-variable measures) and particularly 
Scenario 3 (non-linkable time-variable 
measures) describe, however, there are often 
situations in which one’s construct of choice 
makes the use and re-use of the exact same 
measure across waves difficult – and even 
impossible. Seeing as traditional 
linking/equating techniques are not possible 
when the measures cannot be made to be 
identical (Kolen & Brennan, 2004), what is a 
researcher to do, then, if the use of time-variable 
measures is necessary?  

Therefore, this article focuses on the 
analysis of two-wave change with linkable – and 
particularly non-linkable – time-variable 
measures. Many of the current strategies used to 
handle time-variable measures (such as vertical 
scaling and item response theory techniques; see 
Kolen & Brennan, 2004) are often only useful to 
large testing organizations that have access to 
very large numbers of test-takers and expansive 
item pools, or in those situations in which the 
time-variable measures share some number of 
common items. Therefore, the objective of this 
article is to introduce a workable solution to the 
problem of analyzing change with time-variable 
measures administered over two waves – a 
solution that can be implemented easily in 
everyday research settings. 
 
The Non-Parametric Difference Score (NPAR-
DIFF) 

The NPAR-DIFF involves rank 
transforming or ordering individuals’ original 
test scores within wave, and then using the 
change (difference) score computed from the 
respective ranks as the dependent variable in 
subsequent parametric independent sample t-
tests. It is this use of ranks, instead of original 
scores, that makes the NPAR-DIFF a non-
parametric solution. 

Lloyd (2006) and Lloyd, Zumbo, and 
Siegel (2007) refer to the general approach of 
converting original scores into ranks pre-
analysis as the Conover solution, in recognition 
of the influential work of W. J. Conover (e.g., 
Conover, 1999; Conover & Iman, 1981), whose 
research not only inspired the NPAR-DIFF, but 
also provides evidence for the solution’s 
viability.  
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A rank represents the position of a test-
taker on a variable relative to the positions held 
by all other test-takers on that same variable. 
Ranking or rank transforming refers to the 
process of transforming a test-taker’s original 
score to rank relative to other test-takers – 
suggesting a one-to-one function f from the 
sample values [e.g.,{X1, X2, …, XN}] to the first 
N positive integers [e.g., {1, 2,…, N}], 
(Zimmerman & Zumbo, 1993). 

For example, if Test-taker X earned a 
score of 20 on a given variable, Test-taker Y 
earned a score of 21, and Test-taker Z earned a 
score of 22, then the test-takers’ respective ranks 
would be 1, 2, and 3 (where a rank of 1 is given 
to the test-taker with the lowest score). One may 
also assign ranks such that the test-taker with the 
highest score receives a rank of 1; however, it is 
often easier to think of test-takers receiving the 
highest score as also receiving the highest rank 
value.  
 
The NPAR-DIFF’s Assumptions 
 As with all methodological tools, the 
NPAR-DIFF comes with its own set of 
assumptions. First, the scales for the measures’ 
original scores must be at least ordinal in nature. 
Second, the ranks must show heterogeneous 
change, meaning that all test-takers do not 
change the same amount across waves (Zumbo, 
1999). Imagine that Test-Taker X earns a rank 
score = 1 across both waves and Test-Taker Y 
earns a rank score = 2 across both waves. For 
both test-takers, the change scores computed 
from the rank equal zero, suggesting 
homogeneous change – which, for reasons 
outlined by Zumbo (1999), cannot be used in 
change analyses. It should be noted that an 
inability to handle homogeneous change is not a 
problem endemic to the NPAR-DIFF; 
homogeneous change also renders ineffectual 
the calculation of simple difference scores. 
 Finally, the NPAR-DIFF requires that a 
commensurable (or comparable or similar) 
construct is measured across all waves of the 
study. Commensurability is generally thought to 
mean that the same primary dimension or latent 
variable is driving the test-takers’ responses at 
each wave. A latent variable is an unobserved 
variable that accounts for the correlation among 
one’s observed or manifest variables. In ideal 

circumstances, measures are designed such that 
the latent variable that drives test-takers’ 
responses represents the construct of interest.  
 
