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The Effect Of GARCH (1,1) On The Granger Causality Test 
In Stable VAR Models 

 
Panagiotis Mantalos    Ghazi Shukur    Pär Sjölander 

                 Lund University  Jönköping and Växjö Universities       Jönköping University 
 
 
Using Monte Carlo methods, the properties of Granger causality test in stable VAR models are studied 
under the presence of different magnitudes of GARCH effects in the error terms. Analysis reveals that 
substantial GARCH effects influence the size properties of the Granger causality test, especially in small 
samples. The power functions of the test are usually slightly lower when GARCH effects are imposed 
among the residuals compared with the case of white noise residuals. 
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Introduction 
 
One of the most important issues in the subject 
of time series econometrics is the ability to 
statistically perform causality test. By causality 
it is meant causality in the Granger (1969) sense. 
That is, one would like to know if one variable 
precedes the other variable or if they are 
contemporaneous. The Granger approach to the 
question whether a variable say y1 causes 
another variable say y2 is to see how much of the 
current value of the second variables can be 
explained by past values of the first variable. Y2 
is said to be Granger-caused by y1 if y1 helps in 
the prediction of y2, or equivalently, if the 
coefficients of the lagged y1 are statistically 
significant in a regression of y2 on y1. 
Empirically, one way to test for causality in 
Granger sense is by means of vector 
autoregressive (VAR) model. 
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The main purpose of this article is to 

investigate the properties of the Granger 
causality test in stationary and stable VAR 
models under conditions when there exists some 
kind of volatility among the error terms, more 
specifically, Generalised Autoregressive 
Conditional Heteroscedasticity (GARCH) 
effects. It is well known that the analysis of 
causality is very sensitive to model specification 
and is almost only valid under conditions when 
the error terms are fairly close to white noise. At 
the same time it is also known that a 
considerable proportion of the time series 
variables follow some type of GARCH process. 
Hence, it is important to investigate the 
properties of this commonly used causality test 
under the presence of generalized conditional 
heteroscedasticity. 
 
The Model and the Monte Carlo Experiment 
 Consider the data-generating process 
(DGP) consists of a two dimensional time series 
generated by a stabile VAR(p) process: 
 
            y y yt t t p t =  A  ... + Ap1 1− −+ + ε       (1) 
 

where ( )ε ε εt  =   ..., 1t kt, ′  is a zero mean 
independent white noise process with 
nonsingular covariance matrix Σε  and, for j = 1, 

... , k,  Ε ε
τ

jt

2+
< ∞  for some τ > 0. The order 

p of the process is assumed to be known. Let 
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[ ]αp =  vec A   ,A1 p,  be the vector of the 

true parameters, where vec[.] denotes the 
vectorization operator that stacks the columns of 
the argument matrix. Now, suppose that one is 
interested in testing q independent linear 
restrictions: 
 

vs.                       

1

:  R  = s   

 : R   s

o p

p

H

H

α

α ≠
                 (2) 

 
where q and s are fixed (q x 1) vectors and R is a 
fixed [q x 2 ( )k p ] matrix with rank q.  

The process { }yt  is generated by the 

VAR(p) process in (1), with the Ai   (i = 1, … 
p) the Ordinary Least Squares (OLS) estimators 
and α p

p−1  the [ ]k p2 1( )− dimensional vector, 

consisting of the k p2 1( )−  elements of 

[ ],α =  vec A   , A1 p , that are obtained by 

deleting the matrix Ai   i ∈ {1, … p}. Then: 
 
                ( ) ( )1/ 2 ˆ 0,p p pT Nα α− ⇒ Σ           (3) 

 
where ⇒ denotes weak convergence in 
distribution and the [ 2 ( )k p  x 2 ( )k p ] 
covariance matrix pΣ  is non-singular. The pα  

is the 2 ( )k p⎡ ⎤⎣ ⎦ dimensional vector of the true 

parameters. Moreover given a consistent 
estimator ˆ

pΣ , then the Wald test of the null 
hypothesis in (2): 
 
       1ˆ ˆ = ( ) ( ) ( )w p p pT R s R R R sλ α α−′ ′− Σ −   (4) 
 
has an asymptotic χ 2 ( )q -distribution under the 
null hypothesis. And with yt  portioned in (m) 
and (k-m) dimensional sub vectors yt

1  and yt
2 , 

and Ai  matrices portioned conformably, then 
yt

2  does not Granger-cause the yt
1  if the 

following hypothesis is true: 

0 12,i= A  0   H =  
for 
                          i = 1,  , p -1.                     (5) 
 

