
Journal of Modern Applied Statistical
Methods

Volume 6 | Issue 2 Article 13

11-1-2007

Large Deviations Techniques for Error Exponents
to Multiple Hypothesis LAO Testing
Leader Navaei
Yerevan State University

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Navaei, Leader (2007) "Large Deviations Techniques for Error Exponents to Multiple Hypothesis LAO Testing," Journal of Modern
Applied Statistical Methods: Vol. 6 : Iss. 2 , Article 13.
DOI: 10.22237/jmasm/1193890320
Available at: http://digitalcommons.wayne.edu/jmasm/vol6/iss2/13

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol6?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol6/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol6/iss2/13?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol6%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages


Large Deviations Techniques for Error Exponents to Multiple Hypothesis
LAO Testing

Cover Page Footnote
I am grateful for Professor E. A. Haroutunian for his very helpful comments which substantially improved the
presentation of the paper.

This regular article is available in Journal of Modern Applied Statistical Methods: http://digitalcommons.wayne.edu/jmasm/vol6/
iss2/13



Journal of Modern Applied Statistical Methods   Copyright © 2007 JMASM, Inc. 
November, 2007, Vol. 6, No. 2, 487-491                                                                                                                  1538 – 9472/07/$95.00 

487 

Large Deviations Techniques for Error Exponents to 
Multiple Hypotheses LAO Testing 

 
Leader Navaei 

Yerevan State University 
 
 
In this article the problem of multiple hypotheses testing using a theory of large deviations is studied. The 
reliability matrix of Logarithmically Asymptotically Optimal (LAO) tests is introduced and described, 
and the conditions for the positive of all its elements are indicated. 
 
Key words: hypotheses testing, empirical distributions, the method of types, reliability matrix, Sanov's 
theorem.  
 
 

Introduction 
 
Many studies have been devoted to the study of 
exponential decrease, as the sample size N  goes 
to infinity, of the error probabilities .11 αα =N  
For example Stain’s lemma determines the 
exponential rate of convergence to zero of the 
error probability of the second kind N

2α  as N  
goes to infinity. Perez (1984) considered 
independent identically distributed observations 
and different asymptotical aspects of two 
hypotheses, as the interdependence of exponents. 

Csiszar and Shields (2004) considered 
independent identically distributed observations 
different asymptotical aspects of the two 
hypotheses testing via the theory of large 
deviations. This article is based on Haroutunian 
(1990), and provides a proof based on Sanov’s 
theorem.  
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Preliminaries 
 Let },....,2,1{ K=χ  be the finite set of 
size K . The set of all probability distributions 
by )'( sPD  on χ  is denoted by )(χP . For 

,'sPD  P  and ,Q  )(PH  denotes entropy 
and )||( QPD  denotes information divergence 
(or the Kullback-Leibler distance). 
 

( ) ( ) log ( ),
x

H P P x P x
χ∈

≡ −∑  

( )( || ) ( ) log .
( )x

P xD P Q P x
Q xχ∈

≡∑  

 
In this article, exps and logs are used at 

base 2. Also considered are the standard 

conventions that 0 log 0 0,=  
00 log 0,
0

=  

log
0
PP = ∞  if 0.P >  

The type of a vector 

1 2( , ,......., ) N
NX x x x χ= ∈  is the empirical 

distribution given by 
( | )( ) N x XQ x

N
=  for 

all χ∈x , where )|( XxN  denotes the number 
of occurrences of x  in X  or 

NN

N
N

N
N

N
NxQ χ∈= ),.....,,()( 21  that 

≡iN number of times out N  trials that the 
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random variables Nxxx ,....,, 21  occurrences 
in χ . 

The subset of )(χP  consisting of the 
possible types of sequences NX χ∈  is denoted 
by )(χNP . For ),(χNPQ ∈  the set of 
sequences of type class Q will be denoted 
by .N

QT  
The probability that N  independent 

drawings from a ,PD  )(χPP ∈  give 
,NX χ∈  is denoted by ).(XP N  If N

QTX ∈  
then: 
 

( ) exp{ ( ( ) ( || )}.NP X N H Q D Q P= − +  
 
Lemma 
 The number of types for sequences of 
length N  grows at most polynomially with N : 
  

| || ( ) | ( 1)NP N χχ < + , 
 
For any type ( )NQ P χ∈ : 
 

| |( 1) exp{ ( )}N NH Qχ−+  

| | exp{ ( )},N
QT NH Q≤ ≤  

 
For any , ( )PD P P χ∈ : 

( ) exp{ ( || )},
( )

N

N
P X ND Q P
Q X

= −  If ,N
QX T∈  

 
and  
 

| |( 1) exp{ ( || )}N ND Q Pχ−+ − ≤  

| | exp{ ( )},N
QT NH Q≤ ≤  

 
Theorem 1(Sanov's theorem (Csiszar & Shields, 
2004, Dembo & Zeitoni, 1993)  

Let A  be a set of distributions from 
)(χP  such that its closure is equal to the 

closure of its interior, then for the empirical 
distribution XQ  of a vector X  from a strictly 
positive distribution P  on χ : 
 