Example 

Suppose a researcher is interested in 
exploring whether there are gender differences 
in test-takers’ rank-based numeracy assessment 
difference scores (scores that represent the 
comparison of test-takers’ scores at the second 
wave of data collection to their respective 
baseline or initial measure scores). Note that the 
research question changes slightly when one 
applies the NPAR-DIFF: No longer are the 
inferences made from the original scores; rather 
they are made from the ranks.  

To illustrate the implementation of the 
NPAR-DIFF, Foundation Skills Assessment 
(FSA) numeracy subtest data from the British 
Columbia Ministry of Education were obtained. 
The FSA, an annual assessment administered by 
the Ministry, is designed to measure the reading 
comprehension, writing, and numeracy skills of 
4th- and 7th-grade students throughout British 
Columbia. The FSA is administered in public 
and funded independent schools across the 
province in late April/early May of each year. 
Approximately 40,000 students per grade level 
write the FSA each year.  

Obtained was the entire population of 
standardized numeracy subtest scores of 41,675 
test-takers who wrote the FSA in both 
1999/2000 (Wave 1, Grade 4) and 2002/2003 
(Wave 2, Grade 7). Test-takers who were 
missing a wave of FSA data were excluded from 
analyses. Of this population of test-takers, a 
random 10% convenience sample of 4097 test-
takers (nfemale = 2055; nmale = 2042) was retained 
for analyses. Each test-taker’s record included 
an arbitrary case number, and a gender flag. The 
Ministry has standardized test-takers’ FSA 
scores such that each wave’s score distribution 
has M = 0 and SD = 1.  

Willett, Singer, and Martin (1998) state 
that standardized test scores should never be 
used in the place of raw scores in individual 
growth modeling analyses (readers are referred 
to their article for the specific reasons why). In 
this case, however,   ranks are  being  used in the  
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place of the original test scores. Thus, it is 
unimportant whether or not the original test 
scores come in the form of standardized scores. 
Furthermore, the Ministry of Education does not 
supply researchers with raw FSA scores – only 
standardized scores. 

As Table 1 illustrates, the descriptive 
statistics for each wave of FSA original scores 
vary across gender and wave. When performing 
the NPAR-DIFF, data must be entered into the 
data matrix (spreadsheet) in person-level format,  
in which one row represents one individual, with 
time-related variables represented along the 
horizontal of the spreadsheet (as in Table 2). The 
key to implementing the NPAR-DIFF is that one 
first   rank transforms the data within wave, with 
the mean rank being assigned to ties. Table 2 
illustrates that Test-Taker X, for example, earns 
a Rank = 2 for Wave 1 (Grade 4) because his 
original Wave 1 score (0.20) is between those of 
Test-Taker Y (-.15, Rank = 1) and Test-Taker Z 
(1.45, Rank = 3). Recall from an earlier section 
that a Rank = 1 is assigned to the test-taker with 
the lowest within-wave score.  
 
Two-Wave Designs: Two Common Change 
Scores 

As described earlier, two-wave designs 
are characterized by some comparison of an 
individual’s score at the second wave of data 

collection to some baseline or initial measure 
score. The most common change (difference)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

scores involved in two-wave designs are: 
 
(a) the simple  difference score   and  
(b) the residualized change score (Zumbo, 
1999).  
 
Simple difference score 

The most common of all change indices 
is the simple difference score, which is 
calculated by simply subtracting a test-taker’s 
score at Wave 1 from his or her score at Wave 2. 
A positive simple difference score typically 
indicates an increase over time, whereas a 
negative score indicates a decrease over time.  

