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Tests for 2 × 2 Tables in Clinical Trials 

Vic Hasselblad Yuliya Lokhnygina 
    Duke University

 

 
 

 
Five standard tests are compared: chi-squared, Fisher's exact, Yates’ correction, Fisher’s exact mid-p, and 
Barnard’s. Yates’ is always inferior to Fisher’s exact.  Fisher’s exact is so conservative that one should 
look for alternatives.  For certain sample sizes, Fisher’s mid-p or Barnard’s test maintain the nominal 
alpha and have superior power.   
 
Key words: Power, sample size, dichotomous endpoint, alpha level 
 
 

Introduction 
 
The literature on tests for 2×2 tables is 
extremely vast and controversial. However, the 
issues can be focused somewhat when 
considering the use of these tests for clinical 
trials. In this situation, the trials have two arms 
and the sample size of each arm is fixed. Tests 
are almost always made at the 0.05 nominal 
alpha level. There is no requirement that the 
tests be computationally simple, but only that 
they are available in standard commercial 
statistical software. The following two examples 
illustrate many of the issues of interest. 
 Cotter et al (2000) conducted a small, 
randomized pilot study (15 patients per 
treatment arm)   comparing   Nω-nitro-L-arginine  
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methyl ester (L-NAME) to placebo in patients 
with cardiogenic shock. Mortality results are 
given in Table 1. 

Cotter et al. reported a p-value of 0.028 
(no test specified), a value which is consistent 
with the standard chi-square test. However, if 
Fisher’s exact test had been used in the standard 
manner, the p-value would have been 0.0656. If 
Fisher’s mid-p or Barnard’s test had been used, 
then the p-value would have been 0.0374 or 
0.0352, respectively. The results of this trial, 
along with other preliminary data, were 
suggestive of an effect, and so a second study, 
SHOCK II (Dzavik et al., submitted), was 
conducted. Ironically, the SHOCK II Trial 
showed no evidence of a treatment effect, but 
there were significant differences between the 
SHOCK II Trial and the Cotter Trial. 
 The second example is taken from the A 
to Z Trial (Blazing et al., 2004). This trial 
compared enoxaparin with un-fractionated 
heparin for the treatment of 3905 patients with 
acute coronary syndrome (ACS). Based on other 
studies, there was a concern that enoxaparin 
might lead to an increase in the number of 
bleeding events. Given in Table 2 are the counts 
of patients with TIMI major bleeding events by 
treatment arm. 
 Note that the bleeding rates are quite 
low in both arms (less than one percent). The 
Statistical Analysis Plan specified that 
“Statistical comparison will be conducted using 
Fisher’s exact test …” 
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 In this case, Fisher’s exact test gives a p-
value between 0.0285 and 0.0501. The problem 
with Fisher’s exact test is that it is .0393 or 
0.0352, respectively. It is clear that summarizing 
the results of the above table as non-significant 
would not accurately describe the information. 
 These two examples point out some of 
the difficulties in choosing a statistical test in the 
simplest of trials, namely the two-arm 
dichotomous trials. There are several possible 
tests that can be used and they have different 
implications for both the nominal alpha level as 
well as the power. We will restrict our 
consideration to those tests available in 
commercial software packages such as SAS®  
 
 

 
 

 
 
(SAS Institute, 1999) or StatXact (StatXAct 
with Cytel Studio, 2005). 
 

Methodology 
 

Assume a study where the number of positives 
and negatives are measured for a control group 
and a treated group, and that the results are 
summarized in a standard 2 x 2 contingency 
table where A, B, C, and D are the observed 
counts. Let T = A + B + C + D.  The rate in the 
treated group, p1, is estimated by A / N1 and the 
rate in the control group, p2, is estimated by C / 
N2. The null hypothesis is that p1 = p2 and the 
usual alternative hypothesis is  
 

Table 1. Deaths by Treatment Arm in the L-NAME Trial 

  L-NAME  No L-NAME  Total 

Died    4 10  14 

Survived 11    5  16 

Total  15  15  30 

 
 

Table 2.   Bleeding Events by Treatment Arm for the A to Z Trial 

 Enoxaparin Un-fractionated 

Heparin 

Total 

Bleed     18       8     26 

No bleed 1922 1957 3879 

Total 1940 1965 3905 
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that p1 ≠ p2. The object is to find a test statistic 
which is a function of A, B, C, and D such that 
the value of the test is very  different when p1 = 
p2 as compared with when p1 ≠ p2. There are 
several test statistics which could be used to test 
the null hypothesis, and the properties of five 
such tests will be investigated: 1) the 
uncorrected chi-squared test, 2) Fisher's exact 
test, 3) Yates’ correction to the chi-squared test, 
4) Fisher’s exact mid-p test, and 5) Barnard’s 
test.   
 
