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Sensitivity Curves for Asymmetric Trimming Hinge Estimators 
 

D. B. Stark          J. F. Reed III 
       The University of Akron  Lehigh Valley Hospital and Health Services  
 
 
Robust estimators have been developed and tested for symmetric distributions via simulation studies. The 
primary objective was to show that they are more efficient than the sample mean when used in 
conjunction with asymmetric distributions. Little attention has been given to how they perform on data 
that are from asymmetric distributions, or from distributions that have inherent anomalies (messy data). 
Thus, the behavior of hinge estimators using sensitivity curve are examined. 
 
Key words: Robust estimators, adaptive estimators, ancillary statistics, selector statistics. 
 
 

Introduction 
 
In spite of the considerable bad press that the 
sample mean (the least square estimator of µ) 
has received, the standard normal theory statistic 
performs well when real data are nearly normal. 
However, robust estimators of location have 
been and continue to be developed and tested for 
symmetric long and short-tailed distributions by 
means of extensive simulation studies. The 
ancestry of these estimators may be traced to the 
work of Hogg (1967) and the Princeton Robust 
Study (Andrews, et al., 1972). The objective of 
these and other studies was to demonstrate that 
adaptive location estimators would be more 
efficient than the sample mean. In general, an 
adaptive procedure may be characterized as an 
application approach to data analysis rather than 
a theoretical application.  

The objective is to supplement previous 
simulation studies of robust estimators, hinge 
estimators,   by  examining the behavior of these  
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adaptive location estimators using sensitivity 
curves first developed by the Princeton Robust 
Study 

 
Selector Statistics and Adaptive Location 
Estimators 
 Characteristics such as skewness, tail 
length, and peakedness describe the distribution 
characteristics. In defining tail length and 
skewness, the notation here is from Hogg (1967, 
1982). Define Lα = mean of the smallest α n 
observations and Uα = mean of the largest α n 
observations. (For instance, if α  = 0.05, then 
L(0.05) is the mean of the smallest [0.05n] 
observations). Let B = mean of the next largest 
[0.15n] observations, C = mean of the next 
largest [0.30n] observations, D = mean of the 
next largest [0.30n] observations and E = mean 
of the next largest [0.15n] observations. 
 Hogg (1967) defined two measures of 
tail length, Q and Q1. These two statistics as 
selector statistics are used to classify symmetric 
distributions as light-tailed (uniform [0,1]), 
medium-tailed (normal (0,1)), or heavy-tailed 
(double exponential). Both Q, Q = ( U(0.05) − 
L(0.05) ) / ( U(0.50) − L(0.50)), and Q1, Q1 = U(0.20) − 
L(0.20)) / (U(0.50) − L(0.50)), are location-free and are 
then uncorrelated with location statistics like the 
trimmed means. Values of Q < 2.0 imply a light-
tailed (uniform) distribution, 2.0 ≤ Q ≤ 2 2.6 
implies a medium tailed-distribution (normal), 
2.6 < Q ≤ 3.2 implies a heavy tailed distribution 
(double exponential), and a Q > 3.2 implies a 
Cauchy like distribution (very heavy-tailed 
distribution). When using Q1 a suggested 
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classification scheme is: Q1 < 1.81 (light tailed, 
1.81 ≤ Q1 ≤ 1.87 (medium-tailed), and Q1 > 1.87 
(heavy-tailed). Hogg (1982) also defined a third 
measure of tail length H3 ,where H3 = (U(0.05) − 
L(0.05)) / (E − B). H3 < 1.26 is associated with a 
uniform distribution, 1.26 ≤ H3 ≤ 1.76 is 
generally associated with a normal distribution, 
and H3 > 1.76 is associated with a double 
exponential distribution. 

Hertsgaard (1979) used Q2, Q2 = (U(0.05) 
− T25) / (T25 − L(0.50)), to classify distributions as 
left skewed (Q2 < 0.7, symmetric (0.7 ≤ Q2 < 
1.4) and right skewed (Q2 ≥ 1.4). H1, H1 = 
(U(0.05) − D) / (C − L(0.05)), was proposed by 
Hogg (1982) and was also found to be useful in 
classifying skewness of a wide variety of 
distributions. And, Reed and Stark (1996) 
proposed two quick-and-dirty skewness 
measures SK2 , SK2 = ( X(1) − XMD) / (XMD − 
X(n)), and SK5 , SK5 = (X(1) − XM ) / (XM − 
X(n)). The form of SK2 and SK5 are identical to 
Q2 and H1. The advantage of using either the 
median XMD (Q2) or mean XM (H1) lies in the 
familiarity of these common location estimators. 
Note: XMD is the median, XM is the arithmetic 
mean, T25 is the [0.25n] trimmed mean (Tα), X(1) 
and X(n) are the first and last order statistics. 