 
Residualized change score 

 As Zumbo (1999) describes more fully, 
it has been argued that simple difference scores 
are unfair because of their base-dependence (i.e., 
scores at Wave 2 are correlated negatively with 
scores at Wave 1). As such, the residualized 
change score was developed as an alternative to 
the simple difference score. Although there are 
different ways to create such scores, the most 
common residualized change score is estimated 
from the regression analysis of the Wave 2 score 
on the Wave 1 score. In other words, the 
estimated Wave 2 score is subtracted from the 
actual Wave 2 score (whether it be an original or 
rank). 

 
Table 1 

Descriptive Statistics for Each of the Two Waves of FSA Original Scores (N = 4097) 

Gender Original 

Variable Name 

Min Max M SD Skew Kurtosis 

Female  grade4original -4.83 4.66 -.26 1.10 -.88 4.30 

(n = 2055) grade7original -2.08 2.85 .06 .90 .31 -.30 

        

Male grade4original -4.83 5.33 -.16 1.11 -.78 4.21 

(n = 2042) grade7original -2.58 2.85 .11 .92 .31 -.25 

 



LLOYD & ZUMBO 
 

417

 

 
The intrinsic fairness, usefulness, 

reliability, and validity of the two-wave research  
design have been debated for decades (Zumbo, 
1999). In their seminal article, Cronbach and 
Furby (1970) disparage the use of two-wave 
designs, arguing that change scores are rarely 
useful, no matter how they are adjusted or 
refined (Cronbach & Furby, 1970). Their disdain 
of two-wave designs was so strong that they 
stated that researchers who ask questions using 
simple difference scores are better advised to 
frame their questions in other ways (Cronbach & 
Furby, 1970). As Zumbo (1999) notes, it is 
somewhat puzzling that there exists the notion 
that one should avoid two-wave designs at “all 
costs”, given that variations of the difference 
score lie at the heart of various widely-used and 
commonly-accepted statistical tests, such as the 
paired samples t-test. 
 
Determining the Appropriate Change Score to 
Serve as the Dependent Variable 

In order to determine which specific 
change score should serve as the dependent 
variable in this particular FSA example, it is 
necessary to follow the guidelines of Zumbo 
(1999), who writes that “one should utilize the 
simple difference score instead of the 
residualized difference if and only if ρ(X1, X2) > 
σX1/ σX2” (p. 293) – that is, if the correlation 
between the Wave 1 and 2  scores is greater than 

  

 

 
the ratio of the respective standard deviations. It 
is important to stress that, when implementing 
the NPAR-DIFF solution for two-wave data, 
one’s decision about using the simple difference 
and residualized change score must be based on 
test-takers’ ranks– not their original scores. 
 The computed across-gender correlation 
between the Grade 4 and 7 ranks [ρ(X1,X2)] was 
computed as 0.66, compared to 0.99 
(1182.84/1182.84) for the ratio of the two 
standard deviations of rank scores [σX1/ σX2]. 
Because the correlation value is less than the 
ratio value, the rank-based residualized change 
score is used in the place of the rank-based 
simple difference score as the dependent 
variable in the subsequent parametric analysis 
(Zumbo, 1999). 
 
Explanation of the Statistical Output 

A regular independent samples t-test 
was then performed on test-takers’ rank-based 
residualized change scores, with gender 
identified as the predictor variable. It should be 
reiterated that the unique aspect of the analysis 
is that test-takers’ rank-based change scores are 
used in the place of the change scores computed 
from test-takers’ original scores. Original scores 
are, in a sense, only collected as a means of 
computing test-takers’ ranks. The research 
question, results, and inferences made from the 
results must reflect the fact that the scores have 

Table 2. An example person-level data matrix showing two waves of hypothetical original FSA scores and 
their corresponding within-wave rank scores. 

  Example Original Variables 

 

Corresponding Rank Variables 

 grade4original grade7original grade4rank grade7rank 

Test-Taker X 0.20 0.45 2 1.5 

Test-Taker Y -.15 1.35 1 3 

Test-Taker Z 1.45 0.45 3 1.5 
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been transformed and, hence, the focus is no 
longer on the original scores.  