1lim( log ( : ))N
XN

P X Q A
N→∞

− ∈  

inf ( ( || )).
X

XQ A
D Q P

∈
=  

 
Problem Statement and Formulation of Results 

The problem of multiple hypotheses 
testing is the following. Let {1,2,....., }Kχ =  be 
the finite set such that M  incompatible 
hypotheses 1 2, ,....., MH H H  consist in that the 

random variable X  taking values on χ  has one 
of M  distributions 1 2, ,....., .MP P P  For decision 
making N  independent experiences are carried 
out. When mH is true, the sample 

1 2{ , ,...., }NX x x x= of the experiments results 
has the probability 
 

1

( ) ( ),
N

N
m m i

i

P X P x
=

= ∏  1, .m M=  

 
By means of non-randomized test 

( )N Xϕ  on the basis of a sample of length N  
one of the hypotheses must be accepted. For this 
aim one can divide the sample space Nχ on 
M disjoint subsets, 
 

{ : ( ) },N
m NX X mω ϕ≡ =  1, .m M=  

 
The probability of the erroneous 

acceptance of hypothesis lH  provided that 
hypothesis mH  is true, for m l≠ is denoted: 
 

| ( ) ( ) ( ).
N
l

N N N N
m l N m l m

X

P P X
ω

α ϕ ω
∈

≡ = ∑  

 
For m l=  denote by | ( )N

m m Nα ϕ  the probability 

to reject mH  when it is true and this is: 
 
 | |( ) ( ).N N

m m N m l N
m l

α ϕ α ϕ
≠

≡∑  (1) 

 

The matrix {)( ≡Nϕω )}(| N
N

lm ϕα  is called 
power of the test. Take into consideration the 
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rates of exponential decrease of the error 
probabilities and call them reliabilities: 
 

| |
1( ) lim( log ( ))m l m l NN

E
N

ϕ α ϕ
→∞

≡ −  (2) 

 
According to (1) and (2)  
 

| |minm m m lm l
E E

≠
=  (3) 

 
can be derived because 
 

| |
1lim log ( )m m m mN

E
N

α ϕ
→∞

−=  

|
1lim log ( )m lN m lN

α ϕ
→∞ ≠

−= ∑  

|

|
|

1lim [log( { 1})]
m l

m l
m lN

m l

Max
N Max

α
α

α
≠

→∞

−= +
∑

 

|
1lim log( ) 0m l m lN

Max
N

α≠→∞

−= +  

|
1min lim log( )m lm l N N

α
≠ →∞

−=  

|min ( )m lm l
E ϕ

≠
=  

 
The matrix |( ) { ( )}m lE Eϕ ϕ=  is called 

the reliability matrix of the tests sequences ϕ . 
 

1|1 1| 1|

|1 | |

|1 | |

..... .....

( ) ..... ..... .

..... .....

l M

m m l m M

M M l M M

E E E

E E E E

E E E

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

#
 

 
 The problem is to find the matrix )(ϕE  with 
largest elements, which can be achieved by tests 
when a part of elements of the matrix )(ϕE  is 
fixed. 
 
 
 
 

Definition 
 The test sequence *

1 2( , ,......)ϕ ϕ ϕ= is 
called LAO if for given values of the elements 

1|1 2|2 1| 1, ,...., M ME E E − −  it provides maximal 

values for all other elements of *( ).E ϕ  
Consider for a given positive and finite 

1|1 2|2 1| 1, ,...., M ME E E − −  the following family of 
regions: 

 
|{ : ( || ) },l l l lQ D Q P Eℜ ≡ ≤  (4.a) 

1, 1l M= −  

,)||(:{ |lllM EPQDQ >≡ℜ 1, 1}l M= − (4.b) 

( ),N
l l NP χℜ = ℜ ∩  (4.c) 

1,l M=  
 
and introduce the functions: 
 
 * *

| | | |( ) ,l l l l l l l lE E E E= ≡ 1,1 −= Ml , (5.d) 
  
 * *

| | |( ) inf ( ( || )),
l

m l m l l l mQ
E E E D Q P

∈ℜ
= ≡  (5.b) 

 1, 1l M= −  , Mm ,1= , .lm ≠  
  
 * *

| | 1|1 2|2 1| 1( , ,....., )m M m l M ME E E E E − −= ≡  (5.c) 

 inf ( ( || )),
M

mQ
D Q P

∈ℜ
 1, 1,m M= −  

  
 
 * *

| | 1|1 2|2 1| 1( , ,....., )M M M M M ME E E E E − −= ≡  (5.d) 

 |1, 1
min .M ll M

E
= −

 

 
With the assumption ,lA ℜ= mPP =  in 
Sanov’s theorem for conditions (4), (5) there is :  
 

 

*
|

1lim( log ( )

1lim( log ( )

N
m l NN

N
m lN

N

P
N

α ϕ
→∞

→∞

−

= − ℜ
 (6) 

 inf ( ( || ))
X l

X mQ
D Q P

∈ℜ
=  
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The notation 1 2
N Ny y≈  can be used 

when 1 2( ) ( ) ,N N
Ng y g y ε= + where 0,Nε → for 

.N → ∞  Using (6)  
 

*
| ( ) inf ( ( || )).

