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Probability Coverage and Interval Length for Welch’s and Yuen’s Techniques: 
Shift in Location, Change in Scale, and (Un)Equal Sizes 

 
S. Jonathan Mends-cole 

Walden University 
 

 
Coverage for Welch’s technique was less than the confidence-level when size was inversely proportional 
to variance and skewness was extreme. Under negative kurtosis, coverage for Yuen’s technique was 
attenuated. Under skewness and heteroscedasticity, coverage for Yuen’s technique was more accurate 
than Welch’s technique. 
 
Key words: Yuen's procedure, Welch's procedure, confidence interval, interval length, probability 
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Introduction 
 
When assessing how well the sample effect 
( 21 XX − ) estimates the population effect 
( 21 μμ − ), a confidence interval is the 
appropriate statistical technique. The interval-
length conveys the magnitude of the standard 
error of the effect. When comparing intervals for 
measuring an effect, wider interval-lengths 
imply greater standard errors. The confidence-
level expresses the long-run probability that the 
limits include the population parameter. 
 The use of confidence intervals has been 
strongly suggested in some disciplines (Cohen, 
1994; Wilkinson & Task Force on Statistical 
Inference, 1999). Some spurious reasons include 
(a) they provide statistical inference without 
specifying an a priori threshold and (b) it is 
presumed that confidence intervals provide a 
degree of certainty about the population 
parameter that hypothesis tests do not. However, 
Sawilowsky (2003) was opposed to (a) as being 
contrary to the principles of the scientific 
method, and noted that the Type I and Type II 
probabilities of hypothesis tests are the same as 
for confidence intervals. 

Type I and  Type  II  errors do   apply to  
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confidence intervals as follows. 
 

1. Is zero truly within the interval yet 
the interval does not enclose zero 
(Type I error)? 

 
2. Is zero not truly within the interval 

yet the interval does enclose zero 
(Type II error)? 

 
 Monte Carlo simulations have been used 
to assess the extent to which the Type I and 
Type II error rates deviate from the α and β 
levels. Magnitudes of interval-length and 
probability-coverage ( α̂1− ) serve as criteria 
concerning the appropriateness of confidence 
intervals. The traditional test for bi-group 
comparisons is the independent samples t-test. 
The calculation of the confidence interval for the 
mean difference is outlined as follows. Where ni 
is the sample size for group i, iX  is the mean 
for group i, and jiX  is the jth observation for 
group i, the standard error of the effect is given 
as follows: 
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Where 2/1 α−t  refers to the critical value of the 
test distribution with 221 −+ nn  degrees of 
freedom, the confidence interval is: 
 
       212/121 xxSEtXX −−− α∓        (3) 
 
Along with the assumptions that observations 
were randomly sampled from defined 
populations and that the samples were 
independent, some assumptions of parametric 
tests are homoscedasticity and normality 
(Wilcox, 1996). When heteroscedasticity and 
skewness are present in data, the error rates for a 
technique are inaccurate. 
 
Violations of Parametric Test Assumptions   
Skewness  

Samples from skewed populations occur 
with some frequency as observed by Blair 
(1981) and Micceri (1989). Specifically, Micceri 
(1989) surveyed 440 published data sets. The p-
value of the Kolmogorov-Smirnov test showed 
the distributions of each data set to be 
significantly different from a normal distribution 
(p < .01). Monte Carlo Type I error results 
(Sawilowsky & Blair, 1992) suggested that the 
probability-coverage would be greater than 

α−1  for skewed distributions, i.e., for 
skewness ranging from 1.25 to 1.75. Setting the 
alpha level at 0.05, if Type I error rate is less 
than 0.05, probability-coverage is greater than 
0.95. Sawilowsky and Blair observed that the 
independent samples t-test was robust: (a) if the 
test was two tailed rather than one tailed, (b) if 
sample sizes were about equal, and (c) if sample 
sizes were 25 or more. 