The independent sample’s t-test output 
revealed that the mean rank-based residualized 
change score for males was -7.64 (SD = 882.31) 
as opposed to 7.59 for females (SD = 876.71), 
meaning that the average Wave 2 rank  less the 
rank at Wave 2 predicted from the Wave 1 rank 
score is higher for females than for males. This 
finding suggests that the female test-taker gained 
7.5 points in relative standing across the two 
waves, whereas the average male test-taker’s 
relative standing decreased approximately 7.6 
points. 

Despite the mean differences in 
residualized change scores for males and 
females, the independent samples t-test results 
showed that there is no statistically significant 
gender difference in the residualized change 
scores, t(4095) = -.555, p = .579 (assuming 
equal variances; two-tailed). Thus, the male test-
takers’ mean rank-based residualized change 
score did not differ significantly from that of the 
female test-takers – suggesting that neither 
gender’s relative standing over time differ 
significantly from the other.  

Even though there was no statistically-
significant gender difference found, an effect 
size was still computed, for reasons outlined by 
Zumbo and Hubley (1998). A Cohen’s d effect 
size was calculated by subtracting the mean 
residualized change score of one group 
(females) from that of the other group (males) 
and dividing that difference by the pooled rank-
based standard deviation. The resultant effect 
size was computed as 0.02, which represents a 
small effect size (Cohen, 1988).  
 
Strengths of the NPAR-DIFF 

The non-parametric difference score, a 
solution for the problem of analyzing change 
and growth with time-variable measures 
collected over two waves is an effective tool for 
researchers in everyday research settings for the 
following reasons:  

 
Ease of use 

 One strength of the NPAR-DIFF is that 
it is easy to implement. As Conover and Iman 
(1981) observe, it is often more convenient to 
use ranks in a parametric statistical program than 

it is to write a program for a non-parametric 
analysis. Furthermore, all of the steps required 
for the implementation of the NPAR-DIFF (i.e., 
rank transforming data within waves, conducting 
independent samples t-tests, etc.) can be easily 
performed using commonly-used statistical 
software packages.  

 
Marries non-parametric and parametric methods: 
 Second, by rank transforming the data 
pre-analysis, parametric and non-parametric 
statistical methods are combined, providing “a 
vehicle for presenting both the parametric and 
nonparametric methods in a unified manner” 
(Conover & Iman, 1981, p. 128).  
 
Makes use of the ordinal nature of data 

 Third, the NPAR-DIFF makes use of 
the ordinal nature of continuous-scored data: A 
test-taker with a low original score relative to 
other test-takers in his wave will also yield a low 
relative rank. Similarly, a test-taker with a high 
test-score will also yield a high rank. As a result, 
within-wave order among the test-takers is 
preserved.  

 
Requires no common/linkable items 

Unlike many of the traditional test 
linking methods and strategies, the NPAR-DIFF 
can be implemented not only in situations in 
which one’s study involves time-variable 
measures that can be linked (Scenario 2), but 
also situations in which the time-variable 
measures share no linkable items whatsoever 
(Scenario 3). Hence, unlike vertical scaling, 
equating, and their linking counterparts, the 
NPAR-DIFF provides a means by which 
researchers can study change – whether or not 
the measures contain linkable items.  

 
Requires no norming group 

 Due to time and financial constraints, it 
is not always possible to compare the scores of 
one’s sample to those of an external norming 
sample. As such, an additional strength of the 
NPAR-DIFF is that it can be conducted using 
simply the scores of the sample of test-takers, 
thereby eliminating the need for a group to 
which to compare the sample’s scores.   
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Limitations of the NPAR-DIFF 
As with any methodological tool, the 

NPAR-DIFF has various limitations. Within-
wave ranks are bounded. Rank transforming 
refers to the process of converting a test-taker’s 
original score to rank relative to other test-
takers. The values assigned by the function to 
each sample value in its domain are the number 
of sample values having lesser or equal 
magnitude. Consequently, the ranks are bounded 
from above by N. As a result, “any outliers 
among the original sample values are not 
represented by deviant values in the rank” 
(Zimmerman & Zumbo, 1993, p. 487). 