Uncorrected chi-squared test 
 The standard uncorrected chi-squared 
statistic (Pearson, 1900) is: 
 

                  
2

1 2 1 2

T(AD - BC )CS = .
S SN N

          (1) 

 
For an intended α-level of 0.05, the test rejects 
the null hypothesis whenever CS > 3.8415 and 
accepts otherwise. The power of the test is the 
probability that CS > 3.8415 given particular 
values of p1, p2, N1, and N2.   
 
Fisher’s exact test 
 In 1925, Fisher (1925) gave an exact test 
which requires a bit more effort to compute. The 
test is based on the hyper geometric distribution. 
Assume that the four marginal totals, N1, N2, S1, 
and S2, are fixed. Under the null hypothesis, the 
probability that A = i for i = 0, 1,… , min(N1, S1) 
is: 
 
                      
 
 

 
 

                   ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠

, , ,1 2 1 2

21

1 1

Prob(A N N S S ) = 

S TS
.

N A NA

           (2) 

 
The (two sided) probability of an observed or 
more extreme than observed result is given by 
 

1 2 1 2 1 2 1 2

1 2 1 2
Pr ob(iN ,N ,S ,S ) Pr ob(A N ,N ,S ,S )

Pr ob(i N ,N ,S ,S )
<
∑  

             + 1 2 1 2Pr ob(A N ,N ,S ,S )                 (3) 
 
For example, the values for Cotter et al (2000) 
are 0.0092 + 0.0564 = 0.0656. The two values, 
0.0092 and 0.0656, are the only two reasonable 
values for the size of Fisher’s exact test in this 
particular case (see Kendall and Stuart, Vol. 2, 
pp. 553, 1961). A non-randomized test cannot be 
constructed at any arbitrary level. But by 
convention, the largest value, 0.0656, is often 
taken as the p-value from the test. This value is 
often described as conservative, but it is only 
conservative if the object is to reject the null 
hypothesis. Thus, the null hypothesis would not 
be rejected at the 0.05 level using this test in this 
particular manner. The test could be made exact 
by choosing a random number between the 
values of 0.0092 and 0.0656 as the p-value. 
However, using randomization as part of the 
hypothesis testing procedure has never been 
accepted in clinical literature. This example 
demonstrates that using a conservative test is not 
necessarily a conservative strategy when the 
endpoint in question is a safety endpoint. 
 
 
 
Yates’ corrected chi-square test 

  Treated  Control  Total 

Positive  A  C  S1 

Negative  B  D  S2 

Total  N1  N2  T 
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 The third test is Yates’ (1934) correction 
to the Pearson chi-squared statistic: 
 
 

2

1 2 1 2

T(| AD -BC | -T/2)     CSC = .
S SN N

               (4) 

 
This correction is designed to make the chi-
squared statistic give a p-value which is often 
very close to the p-values calculated from 
Fisher's exact test.  
 
Fisher’s mid-p test 
 The fourth test is a modification of 
Fisher’s exact test, known as Fisher’s mid-p 
value, as defined by Lancaster (1961). The 
calculations are made exactly as those done for 
Fisher’s exact test, except that the probability of 
a result more extreme is averaged with the 
probability of a result as extreme or more so. In 
the Cotter et al. (2000) example, this would be 
(0.0092 + 0.0656)/2 = 0.0374. StatXact (2005) 
and LogXact (LogXact with Cytel Studio, 2005) 
report mid-p values as part of their output. 
 