 
Heteroscedasticity  

Usually, when group means differ, 
group variances also differ (Sawilowsky & 
Blair, 1992, p. 358; Wilcox, 1996, p. 149). Why 
is heteroscedasticity likely to occur? Edwards 
(1972) attributed it to the absence of random 
assignment. If the variable for the treatment 
group exhibited greater variation before the 
application of the treatment after applying the 
treatment the difference is likely to remain 
unchanged. Another possibility is the 
multiplicative effect of the treatment. That is, if 

prior to the application of the treatment, 
12 / σσ <2.0, but after applying the treatment 

12 / σσ ≥2.0, the treatment may have acted 
multiplicatively to increase the variance. 

 
Skewness & Heteroscedasticity 
 Heteroscedasticity has different effects 
on probability-coverage (Algina, Oshima, & 
Lin, 1994; Penfield, 1994). (a) If sizes are equal, 
the effect on probability-coverage is negligible, 
i.e., 975.0ˆ1925.0 ≤−≤ α . (b) Small group 
sizes, e.g., )15,5(),( 21 =nn , skewness, and 
proportional heteroscedasticity augment 
probability-coverage (Penfield, 1994). (c) Small 
sizes, extreme skewness, and disproportional 
heteroscedasticity attenuate probability-
coverage. If the confidence level was set at 0.95, 
the t-test displayed coverage-probabilities of 
0.90 or less (Algina, Oshima, & Lin, 1994; 
Penfield, 1994). Although increasing sample 
sizes decreases the magnitude of separation 
between the Type I error rate and alpha level, 
Bradley (1978) observed that group sample sizes 
as large as 1,024 were needed for the 
independent samples t-test to maintain a 0.01 
Type I error rate, if the application of the 
treatment increases the variance, 
heteroscedasticity increases interval-length. The 
larger group variance increases the standard 
error, thereby increasing the interval-length. 
 
Use of Transformations 
  Using transformations to remedy the 
error rate problems of skewness and 
heteroscedasticity is problematic. The 
interpretation of statistical significance for the 
transformed scale no longer holds for the 
untransformed scale (Games, 1983). Yet, the 
untransformed scale was selected based upon an 
underlying rationale for doing the study. 
 
Welch’s and Yuen’s Techniques 
  Both Welch’s and Yuen’s techniques 
have been recommended for amending the Type 
I and Type II error rate problems resulting from 
heteroscedasticity and skewness (Wilcox, 1996). 
The confidence interval for Welch’s technique 
uses a separate variance estimate of the standard 
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error. Where 2
is  is the variance for group i, and 

iiix nss 22 = , the standard error is estimated as 
 

       2
2

2
121 xxxx ssSE +=−            (4) 

 
The degrees of freedom are calculated as 
  

   ( )2 2 2 2 2 2 2
1 21 2 1 2( ) ( ) ( 1) ( ) ( 1)
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x x x x
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s s s n s n
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+ − + −
     (5) 

 
 Yuen’s technique assesses the difference 
between the trimmed means. The technique is 
outlined as follows. Trimming a group sample 
involves omitting a fixed proportion of the 
largest scores and an equivalent number of the 
smallest scores from the sample. Winsorization 
involves replacing a fixed proportion of the 
largest scores with the maximum score for the 
trimmed version of the same sample, and 
replacing an equivalent number of the smallest 
scores with the minimum score for the trimmed 
version of the same sample. Wilcox (2003) 
suggested that 20% trimming is “a good choice 
for general use” (p. 251). (a) Where tau ( iτ ) is 
the integer portion of )(20.0 in , the trimmed 
sample size is )(2 iii nh τ−= . The trimmed 

mean )( tiX  is the mean of observations for the 
trimmed sample size. (b) The Winsorized mean 

)( wiX  is the mean of observations for the 
Winsorized sample. The Winsorized sum of 
squared deviations is estimated as 
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Note that the subscripts in parentheses, e.g., 
( 1+τ ), ( τ−n ), and (i) represent the ascending 
order of the X values. (c) Where the Winsorized 
variance is estimated as )1(2 −= iwiwi hSSDS  
and the standard error of the trimmed mean is 

iwitix hSS 22 = , the standard error of the effect is 
estimated by: 
 