Suppose on a standardized test of 
intelligence, Test-Taker W earns a score 100, 
Test-Taker X earns a score of 101, Test-Taker Y 
earns a score of 102, and Test-Taker Z earns a 
score of 167. Test-Taker Z’s score, relative to 
the other test-takers, is exceptional. Despite the 
exceptional performance on the measure, the test 
score is masked by the application of ranks: 
Test-taker W = 1, Test-taker X = 2, Test-taker Y 
= 3, and Test-taker Z = 4. 

As a result, one limitation of the NPAR-
DIFF is that there may be problems associated 
with the inherent restriction of range it places on 
data. Differences between any two ranks range 
between 1 and N – 1, whereas the differences 
between original sample values range between 0 
and infinity (Zimmerman & Zumbo, 1993). 
 
Difficulties associated with handling missing 
data 

Recall that only those test-takers for 
whom data were available at both waves were 
retained in the analyses. As most educational, 
health, and social science researchers will agree, 
no discussion about change and growth is 
complete without a complementary discussion 
about one unavoidable problem: missing data. In 
longitudinal designs, particularly those that span 
months or years, it is extremely common to face 
problems associated with participant dropout, 
attrition, and as well as participants who join, or 
return to the study, in later waves.  
 One possible strategy for circumventing, 
or at least mitigating the effect of, missing data 
is to impute the missing original scores prior to 
rank-transforming the data within-wave pre-

analysis. Schumacker and Lomax (2004) discuss 
various missing data imputation methods.  
 
Makes use of the ordinal nature of data: 

 Recall that the fact that the NPAR-
DIFF makes use of the ordinal nature of 
continuous-scored data was previously identified 
as one of the solution’s strengths. As Lloyd 
(2006) and Lloyd, Zumbo, and Siegel (2007) 
observe, precisely what the NPAR-DIFF wins 
by, it also loses by: Because of the rank 
transformation of the original scores, differences 
between raw scores are not necessarily 
preserved by the corresponding ranks. For 
example, a difference between the raw scores 
corresponding to the 15th and the 16th ranks is 
not necessarily the same as the difference 
between the raw scores corresponding to the 
61st and 62nd ranks in a collection of 500 test 
scores (Zimmerman & Zumbo, 2005, p. 618).  

 
Conclusion 

 
Investigating the problem of analyzing change 
and growth with time-variable measures is 
important for two reasons. First, as Willett et al. 
(1998) and von Davier, Holland, and Thayer 
(2004) describe, the rules about which tests are 
permissible for repeated measures designs are 
precise and strict. Given these conditions, it is 
necessary to investigate how repeated measures 
analyses can be made possible – 
psychometrically and practically – when the 
measures themselves change across waves.  

Second, given the sizeable growth in 
longitudinal large-scale testing in recent years, it 
is necessary to find a viable and coherent 
solution to the problem so that researchers can 
make the most accurate inferences possible 
about their test scores.  

Recognizing the importance of this 
problem, this article introduced a workable 
solution for handling the analysis of change over 
two waves, when the measures used at each 
wave are not the same. Although useful in many 
research settings, the non-parametric difference 
score (NPAR-DIFF) is by no means a universal 
panacea and should, therefore, be used 
judiciously and in accordance with the 
aforementioned assumptions. Given that the 
problem of time-variable measures has, to date, 
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gone relatively unaddressed in the 
change/growth and test linking literatures, it is 
imperative that future research explores this 
profoundly important, problem to a much fuller 
degree.  
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