Barnard’s test 

Barnard (1947) proposed an 
unconditional exact test based on a minimax 
elimination of the nuisance parameter. The 
reference set was defined to be the set of all 2 x 
2 tables with fixed row margins and all possible 
column margins. Because the reference set for 
Barnard’s test does not fix the column margins, 
the distribution of the test statistic is less discrete 
than would be obtained by permuting the 
conditional reference set in which both margins 
are fixed. However, Barnard was not satisfied 
with his test, and disavowed it two years later 
(Barnard, 1949). There is an interesting 
discussion by Barnard of the reasons for his 
disavowal in Yates (1984, with discussion). 
Barnard invoked Fisher’s principle of ancillarity 
(see Fisher, 1973, Chapter IV), whereby 
inference should be based on hypothetical 
repetitions of the original experiment, fixing 
those aspects of the experiment that are 
unrelated to the hypothesis under test. Little 
(1989) gives a clear discussion of this topic. In 
two more recent publications, Barnard (1989, 
1990) provided additional arguments against the 

test. However, Little (1989) showed that the row 
totals are not ancillary statistics. 

If the true value of p was known under 
the null hypothesis (p1 = p2 = p), then the 
probability of any possible outcome could be 
calculated, e.g. the probability of x1 events in the 
first arm (of size N1), and x2 events in the second 
arm (of size N2): 
 

=1 2Pr( , )x x  

                        ( ) −⎛ ⎞
−⎜ ⎟

⎝ ⎠
1 111

1

1 N xXN
p p

x
 

                        ( ) −⎛ ⎞
−⎜ ⎟

⎝ ⎠
2 222

2

1 N xXN
p p

x
               (5) 

 

Next, order the outcomes. One possible ordering 
would be to use the D statistic: 
 

    
2 1

2 1

1 2 1 2 1 2

1 2 1 2 1 2

1 1

x x
N ND

x x N N x x
N N N N N N

−
=

⎛ ⎞⎛ ⎞⎛ ⎞+ + − − +⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠⎝ ⎠

     (6) 

 
Using this ordering, the probabilities can be 
found of all tables at least as extreme, or more 
so, than the observed table for a given p. The 
sum of all these probabilities is the p-value 
associated with the specified p. Calculate this p-
value for all possible specified p’s and take their 
maximum. This is Barnard’s p-value. A plot of 
the extreme values as a function of p for the 
Cotter et al (2000) example is in Figure 1. 
 Note that the statistic reaches a 
maximum of 0.0352, and this is Barnard’s p-
value for the Cotter et al study (2000). Barnard’s 
test is actually guaranteed to be conservative for 
certain specific sample sizes. The reason that the 
test is not always conservative is that it uses a 
normal approximation to order the outcomes. 
 
Power Formulas 
 The formula for the probability of 
rejection for any test of equality of proportions 
is given by: 
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=P r[ ]re je c t  

     ( ) ( )δ − −

= =

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑∑

1 2
1 2

N N
N i N j1 2 i j

i j 1 1 2 2
i 0 j 0

N N
p 1 p p 1 p

i j
  (7) 

 
where N1 and N2 are the sample sizes of the two 
arms respectively, where p1 and p2 are the true 
event rates in each arm, and where δi j is one if 
the test statistic based on i, N1, j, N2 is 
statistically significant, and zero otherwise.  
 This formula can be used to determine 
either the nominal alpha level for a given test 
(by assuming that p1 equals p2) or to determine 
the power (by not assuming equality). The 
formula is an exact one – no simulations are 
necessary. All results presented in the next 
section are exact calculations. 
 

Results 
 
The actual alpha-levels are calculated for all five 
tests assuming that the intended alpha-level was 
0.05 and N1 = N2 = 25, N1 = N2 = 50, N1 = N2 =  
 
 
 
 