   2
2

2
121 txtxtxxt SSSE +=

−
           (7) 

 
The degrees of freedom is calculated as follows. 
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The confidence interval of trimmed means for 
bi-groups (Wilcox, 1996) is: 
 
       212/121 )( txtxtt SEtXX −−− α∓       (9) 
 
Welch’s and Yuen’s techniques exhibited 
appropriate coverage for extreme skewness, and 
homoscedasticity, i.e., 975.0ˆ1925.0 ≤−≤ α  
(Algina et al., 1994; Wilcox, 1994). Under 
conditions of skewness and disproportional 
heteroscedasticity, Welch’s coverage was less 
than 0.925 (Luh & Guo, 2000). Yuen’s coverage 
was less than the confidence-level but to a lesser 
extent than Welch’s technique was, i.e., 

=−α̂1 0.92 versus 0.85. The probabilities of 
coverage were outlined in the table below. 

Objections to the studies of Table 1 are 
related to the random samples assessed and the 
outcome measures used.  The first objection is 
that the techniques were recommended based on 
random numbers generated using mathematical 
functions. The skewness and kurtosis properties 
of the random numbers may not generalize to 
the samples observed in applied situations in 
education and psychology. To the extent that 
Monte Carlo samples represent applied 
situations, the results are generalizable to similar 
situations (Sawilowsky & Fahoome, 2003). 

The second objection with the manner in 
which the preceding studies were conducted is 
that the techniques were recommended based on 
Type I and Type II error rates alone. The Type I 
and the Type II error rates indirectly relate to 
confidence intervals; whereas, the probability-
coverage and interval-length serve as outcome 
measures for confidence intervals. Though 
interval-length serves as an outcome measure for 
confidence intervals, journals in education and 
in psychology did not provide the interval-length 
for assessing Welch’s and Yuen’s techniques.  
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Table 1. Probability of Coverage of Yuen’s & Welch’s Techniques Reported in the Literature. 
 

Test Citation n1 n2 σ1 σ2 Skew. Kurt. PC 

Welch's Yuen (1974) 10 10 1.00 0.71 0.00 -1.20 0.95 

  20 10 1.00 0.71 0.00 -1.20 0.95 

  20 20 1.41 0.71 0.00 -1.20 0.95 

  10 20 4.00 1.00 0.00 0.00 0.95 

  10 10 2.00 1.00 0.00 0.00 0.95 

 Algina (1994) 33 67 3.00 1.00 6.10 np 0.88 

 et al. 33 67 2.00 1.00 6.10 np 0.90 

  33 67 1.00 1.00 6.10 np 0.94 

 Penfield (1994) 10 20 1.00 1.00 0.00 np 0.96 

  10 20 1.00 1.00 1.50 np 0.96 

  20 20 1.00 2.00 0.00 np 0.95 

  20 20 1.00 2.00 1.50 np 0.95 

  10 20 1.00 2.00 1.50 np 0.95 

Welch’s  10 20 1.00 2.00 1.00 np 0.95 

  10 20 2.00 1.00 0.00 np 0.95 

 Penfield (1994) 10 20 2.00 1.00 1.50 np 0.96 

 Luh & Guo (2000) 12 24 1.00 4.00 6.20 111.00 0.91 

  12 24 4.00 1.00 6.20 111.00 0.85 

 Guo & Luh (2000) 18 12 1.00 6.00 1.75 5.90 0.92 

  18 12 1.00 6.00 6.20 111.00 0.85 

Yuen's Luh & Guo (2000) 12 24 1.00 4.00 6.20 111.00 0.95 

  12 24 4.00 1.00 6.20 111.00 0.92 

 Wilcox (1994) 12 12 1.00 1.00 2.00 6.00 0.95 

  40 12 1.00 1.00 2.00 6.00 0.95 

  80 20 1.00 1.00 2.00 6.00 0.94 

  12 12 1.00 1.00 3.90 42.20 0.95 

  40 12 1.00 1.00 3.90 42.20 0.95 

  80 20 1.00 1.00 3.90 42.20 0.95 
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Purpose 
 The purpose of the study was to assess 
the probability-coverage and the interval-length 
for Welch’s and Yuen’s techniques. The 
techniques were assessed (a) using empirical 
data sets that were not normally distributed (i.e., 
Sawilowsky & Blair, 1992), (b) under conditions 
of heteroscedasticity, and (c) for unequal group 
sample sizes. 
 