The error components ( )ε ε1 2t t,
′
 in (1) and (2) 

are generated by GARCH(1,1) models, i.e., 
 

       
2

1
2

1
2

2
it 1) E(0, )  E(i.i.d., 

2,1   

−− ++=
==

==

itiitiiit

itit

ititit

hh

ih

εϕφγ
υυυ

υε
          (6) 

 
and ( )Cov   =  0ε ε1 2t t . The condition for finite 
variance is 1<+ ii ϕφ  and the condition for 

finite fourth moment is .123 22
1 <++ iiii ϕϕφφ  

Furthermore, if 0>iγ and 1<+ ii ϕφ , then the 
unconditional variance of the iε  exist and 

equals ( )iiii ϕφγσ ε −−= 1/2 . Note that when 
0== ϕφ , the itε  is reduced to iid white 

noises. 
To illustrate and study the possible 

effects of a GARCH(1,1) process on the 
Granger-causality test in a stable VAR(1) 
system Monte Carlo methods. The estimated 
size is calculated by simply observing how many 
times the null is rejected in repeated samples 
under conditions where the null is true. To judge 
the reasonability of the results use an 
approximated 95% confidence interval for the 
actual size (π): 
 

               
( )

π
π π

±
−

2
1

 
 

N
                      (7) 

 
where π  is the estimated size and N is the 
number of replications. 

 
The Monte Carlo experiment has been 

performed by generating data according to the 
model defined by (1) and (2), 
 

11/ 2

0.02 0.5 0.3
 = 

0.03 0.5t t ty y
T

ε
λ −−

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
      (8) 
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If λ= 0, y t1  is Granger-non-causal for y t2 and if 
λ≠ 0, y t1  causes y t2 . Therefore, the λ = 0 is 
used to study the size of the test. 

Three GARCH versions are simulated 
with a) high persistence, HP, (0.01, 0.09, 0.9), b) 
medium persistence, MP, (0.05, 0.05, 0.9) and c) 
low persistence, LP, (0.20,0.05,0.75). The 
processes includes a constant term and fit a 
VAR(1) : 1 1 = t t ty v A y ε−+ + . 

This means that order p of the process is 
assumed to be known and since this assumption 
might be too optimistic, however, also fit a VAR 
(2) : 1 1 2 2 = t t t ty v A y A y ε− −+ + + . 

For each model perform 10 000 
replications and use three different nominal 
sizes, namely 1%, 5% and 10%. However, 
different authors have put forward reasons for 
using both larger and smaller significance levels. 
Maddala (1992) suggests using significance 
levels of as high as 25% in diagnostic testing, 
while MacKinnon (1992) suggest going in the 
other direction to avoid mass significance. To 
reduce this problem, in this study, also use 
graphical methods that may provide more 
information about the size and the power of the 
test. Simple graphical methods are used, 
developed and illustrated by Davidson and 
MacKinnon (1998), which are based on the 
empirical distribution function (EDF) of the P-
values and are easy to interpret. The P value plot 
is used to study the size and the Size-Power 
curves to study the power of the test. 

Furthermore, to judge the reasonability 
of the results use a 95% confidence interval for 

the actual size (π) as: 
N

)1(  2 00
0

πππ −± , 

where N is the number of replications. Results 
that lie between these bounds will be considered 
satisfactory. 

Several factors are expected to affect the 
size and power properties of causality tests. 
Samples typical for small, medium, large and 
very large sizes have been investigated. For each 
time series 20 pre-sample values are generated 
with zero initial conditions, and with net sample 
sizes of T = 50, 100, 200, 500, 1000. Table 1 
shows the different parameters of our Monte 
Carlo design. The number of replications per 
model is 10 000 for the size, and 1000 for the 

power of the test. The calculations were 
performed using GAUSS 6.0. 
 
Results of the Size of the Test 
 Presented in this section are the most 
important results of our Monte Carlo experiment 
concerning the size of the test. Regarding the P 
value plots, under the condition when the 
distribution used to compute the ps  is correct, 
each of the ps should be distributed as uniform 
(0,1) and therefore the resulting graph should be 
close to the 45o line as in Figure 1a below. 
 
Size of the test for the VAR (1), given that the 
true model is a VAR (1) 
 In this sub-section the results are 
presented when the estimated and the true model 
is a VAR (1). As can be seen from the results, in 
Table 1a in the Appendix, the calculated sizes of 
the test over estimate the nominal sizes in all 
situations more or less regardless whether there 
exist low, medium or high GARCH effects. This 
is the case when a small sample of 50 
observations are studied. This is also confirmed 
when the P-value plots are observed in Figure 
1a, in the Appendix, in which one only presents 
the size when white noise and high GARCH 
effects are imposed. Here one can see that in 
both cases the test over rejects the size, but that 
the calculated sizes still lay near to the 95% 
confidence interval for nominal size with a 
slightly higher over rejection when the high 
GARCH magnitudes are present. 