X l
m l mQ

E D Q Pϕ
∈ℜ

=  (7) 

 
Therefore the value of )( *

| N
N

lm ϕα  is equal to 

 
*

| ( ) exp( inf ( ( || ))
X l

N
m l N mQ

N D Q Pα ϕ
∈ℜ

≈ −  (8) 

*
|exp( ( )).m l NNE ϕ≈ −  

 
In fact, the error probability )( *

| N
N

lm ϕα  
goes to zero with exponential rate 
inf ( ( || ))
X l

mQ
D Q P

∈ℜ
 for mP  not in the set of .lℜ  

 
Theorem 2 
 For fixed on finite set χ  family of 

distributions MPPP ,.....,, 21  the following two 
statements hold: If the positive finite numbers 

1|12|21|1 ,.....,, −− MMEEE  satisfy conditions: 
 

| 12,
min ( || ),l l ll M

E D P P
=

≤  (9) 

*
| | |1, 1 1,

min min ( ), min ( || ) ,M M m l l l l ml m l m M
E E E D P P

= − = +

⎡ ⎤< ⎢ ⎥⎣ ⎦  
 
Hence: 
a) There exists a LAO sequence of tests * ,Nϕ  the 

reliability matrix of which * * *
|{ ( )}m lE E ϕ=  is 

defined in (5), and all elements of it are positive. 
 
b) Even if one of conditions (9) is violated, then 
the reliability matrix of an arbitrary test 
necessarily has an element equal to zero, (the 
corresponding error probability does not tend 
exponentially to zero). 
 
Proof: At first it is remarked that 

( || ) 0,l mD P P > for m l≠ , because all measures 

lP , 1, ,l M=  are distinct. Now for the proof of 
the sufficiency of the conditions (9). Consider 

the following sequence of tests *ϕ given by the 
sets  
 

,
l

N N
l Q

Q
B T

∈ℜ
= ∪ 1, .l M=  (10) 

 
The sets ,N

lB  1, ,l M=  satisfies conditions to 
give test, by means: 
  

,φ=N
m

N
l BB ∩  ,ml ≠  

 
and 

.
1

N
M

l

N
lB χ=

=
∪

 
 

The following shows that exponent *
| ( )m mE ϕ  

for sequence of tests *ϕ  defined in (10) is not 
less than | .m mE  The following is known from 
lemma, 
 

| | exp{ ( )}N
QT NH Q≈  

 
and 
 

( ) exp{ ( ( || )},N N
QP T N D Q P≈ −  1,m M=  

 
and also by using the result of theorem 1 there 
is:  

},exp{)( |
*

| mm
N

mm NE−≈ϕα  
 
and 

)},(exp{)( |
*

|
*

| lllm
N

lm ENE−≈ϕα  ,1,1 −= Ml  
,,1 Mm =  ,lm ≠  
 

)},,......,,(exp{)( 1|12|21|1
*

|
*

| −−−≈ MMMm
N

lm EEENEϕα

 .,1 Mm =  
 

Using (9) and (4 - 5), all *
|m lE  are strictly positive. 

The proof of part (a) will be finished if one 
demonstrate that the sequence of the test *ϕ  is 
LAO, that is, at given finite 
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1|1 2|2 1| 1, ,......, M ME E E − −  for any other sequence of 

tests **ϕ   
  

),()( **
|

***
| ϕϕ lmlm EE ≤  .,1, Mlm =  

 
For this purpose it is sufficient to see that 

the sequence of tests asymptotically dose not 
became better if the sets N

mB  will not be union of 

some number of whole types ,N
QT  in other words, 

if a test **ϕ  is defined, for example, by sets 
N
M

NN GGG ,....,, 21  and, in addition, Q  is such that 
|,|||0 N

Q
N

Q
N
l TTG ≈< ∩  

The test **ϕ  will not became worse if 
instead of the set N

lG  one takes ,N
Q

N
l TG ⊃  it 

N
lG  nonempty intersection with .N

QT  At last is is 
able to prove the necessity of the condition (9). 

If the sequence of the tests is LAO, then 
it can be given by sets of (10) form. But, the non-
fulfillment of the conditions (9) is equivalent 
either to violation of (3), or to equality to zero 
some of *

|lmE  given in (9), and this again 

contradicts with (3) because ,|mmE  ,1,1 −= Mm  
must be positive. 
 
Remark 1 
 From definition (5) and (9) it follows 
that: 
 

,*
|

*
| Mmmm EE =  1,1 −= Mm  

 
Remark 2 
 After the change of hypotheses 
enumeration the theorem remains valid with 
corresponding changes in conditions (9). 
 
Remark 3 
 The maximal likelihood test accepts the 
hypotheses maximising the probability of sample 

.X  In fact  
 

).(maxarg* XPr N

r
=  

 

 But it follows from equality 
)]}||()([exp{)( PQDQHNXP N +−=  that at 

the same time ).||(minarg* PQDr
r

=  In fact 

the principle of maximum of likelihood is 
equivalent to the principle of minimum ok 
Kullback-Leibler distance. 
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