Methodology 
 

Micceri (1986) identified eight distributions 
prevalent in educational and psychological 
research. Table 2 provides the means, standard 
deviations and third and fourth moment 
estimates of skewness and kurtosis of the eight 
distributions. The kurtosis was adjusted so that 
the value for a normal distribution would be 
0.00.  Estimates of interval-length and 
probability-coverage were obtained by sampling 
from the seven distributions. Random samples 
were obtained independently and with 
replacement using the International 
Mathematical and Statistical Libraries (1998): 
RNUND and RNSET subroutines. One million 
repetitions were performed. 

The procedure involved obtaining 
random samples from the empirical 
distributions, standardizing the scores, modeling 
the effect and modeling heterogeneity, trimming 
and Winsorizing the dataset, computing the 
interval, summing values of interval length and 
probability-coverage, and averaging values of 
interval length and the values of probability-
coverage. 
 Sample size ratios of 1:1, 3:1, and 1:3 
were selected. The respective sample sizes were 
(n1, n2) = (13, 13), (13, 39), (39, 13), and (39, 
39). Variance ratios of 1:1, 1:2 and 1:4 allowed 
for a comparison of the probability-coverage and 
interval-lengths for each technique under 
homoscedasticity and heteroscedasticity. 
Coverage-probabilities and interval-length were 
examined at the 0.01, and 0.05 alpha levels. 

Where 'μ is the mean for the 
transformed score, 'σ  is the standard deviation 
for the transformed score, and Z  is a standard 
score, the transformed score was obtained as 
follows. 

                           ZX ''' σμ +=                           (10) 
 
The mean of the second group was set to one. 
The levels of skewness, size, variance, and 
effect under study represent a subset of 
conditions in applied situations. 
 The ratio of the average length for 
Student's technique divided by the average 
length for the comparison technique, i.e., 
Welch's or Yuen's technique, was calculated to 
compare interval lengths. 

 
Results 

 
Probability-coverage 
 The results showed inflated probability-
coverage for Yuen’s techniques was observed 
with extreme skewness. Probability-coverage 
was greater than the confidence-level when 
skewness was above 1.25, sample sizes were 
equal and less than 25 or sample sizes were 
unequal. The results were observed under 
homoscedasticity. In addition, probability-
coverage was greater than the confidence-level 
when skewness was above 1.25 and 
heteroscedasticity was proportional to size or 
sample sizes were equal, less than 25, and 
heteroscedastic. The probability-coverage 
exceeded the upper bound of the Bradley- 
criterion, i.e., )5.01()ˆ1( αα −>− . The results 
were not observed where =12 /σσ  4. Results 
were presented in Table 3 through Table 9. 
 
Welch’s technique: 

 Attenuated coverage-probabilities were 
observed for both extreme skewness (i.e., 
absolute skewness greater than 1.25) and 
heteroscedasticity ( =12 /σσ  4). That is, 
coverage-probabilities were less than 0.925 
( 05.0=α ) or 0.985 ( 01.0=α ). The results 
occurred where sample sizes were inversely 
proportional to variances; alternatively, the 
results occurred where group sample sizes were 
less than 25. 
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Table 2. Descriptive Information Pertaining to Eight Real World Distributions. 
 

Distribution M SD Skew. Kurt. 
   