When the sample size increases to 100 
observations, as is illustrated in Table 2a and 
Figure 2a, the properties of the test become 
better but there still some over rejection present. 
When enlarging the sample size to 200 
observations the test performs well in all cases 
except for the case with high GARCH effect. In 
this case the test slightly over rejects the 
nominal size, as can be seen in Table 3a. Figure 
3a shows that the over rejection become more 
severe for larger nominal sizes. 
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The same is also true when the sample size is 
equal to 500 observations, as is illustrated in 
Table and Figure 4a in the Appendix. 

In a very large sample, i.e. 1000 observations 
in Table and Figure 5a, the test performs 
satisfactorily in almost all situations, but with 
one exception in the case when a high GARCH 
effect is present 
 
Size of the test for the extra lag; VAR (2), given 
that the real model is a VAR (1) 
 Here the results are presented when the 
estimated model contains an extra lag, i.e. a 
VAR(2), while the true model is a VAR(1). In 
this case to investigate the effect of possible 
over parameterization of the true model is what 
is desired. Table and Figure 1b in the Appendix, 
the sizes of the test, as in the previous sub-
section, over estimate the nominal sizes in all 
situations almost regardless whether there exist 
low, medium or high GARCH effects. In Figure 
1b, the clear over rejection is illustrated for both 
white noise and high GARCH effects. 

However, as the results confirm in Table 
2b and Figure 2b, the over rejection become less 
severe when the number of observations 
increases to 100 observations. The results are 
almost similar when increase the sample size is 
increased to 200 observations, see Table 3b and 
Figure 3b in the Appendix. 

When the sample size increases to 500 
observations, as in Table 4b and Figure 4b, the 
test performs well in almost all situations except 
for in the case of high GARCH effects. Finally, 
in Table 5b and Figure 5b, the results show that 
the test performs satisfactorily but still with a 
slight over rejection in the case of high GARCH 
effects.  

 
 

 
In general, the results from these two 

sub-sections are generally similar. Moreover, 
one could not find the over rejection to be that 
severe even in the case of the existence of high 
GARCH effects in comparison with that of the 
white noise. The test is consistent and converges 
slowly to its nominal size as the sample size 
increases. 
 
Analysis of the Power of the Test 
 In this section the results of the Monte 
Carlo experiment regarding the power of the 
Granger-causality test are discussed. The power 
of the test was analyzed using sample sizes of 
50, 100, 200, 500 and 1000 observations. The 
power functions have been calculating for the 
test in the case of white nose and under different 
GARCH effects. The power functions have 
shown to be fairly similar in the cases of the 
white noise, low persistence and medium 
persistence GARCH. Based on this and since 
one could not find any noticeable differences in 
the performances of the test between these 
combinations regarding the size properties, only 
show and compare the power functions of the 
white nose and the high GARCH.  

The power functions are estimated by 
calculating the rejection frequencies in 1000 
replications using values of the λ coefficients in 
equation (8) equal to 2. The estimated power 
functions of the test have been compared only 
graphically. One may follow the same procedure 
as for the size investigation to evaluate the 
EDF’s denoted ( )F x j

⊕ , by using the same 

sequence of random numbers as in the case of 
the size of the test. For plotting the estimated 
power functions against the nominal size, there 
are the Size-Power Curves. Presented is the 
power of the test in cases when the model is 

Table 1 Monte Carlo Parameters of the GARCH Effects 
 

 Λ γ  φ  ϕ  

High Persistence 0 0.01 0.09 0.90 
Medium 0 0.05 0.05 0.90 

Low 0 0.20 0.05 0.75 
High Persistence 2 0.01 0.09 0.90 

Medium 2 0.05 0.05 0.90 
Low 2 0.20 0.05 0.75 
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exactly identified, i.e. the true and estimated 
models are VAR (1) and in the case when the 
model is over parameterized, i.e. the estimated 
model is VAR (2) while the true is VAR (1).  

The power of the Granger causality test, 
as expected, depends on how well the model is 
specified. This can be seen when comparing the 
power functions in the upper and lower parts of 
Figures 6-10 in the Appendix. This is the effect 
of over parameterization. 

Moreover, from the figures it can be 
seen that the power functions satisfy the 
expected properties of increasing with the 
sample size. Lower powers are observed when 
the samples are small and higher when the 
samples are large. A closer examination of the 
figures shows, that most frequently, the power 
functions are slightly lower in the case of the 
GARCH residuals (the dashed lines) than the 
white noise.  
 