Reed and Stark (1996) proposed a set of 
asymmetric linear estimators or hinge 
estimators, defined using the following scheme. 
Set a total trimming proportion to be trimmed 
from the sample, α. Determine a proportion to be 
trimmed from the lower end of the sample (αl) 
using the following: αl = α [ UWx / (UWx + 
LWx)], and the upper trimming proportion, αu = 
α − αl., where UWx and LWx be the numerator 
and denominator portions of the selector statistic 
X and define eight adaptive location estimators 
as: 
 

Estimator α             α l 
 HQ  0.10   

αl = α [UWQ / (UWQ + LWQ)] 
 HQ1  0.10  

αl = α [UWQ1 / (UWQ1 + LWQ1)] 
 HH3  0.10    

αl = α [UWH3 / (UWH3 + LWH3)] 
 HQ2  0.25 
 αl = α [UWQ2 / (UWQ2 + LWQ2)] 
  

HH1  0.10   
 αl = α [UWH1 / (UWH1 + LWH1)] 
 HSK2  0.10   

αl = α [UWSK2 / (UWSK2 + LWSK2)] 
 HSK5  0.25   
 αl = α [UWSK5 / (UWSK5 + LWSK5)] 
   

In the Princeton Robust Study 
(Andrews, et al, 1972), sensitivity curves were 
introduced to provide a basis for comparing 
estimators. The notion behind a sensitivity curve 
is to show how the value of a particular 
estimator is affected by an outlier. The method 
of construction is fairly straight forward. Start 
with a symmetric sample that is centered about a 
given value. In this article, the sample consisted 
of forty nine points (beginning at -4.8 and 
ending at 4.8) symmetrical about zero. Then add 
another point to the sample to see how the value 
of the estimator is affected. The added point 
ranged from -9.0 to 9.0. The horizontal axis 
represents the value of the added point while the 
vertical axis represents the value of the estimator 
at that value of the added point.  
 

Results 
 

The sensitivity curve for the sample mean is 
shown in Figure 1. Note that the curve is a 
straight line, suggesting that the value of the 
mean changes linearly with the value of the 
added point. As the value of the added point 
increases away from zero, the value of the mean 
does also. The larger the added value is, the 
larger the change in the mean value. There is no 
bound to the influence of the added point. 
 
The Median 

The sensitivity curve is given in Figure 
2. Note here, that the change in the value of the 
median is bounded. If the added point is one of 
the two middle values then it has a direct 
influence. However, if it is not one of those two 
values its influence is bounded regardless of the 
size of the value. 
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Next, consider a 15% trimmed mean. The 
sensitivity curve is shown in Figure 3. As might 
be expected, the added point   has a  wider range  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
of values in which it has  
 
 
direct influence. However, once outside of that 
range of values, the influence of the added point 
is bounded. 
 
 
 
 

Figure 1.
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    Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6.  
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Figure 7.  
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Figure 8. 
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The sensitivity curves for the seven 
estimators defined above are given in Figure 4-
10. Note the sensitivity curves for HQ, HQ1, 
HH3 suggest that the adaptive trimming causes 
the value of the estimator to decrease only. 
These estimators are not reacting symmetrically 
to the sample. The estimator HQ2 is just kind of 
weird. However, HH1, HH3, HSK2 and HSK5 
are at least symmetric in their reaction to the 
value of the added point. The estimator HH1 has 
a somewhat unique property that when the value 
of the added point gets a bit outside the 
symmetric part of the sample, its influence is 
zero. For data with contaminated with large 
outliers, this might be a very attractive trait. The 
estimator HH3 appears to act like a trimmed 
mean. 
 
 

 

 
 

Conclusion 
 

Real-world data sets may be described as messy 
with everything but a normal distribution 
presenting to the data analyst. From a 
methodology point rather than a theoretical 
basis, reasonable alternatives should be 
available. In the asymmetric data distributions 
faced on a daily basis, estimators that adapt 
themselves to the data may be formulated and 
used. Adaptively trimmed means can correct for 
uncontrollable data anomalies. 
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Figure 9. 
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STARK & REED III 
 

475

Hertsgaard D. M. (1979). Distribution of 
asymmetric trimmed means. Comm. Stat-
Simul.Comp, 8, 359-367. 

Hogg R. V. (1967). Some observations 
on robust estimation. Journal of the American 
Statistical Association, 62, 1179-1182. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hogg R. V. (1982). On adaptive 
statistical inferences. Comm. Stat. - Theory 
Method, 11, 2531-2542. 

Reed J. F. and Stark D. B. (1996). Hinge 
estimators of location: Robust to asymmetry. 
Computer Methods and Programs in 
Biomedicine, 49, 11-17. 


	Journal of Modern Applied Statistical Methods
	11-1-2007

	Sensitivity Curves for Asymmetric Trimming Hinge Estimators
	D.B. Stark
	J.F. Reed III
	Recommended Citation


	Microsoft Word - toc_vo6_no2.doc