Mass at Zero 12.92 4.42 -0.03 0.31 

   

Extreme Asymmetry-Psychometric 13.67 5.75 1.64 1.52 

   

Extreme Asymmetry-Achievement 24.5 5.79 -1.33 1.11 

   

Extreme Bimodality 2.97 1.69 -0.08 -1.70 

   

Multimodal & Lumpy 21.15 11.9 0.19 -1.20 

   

Digit Preference 536.95 37.64 -0.07 -0.24 

   

Smooth Symmetric 13.19 4.91 0.01 -0.34 

Note. Adapted from "A More Realistic Look at the Robustness and Type II Error 
Properties of the t Test to Departures From Population Normality”, by S. S. 
Sawilowsky and R. C. Blair, 1992, Psychological Bulletin, 2, p. 353. Copyright 
1992 by the American Psychological Association 
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Table 3. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and 
Alpha Levels when Sampling from an Extreme Asymmetry – Achievement Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.952 0.956a 0.964a 0.992a 0.994a 0.995a 

13 39 1 0.952 0.937c 0.948 0.991 0.980d 0.988c 

39 13 1 0.952 0.937c 0.948 0.991 0.980d 0.988c 

39 39 1 0.950 0.950 0.955 0.990 0.991 0.993a 

13 13 2 0.933c 0.935c 0.947 0.978d 0.979d 0.988c 

13 39 2 0.986b 0.952 0.958a 0.997b 0.992a 0.994a 

39 13 2 0.838d 0.922d 0.932c 0.934d 0.965d 0.974d

39 39 2 0.945 0.946 0.948 0.986c 0.986c 0.988c 

13 13 4 0.914d 0.921d 0.931c 0.961d 0.965d 0.974d

13 39 4 0.992b 0.945 0.948 0.998b 0.986c 0.988c 

39 13 4 0.753d 0.918d 0.929c 0.863d 0.962d 0.972d

39 39 4 0.938c 0.941c 0.943c 0.981d 0.982d 0.983d

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα   
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 4. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from an Extreme Bimodal Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.962a 0.962a 0.961a 0.994a 0.994a 0.993a 

13 39 1 0.959a 0.958a 0.952 0.994a 0.993a 0.988c 

39 13 1 0.959a 0.958a 0.952 0.994a 0.993a 0.988c 

39 39 1 0.950 0.950 0.949 0.990 0.990 0.989 

13 13 2 0.958a 0.961a 0.953 0.993a 0.994a 0.989 

13 39 2 0.993b 0.955 0.953 0.999b 0.991 0.990 

39 13 2 0.857d 0.960a 0.948 0.949d 0.994a 0.984d

39 39 2 0.948 0.950 0.947 0.989 0.989 0.987c 

13 13 4 0.953 0.961a 0.949 0.991 0.994a 0.984d

13 39 4 0.997b 0.951 0.948 1.000b 0.990 0.987c 

39 13 4 0.781d 0.961a 0.949 0.893d 0.994a 0.982d

39 39 4 0.946 0.949 0.946 0.988c 0.989 0.985c 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 5. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from a Digit Preference Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.950 0.951 0.951 0.990 0.991 0.990 

13 39 1 0.950 0.949 0.947 0.990 0.989 0.988c

39 13 1 0.950 0.949 0.947 0.990 0.989 0.988c

39 39 1 0.950 0.950 0.949 0.990 0.990 0.990 

13 13 2 0.946 0.950 0.948 0.988c 0.990 0.989 

13 39 2 0.991b 0.950 0.949 0.999b 0.990 0.989 

39 13 2 0.846d 0.949 0.945 0.940d 0.989 0.988c

39 39 2 0.948 0.950 0.948 0.989 0.990 0.989 

13 13 4 0.941c 0.949 0.945 0.985c 0.989 0.988c

13 39 4 0.998b 0.950 0.949 1.000b 0.990 0.989 

39 13 4 0.765d 0.949 0.946 0.881d 0.989 0.988c

39 39 4 0.947 0.950 0.948 0.989 0.990 0.989 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 6. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from a Mass at Zero Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.950 0.951 0.951 0.990 0.991 0.990 