Conclusion 
 
The results regarding the size of the tests 
have been presented both in form of tables 
and P-value plots. Our analysis revealed that 
the Granger-causality test slightly over 
rejects the nominal sizes in small samples 
and under the existence of high GARCH 
effects. This over rejection becomes even 
lower when the sample size increases and 
when the GARCH effects are not high. 
These results are similar in both of the 
exactly parameterized VAR (1) model and 
the over parameterized VAR (2) model. 
Moreover, the test is consistent in the sense 
that the size of the test converges slowly to 
its nominal size as the sample size increases.  
 

 
 
 
 
 
 
 
 
 

The power functions have been 
presented only graphically. As expected, the 
analysis of the power indicates that these power 
functions increase with an increasing sample 
size. Furthermore, most of the times these power 
functions are slightly lower in the case of the 
GARCH residuals than under white noise. The 
power of the test, as expected, becomes lower 
when including an extra lag in the VAR model, 
i.e. in the case of VAR(2). 
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APPENDIX 
 

Table 1a. Size of the test for 50 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0160   0.0151 0.0156 0.0152 
0.05 0.0642   0.0643 0.0658 0.0668 
0.10 0.1169   0.1222 0.1231 0.1225 

 
 
 
Table 2a. Size of the test for 100 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0133 0.0126 0.0126 0.0141 
0.05 0.0584 0.0579 0.0578 0.0593 
0.10 0.1093 0.1069 0.1051 0.1087 

 
 
 
Table 3a. Size of the test for 200 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0112   0.0119 0.0119 0.0146 
0.05 0.0546   0.0528 0.0527 0.0584 
0.10 0.1056   0.1036 0.1054 0.1109 

 
 
 
Table 4a. Size of the test for 500 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0095 0.0107 0.0108 0.0141 
0.05 0.0558 0.0544 0.0535 0.0639 
0.10 0.1068 0.1031 0.1038 0.1121 

 
 
 
Table 5a. Size of the test for 1000 observations  
Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0096 0.0083 0.0084 0.0150 
0.05 0.0476 0.0479 0.0496 0.0628 
0.10 0.0979   0.1034 0.0997 0.1183  
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P-value plots HP (GARCH) 
Figure 1a. 50 observations  
 Figure 2a. 100 observations 

 
 
Figure 3a. 200 observations  Figure 4a. 500 observations 

 
 

Figure 5a. 1000 observations 

 
 
Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal 
size. 
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Table 1b. Size of the test for 50 observations  
Nominal White Noise GARCH(1,1) 

  LP MP HP 
0.01 0.0169   0.0151 0.0179 0.0185 
0.05 0.0633   0.0643 0.0648 0.0671 
0.10 0.1192   0.1222 0.1221 0.1248 

 
 
 
Table 2b. Size of the test for 100 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0125      0.0115 0.0109 0.0119 
0.05 0.0542      0.0566 0.0566 0.0593 
0.10 0.1067     0.10890.1089 0.1095 0.1126 

 
 
 
Table 3b. Size of the test for 200 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0138 0.0122 0.0129 0.0143 
0.05 0.0582 0.0542 0.0542 0.0611 
0.10 0.1098 0.1053 0.1062 0.1118 

 
 
 
Table 4b. Size of the test for 500 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0111   0.0111 0.0111  0.0125 
0.05 0.0524  0.0532 0.0529 0.0568 
0.10 0.1006   0.1017 0.1026 0.1127 

 
 
 
 
Table 5b. Size of the test for 1000 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0092  0.0095 0.0091 0.0130 
0.05 0.0449  0.0487 0.0484 0.0581 
0.10 0.0950  0.0969 0.0943 0.1084  
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P-value plots HP (GARCH) 
 
Figure 1b. 50 observations  
 Figure 2b. 100 observations 

 
 
 
Figure 3b. 200 observations  Figure 4b. 500 observations 

 



MANTALOS, SHUKUR, & SJÖLANDER 
 

485

Figure 5b. 1000 observations 

 
Solid lines = White noise. Dot dash line = GARCH. Dot lines =  95% confidence interval for nominal 
size. 
 
Figure 6a. Power–Size plots of the Granger-causality test for 50 observations 
VAR(1) 

 

Solid lines = White noise. Dash line = GARCH. Dot lines =  95% confidence interval for nominal 
size. 
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  Figure 6b  Power–Size plots of the Granger-causality test for 50 observations 
 VAR(2) 

 

Solid lines = White noise. Dash line = GARCH. Dot lines =  95% confidence interval for nominal size. 
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