 
100, and N1 = 25, N2 = 50. The calculations 
were made for the entire range of p1 (with p2= 
p1) and these are shown in Figures 2, 3, 4 and 5. 
 Note that the actual alpha-levels for the 
standard chi-square, Fisher’s mid-p, and 
Barnard’s tests are reasonably close to the 
intended alpha-level for 0.2 < p1 < 0.8. The 
maximum actual alpha-level for any test never 
exceeds .065 for any p1. Note also that Fisher's 
exact test has very low alpha-levels. The 
maximum alpha-level for Fisher's exact test for 
N1 = N2 = 25 is 0.0328. Yates’ correction to the 
standard chi-square test yields alpha levels as 
low as or lower than Fisher’s exact test. Fisher’s 
mid-p test falls below the nominal alpha level of 
0.05 everywhere, but is uniformly larger than 
either Fisher’s exact or Yates’ correction. 
Barnard’s test is as large, or larger, than Fisher’s 
mid-p, but it does exceed 0.05 for event rates 
between 0.107 and 0.172 and between 0.828 and 
0.893. 
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Figure 1.  Calculation of Barnard’s Statistic for Specified Null Probabilities (p1) 
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Figure 2. Alpha Levels for Two Arm Dichotomous Tests for N1 = N2 = 25 
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Figure 3.  Alpha Levels for Two Arm Dichotomous Tests for N1 = N2 = 50 
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Figure 4. Alpha Levels for Two Arm Dichotomous Tests for N1 = 100, N2 = 100 
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Figure 5. Alpha Levels for Two Arm Dichotomous Tests for N1 = 25, N2 = 50 
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 For sample sizes of 50 per arm, the 
actual alpha-levels for the standard chi-square, 
Fisher’s mid-p, and Barnard’s tests approach the 
nominal alpha-level for 0.2 < p1 < 0.8. The 
maximum actual alpha-level for any test never 
exceeds .057 for any p1. Fisher's exact test still 
has very low alpha-levels, falling below 0.035 
everywhere. Fisher’s mid-p test remains below 
the nominal alpha level of 0.05 for event rates 
below 0.3, but does reach a maximum of 0.057. 
Barnard’s test never exceeds 0.0507, and is 
generally closer to 0.05 than any of the other 
tests. 

  
 
 
 
 

 
For sample sizes of 100 per arm, the actual 
alpha-levels for the standard chi-square, Fisher’s 
mid-p, and Barnard’s tests approach the nominal 
alpha-level for 0.1 < p1 < 0.9. The maximum 
actual alpha-level for any test never exceeds 
.056 for any p1. Fisher's exact test is increased, 
but still falls below 0.040 everywhere. Fisher’s 
mid-p test falls below the nominal alpha level of 
0.05 for event rates below 0.3, but does reach a 
maximum of 0.056. Barnard’s test never exceeds 
0.053, and is generally closer to 0.05 than any of 
the other tests. 
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Figure 6. Diagram of Maximum Alpha Levels for Fisher’s Mid-P Test 
with Nominal Alpha Level of 0.05. 



TESTS FOR 2X2 TABLES IN CLINICAL TRIALS 
 
464 

 

 
 
 
 
 Fisher’s exact test had alpha levels a bit 
closer to that of the other tests, but Yates’ 
correction had very low alpha levels, achieving a 
maximum of 0.0270.  
 For unequal samples of 25 and 50 per 
arm, the results were somewhat similar to the 
previous results. Barnard’s test had a maximum 
alpha level of 0.0484 and Fisher’s mid-p test had 
a maximum alpha level of 0.0503. However, the 
chi-square test had a maximum of 0.0599. 
 The results from Figures 2 – 5 are 
consistent with the results presented by 
Hasselblad and Allen (2003). Their results 

 

 
 
 
 
suggested that an expected number of events of 
approximately 40 is required to insure that the 
actual alpha level for the chi-square test is 
between 0.049 and 0.051 when the intended 
alpha level is 0.05. 
 Fisher’s mid-p and Barnard’s tests are 
examined in greater detail. Specifically, the 
interest is to determine if those tests were 
conservative for all values of p1 (with p2= p1) for 
specific values of N1 and N2. The results for 
Fisher’s mid-p for N1 = 10, … ,40 and N2 = 10, 
… ,40 are in Figure 6. Those squares which are 
white correspond to an actual alpha level less 
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Figure 7. Diagram of Maximum Alpha Levels for Barnard’s Test 

with Nominal Alpha Level of 0.05. 
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Figure 8. Power of Various Tests for Sample Sizes of 25 Per Arm 
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than 0.05 for all p. 
 For example, if one sample size is 15 
and the other is 15, 16,…, or 25, then Fisher’s 
mid-p test is conservative. On the other hand, if 
both sample sizes are 26, then the test may not 
be conservative, depending on the true null rate. 
However, for most null rates, the test will still be 
conservative. Figure 6 only shows the worst 
possible case. Of the 496 different sample size 
combinations shown in Figure 6, 40.9 percent 
had a nominal alpha level less than 0.05. 
 The results for Barnard’s test for N1 = 
10, … ,40 and N2 = 10, … ,40 are in Figure 7. 
For example, if one sample size is 25 and the 
other is 18, 19,…, or 24, then Barnard’s test is 
conservative. On the other hand, if both sample 
sizes are 25, then the test may not be 
conservative, depending on the true null rate. Of 
the 496 different sample size combinations 
shown in Figure 7, 66.5 percent had a nominal 
alpha level less than 0.05. 
 The power for four of the tests described 
previously was calculated for N1 = N2 = 25 and 
p1 = 0.3 (Yates’ test was dropped to make the  
 