13 39 1 0.950 0.950 0.947 0.990 0.990 0.988c

39 13 1 0.950 0.950 0.947 0.990 0.990 0.988c

39 39 1 0.950 0.950 0.950 0.990 0.990 0.990 

13 13 2 0.947 0.951 0.948 0.989 0.990 0.989 

13 39 2 0.991b 0.950 0.950 0.999b 0.990 0.990 

39 13 2 0.847d 0.950 0.945 0.941d 0.990 0.987c

39 39 2 0.949 0.950 0.948 0.990 0.990 0.989 

13 13 4 0.942c 0.950 0.945 0.986c 0.990 0.987c

13 39 4 0.998b 0.950 0.948 1.000b 0.990 0.989 

39 13 4 0.765d 0.950 0.945 0.882d 0.990 0.988c

39 39 4 0.947 0.950 0.948 0.989 0.990 0.989 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 7. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from a Smooth Symmetric Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.950 0.950 0.950 0.990 0.990 0.990 

13 39 1 0.950 0.948 0.946 0.990 0.989 0.988c

39 13 1 0.950 0.949 0.947 0.990 0.989 0.988c

39 39 1 0.950 0.950 0.950 0.990 0.990 0.990 

13 13 2 0.945 0.949 0.947 0.988c 0.989 0.988c

13 39 2 0.991b 0.950 0.950 0.999b 0.990 0.990 

39 13 2 0.846d 0.949 0.945 0.939d 0.989 0.987c

39 39 2 0.949 0.950 0.949 0.989 0.990 0.989 

13 13 4 0.941c 0.949 0.946 0.985c 0.989 0.988c

13 39 4 0.998b 0.950 0.949 1.000b 0.990 0.989 

39 13 4 0.765d 0.949 0.946 0.881d 0.989 0.988c

39 39 4 0.947 0.950 0.948 0.988c 0.990 0.989 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 8. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from a Multimodal Lumpy Distribution. 

    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.949 0.949 0.949 0.989 0.989 0.989 

13 39 1 0.950 0.947 0.939c 0.990 0.987c 0.981d

39 13 1 0.950 0.947 0.939c 0.990 0.987c 0.981d

39 39 1 0.950 0.950 0.950 0.990 0.990 0.989 

13 13 2 0.944c 0.947 0.937c 0.986c 0.987c 0.980d

13 39 2 0.991b 0.950 0.948 0.999b 0.989 0.989 

39 13 2 0.845d 0.947 0.930c 0.937d 0.986c 0.972d

39 39 2 0.948 0.949 0.947 0.989 0.989 0.987c 

13 13 4 0.938c 0.946 0.929c 0.982d 0.986c 0.971d

13 39 4 0.997b 0.950 0.948 1.000b 0.989 0.987c 

39 13 4 0.767d 0.946 0.929c 0.880d 0.986c 0.971d

39 39 4 0.947 0.949 0.946 0.988c 0.989 0.986c 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 9. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and 
Alpha Levels when Sampling from a Extreme Asymmetry - Psychometric Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.969a 0.973a 0.989b 0.996b 0.998b 0.999b

13 39 1 0.961a 0.949 0.979b 0.991 0.985c 0.998b

39 13 1 0.960a 0.948 0.979b 0.991 0.985c 0.998b

39 39 1 0.952 0.953 0.969a 0.992a 0.992a 0.997b

13 13 2 0.943c 0.946 0.982b 0.983d 0.984d 0.999b

13 39 2 0.983b 0.960a 0.976b 0.996b 0.995a 0.998b

39 13 2 0.861d 0.928c 0.958a 0.950d 0.965d 0.994a 

39 39 2 0.944c 0.945 0.947 0.985c 0.985c 0.989 

13 13 4 0.921d 0.925c 0.952 0.961d 0.963d 0.995a 

13 39 4 0.989b 0.944c 0.944c 0.997b 0.984d 0.987c 

39 13 4 0.779d 0.923d 0.940c 0.880d 0.960d 0.987c 

39 39 4 0.936c 0.938c 0.927c 0.977d 0.979d 0.968d

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 10. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from an Extreme Asymmetry – Achievement 

Distribution. 
 

   05.0=α  01.0=α  
n1 n2 σ2/σ1 Welch Yuen Welch Yuen 

13 13 1 0.993a 0.733a 0.989a 0.712a 
13 39 1 0.975c 0.727 0.954d 0.696c 
39 13 1 0.975c 0.727 0.954d 0.696c 
39 39 1 0.999 0.763 0.999 0.757a 
13 13 2 0.979c 0.724 0.966d 0.695c 
13 39 2 1.359 1.023a 1.353a 1.005a 
39 13 2 0.694d 0.514c 0.667d 0.480d 
39 39 2 0.994 0.760 0.991c 0.751c 
13 13 4 0.960d 0.709c 0.935d 0.670d 
13 39 4 1.610 1.224 1.608c 1.211c 
39 13 4 0.573d 0.424c 0.547d 0.390d 
39 39 4 0.987c 0.755c 0.980d 0.742d 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 11. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from an Extreme Bimodal Distribution. 

 
   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.999a 0.886a 0.999a 0.870a 
13 39 1 0.964a 0.840 0.943a 0.809c 
39 13 1 0.964a 0.840 0.944a 0.809c 
39 39 1 1.000 0.827 1.000 0.822 
13 13 2 0.981a 0.864 0.969a 0.833 
13 39 2 1.360 1.162 1.356 1.148 
39 13 2 0.682a 0.594 0.655a 0.556d 
39 39 2 0.994 0.820 0.991 0.811c 
13 13 4 0.959a 0.837 0.934a 0.790d 
13 39 4 1.613 1.343 1.612 1.330c 
39 13 4 0.568a 0.493 0.542a 0.455d 
39 39 4 0.987 0.811 0.980 0.797c 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 12. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from a Digit Preference Distribution. 

 
   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.996 0.768 0.994 0.750 
13 39 1 0.971 0.749 0.950 0.718c 
39 13 1 0.971 0.749 0.950 0.718c 
39 39 1 1.000 0.775 0.999 0.770 
13 13 2 0.980 0.753 0.968 0.725 
13 39 2 1.361 1.054 1.356 1.038 
39 13 2 0.688 0.527 0.662 0.492c 
39 39 2 0.994 0.769 0.991 0.761 
13 13 4 0.959 0.733 0.935 0.692c 
13 39 4 1.612 1.247 1.610 1.234 
39 13 4 0.570 0.435 0.544 0.400c 
39 39 4 0.987 0.763 0.980 0.749 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 13. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and Yuen’s 
Techniques when Sampling from a Mass at Zero Distribution. 

 
   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.995 0.812 0.993 0.793 
13 39 1 0.972 0.793 0.951 0.761c 
39 13 1 0.972 0.794 0.951 0.761c 
39 39 1 1.000 0.824 0.999 0.819 
13 13 2 0.980 0.796 0.967 0.767 
13 39 2 1.360 1.119 1.355 1.102 
39 13 2 0.690 0.558 0.663 0.521c 
39 39 2 0.994 0.819 0.991 0.809 
13 13 4 0.959 0.775 0.935 0.731c 
13 39 4 1.611 1.325 1.610 1.312 
39 13 4 0.571 0.460 0.545 0.423c 
39 39 4 0.987 0.811 0.980 0.797 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 14. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from a Smooth Symmetric Distribution. 

 
   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.996 0.735 0.994 0.718 
13 39 1 0.971 0.716 0.950 0.687c 
39 13 1 0.971 0.716 0.950 0.687c 
39 39 1 1.000 0.742 0.999 0.738 
13 13 2 0.980 0.721 0.968 0.694c 
13 39 2 1.361 1.009 1.356 0.994 
39 13 2 0.688 0.504 0.661 0.470c 
39 39 2 0.994 0.737 0.991 0.729 
13 13 4 0.959 0.702 0.935 0.662c 
13 39 4 1.612 1.195 1.611 1.183 
39 13 4 0.570 0.416 0.544 0.383c 
39 39 4 0.987 0.731 0.980 0.718 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα   

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 15. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from a Multimodal Lumpy Distribution. 