 
 
graph more readable). The results are in 
Figure 8. 
 Note that the power curves behave as 
expected, that is, they reach a minimum at p1 = 
p2 = 0.3 and then increase rapidly as p2 moves 
away from p1. The shapes of the power curves 
are all quite similar. The differences at p1 = p2 =  
0.3 are exactly the differences in the alpha-levels 
of the tests. The power curves show one other 
key point – the tests do not cross each other. 
That is, if a test has a lower nominal alpha level, 
then it will have lower power for the 
alternatives. 
 The power for four of the tests was also 
calculated for N1 = 25, N2 = 50 and p1 = 0.5. The 
results are in Figure 9. 
 Figure 9 shows the same general 
patterns as did Figure 8. 
 There are approximate formulas for 
power that are reasonably accurate.  One 
formula given by Fleiss (1981, p. 27) is  
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Figure 10. Estimated Power Using Approximation versus Actual Power of the Chi-square Test 

for Sample Sizes of 25 in the Control Arm and 50 in the Treated Arm 
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   β  =                           (8) 

( ) ( ) ( ) ( )
α

⎛ ⎞⎛ ⎞ − −⎛ ⎞⎜ ⎟Φ − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
/

1 21 2
2 12

1 2 1 2

1 p 1 pp p1 1c p 1 p + - - pp
N N N N

 

 
where  p  = (p1 + p2)/2 and Φ is the cumulative 
normal distribution function. This approximate 
function is shown in Figure 10, where it is 
drawn as a function of p2. The exact and 
approximate formulas are reasonably similar, 
and they get closer as the sample size increases. 
There are several other formulas that have 
various correction formulas in order to make the 
approximation better. There is, however, a limit 
to the accuracy of these approximations because 
they are not based on the test statistic itself.   
 

Conclusion 
 
There are some conclusions which can be made 
as a result of the calculations presented: 
 

• Even though Fleiss (1981, p. 27) states 
that “[Yates’] correction should always 
be used”, the test is always inferior to 
(its nominal alpha level is less than or 
equal to) Fisher’s exact test, and for that 
reason it should not be used. 

 
• Fisher’s exact test is so conservative that 

one should always look for an 
alternative even if one requires that the 
alpha level of the test not exceed the 
nominal level (by even the smallest 
amount). For certain sample sizes, either 
Fisher’s mid-p or Barnard’s test will 
satisfy the requirement, and those tests 
have much superior power. For 
example, knowing that the test is 
conservative when both arms have 15 
observations, the data of Cotter et al. 
(2000) could have been analyzed using 
Fisher’s mid-p test. 
 

• For tests of safety, being conservative is 
not desirable. Because event rates are 
often very low for safety issues, Fisher’s 
mid-p test is a very appealing 
alternative. For example, the maximal 
nominal alpha level for this test for the 

A to Z bleeding data is 0.05007 
(assuming that the true event rates are 
less than 20 percent). 

 
• The chi-square test works adequately for 

very large sample sizes, but the standard 
rule of an expected minimum value of 5 
(which is commonly used) is not 
acceptable. Even if the expected number 
of counts exceeds 40 per cell, the alpha 
level (for a nominal alpha level of 0.05) 
is approximately bounded by 0.049 and 
0.051. Barnard’s test is certainly an 
attractive alternative in the moderate 
sample size situation when the event 
rates are not especially small. 

 
As mentioned previously, only tests 

available in widely used commercial software 
packages were considered. Such restrictions 
leave out some recently developed unconditional 
tests for which no commercially developed and 
tested software is available. An example is a test 
based on the confidence interval p-value 
developed by Berger and Boos (1994, 1996). 
This test can be seen as a modification of 
Barnard’s test. Although Barnard’s p-value is 
obtained by maximizing the p-value for given 
nuisance parameter p over the unit interval, the 
p-value of the test by Berger and Boos is 
obtained as a sum of the supremum of p-values 
over the 100(1-β)% confidence interval for p 
calculated from the data and β. This test can be 
more powerful then Barnard’s and requires less 
computational effort. 
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