 
.   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.998 0.808 0.997 0.790 
13 39 1 0.968 0.777c 0.947c 0.747d 
39 13 1 0.968 0.777c 0.947c 0.747d 
39 39 1 1.000 0.784 1.000 0.779 
13 13 2 0.980 0.790c 0.969c 0.762d 
13 39 2 1.362 1.085 1.357 1.071 
39 13 2 0.685 0.548c 0.658c 0.512d 
39 39 2 0.994 0.778 0.991 0.769c 
13 13 4 0.959 0.768c 0.935c 0.725d 
13 39 4 1.613 1.268 1.612 1.256c 
39 13 4 0.569 0.454c 0.543c 0.418d 
39 39 4 0.987 0.770 0.980 0.756c 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 16. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from an Extreme Asymmetry – Psychometric 

Distribution. 
 

   05.0=α  01.0=α  
n1 n2 σ2/σ1 Welch Yuen Welch Yuen 

13 13 1 0.992a 0.698b 0.988b 0.673b 
13 39 1 0.967 0.702b 0.946c 0.669b 
39 13 1 0.967 0.702b 0.945c 0.668b 
39 39 1 0.999 0.772a 0.999a 0.765b 
13 13 2 0.978 0.696b 0.965d 0.666b 
13 39 2 1.349a 0.998b 1.343a 0.974b 
39 13 2 0.691c 0.501a 0.664d 0.467a 
39 39 2 0.994 0.774 0.990c 0.765 
13 13 4 0.960c 0.692 0.935d 0.654a 
13 39 4 1.605c 1.230c 1.604d 1.213c 
39 13 4 0.573d 0.416c 0.547d 0.383c 
39 39 4 0.988c 0.777c 0.980d 0.763d 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Yuen’s technique 
 For Yuen’s techniques, attenuated 

coverage-probabilities were observed for 
extreme negative kurtosis. For the population 
defined by the trimmed mean, kurtosis values 
less than –1.25 were observed with coverage-
probabilities less than 0.985. Given extreme 
bimodality, coverage-probabilities that were 
within the range of 0.925-0.975 ( 05.0=α ) 
were below 0.985 ( 01.0=α ). The kurtosis of 
the extreme bimodal distribution after trimming 
was –1.454. The results occurred under both 
homoscedastic and heteroscedastic conditions. 
Where size was inversely paired with variance, 
under a multimodal lumpy distribution, 
coverage-probabilities were within the range 
0.925-0.975 at the 0.05 alpha level. At the 0.01 
alpha level, coverage-probabilities were less 
than 0.985. The kurtosis of the multimodal 
lumpy distribution after trimming was -1.269.  
 
Interval Length 
 The results for interval length showed 
where 2

minS  was divided by minn , the interval-
lengths for Welch’s and Yuen’s techniques were 
less than the interval-lengths for Student’s 
technique. If 2

maxS  was divided by minn , the 
reverse was true. Results were presented in 
Table 10 through Table 16. Second, interval-
lengths for Yuen’s technique were wider than 
the interval-lengths for Welch’s technique. The 
interval-length ratios for Yuen’s technique were 
smaller than the ratios of Welch’s technique. 
Larger interval-lengths were observed for the 
heteroscedastic than for the homoscedastic 
condition. 
 

Conclusion 
 
Similar to findings by Sawilowsky and Blair 
(1992, p. 359) showing that skewness attenuated 
the Type I error rates for the t-test, the results of 
the present study showed that if skewness was 
above 1.25, e.g., skewness of the extreme 
asymmetric - psychometric distribution was 
1.417 after trimming, coverage-probabilities 
were augmented (i.e., )5.01()ˆ1( αα −>− ). 
  Similar to findings by Luh and Guo 
(2000) and Algina et al. (1994) showing that 

when size was inversely proportional to 
heteroscedasticity and skewness was greater or 
equal to 2.00, Welch’s technique displayed 
coverage-probabilities less than the confidence-
level when size was inversely proportional to 
heteroscedasticity and skewness was –1.33 or 
1.64. 
  Finally, the augmentation or attenuation 
of probability-coverage for both techniques 
occurred more at 0.01 than at 0.05 alpha levels; 
this finding was consistent with results from 
Bradley (1978, p. 147) showing that larger 
sample sizes were required for the t-test to 
exhibit robustness at the 0.01 level than at the 
0.05 level.  
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