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Semi Parametric Estimation Of Some Reliability Measures 
Of Geometric Distribution  

 
    Mathachan Pathiyil           E. S. Jeevanand 
         Nirmala College        Union Christian College 

 
 
 
Semi parametric estimators of the survival function, the hazard function, and the mean residual life 
function of geometric distribution using uncensored and Type II censored samples are obtained. The 
accuracy of the estimators so obtained is investigated empirically using simulated samples. The results are 
applied to a real life data set for illustration. 
 
Key words: geometric distribution, hazard function, Kaplan-Meier estimator, least square estimation, 
mean residual life function, survival function, Type II censoring. 
 

 
Introduction 

 
During the past twenty years, manufacturing 
industries have gone through a revolution in the 
use of statistical methods to improve product 
quality. Due to global competition, the industry 
faces immense pressure for shorter product-
cycle times, stringent cost constraints, and 
higher customer expectations for quality and 
reliability. A natural extension of the revolution 
in product quality is to focus on product 
reliability, which is defined as quality over time. 
Reliability can be defined as the probability that 
a unit will perform its intended function until a 
specified point in time under encountered use 
conditions. The environment in which a product 
operates is   a critical   factor  in   evaluating  the  
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reliability of a product. The design for reliability 
requires careful consideration of product 
(process) failure modes. Broadly, failure modes 
can be classified as those that are anticipated and 
those that are unanticipated. Generally, 
engineers focus only on the anticipated failure 
modes. The main focus, however, of the 
statistician is in the unanticipated failures and it 
plays a crucial role in product reliability.  

Reliability analysis of devices through 
failure time data when time is treated as discrete 
is a recently emerging area of research. Kemp 
(2004) provided a good discussion on the 
importance and applications of discrete life 
distributions. The sophisticated equipment used 
in the manufacturing process requires accurate 
measuring devices to record their failures in 
continuous time. In situations where such 
measuring instruments are very costly or their 
availability cannot be ensured, it may be 
desirable to go in for failure times that are in 
completed units of time (Xekalaki (1983)). The 
latter procedure is more desirable, provided the 
loss of accuracy in replacements of continuous 
measurements with discrete ones is more than 
compensated by the gain in terms of other 
considerations such as money, ease of analysis 
and time saved etc. Discrete distributions 
naturally arise when records are taken in 
completed units of time. The fact that many of 
the discrete distributions can be closely 
approximated by continuous distributions adds 
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to the utility of the former as models of life 
length. Also, there is a well developed 
methodology to separately find the distribution 
of the integer parts and fractional parts of 
continuous random variables. This methodology 
often permits inference on parameters based on 
count data to be translated to those based on 
continuous measurements with a reasonable 
estimate of the margin of error on account of the 
translation. The geometric distribution owing to 
its lack of memory property is widely used to 
model such systems.  
 
Reliability measures of the geometric 
distribution 

An important property of a product or 
system is its ability to fulfill the intended 
purpose without failure for a specified period of 
time under stated conditions. Reliability is a 
yardstick of the capability of a component to 
operate without failure when put into service. 
The survival function, hazard function and mean 
residual life function are three important notions 
used extensively for characterizing life 
distributions.  
 Let X denote a discrete random variable 
in the support of { }0,1,...I + =  denoting the time 
to failure of a component. Defining   
 
                     ( ) ( )S x P X x= ≥                   (2.1) 
 
the survival function of X  and ( )f x , the 
probability mass function of X , the hazard rate 
of X  is defined as 
 

       ( ) ( )h x P X x X x= = ≥   

                                ( )
( )

f x
S x

= .                     (2.2) 

 
and the mean residual life is defined as 
 

  ( ) ( )r x E X x X x= − >   

                      ( ) ( )
1

1
1 y x

S y
S x

∞

= +

=
+ ∑ .         (2.3) 

 

Suppose that the life span X  of the component 
under observation follows a geometric 
distribution with probability mass function 
       
  ( ) ( )1 xf x θ θ= − , 0 1θ< < , 0,1,...x =     (2.4) 
 
Then 
 
           ( ) ( )1 xS x θ= −  , 0 1θ< < ,              (2.5) 
 
            ( )h x θ=  , 0 1θ< <                   (2.6) 
and 
 

           ( ) 1r x
θ

=  , 0 1θ< < .                 (2.7) 

 
Estimation of the geometric parameter and the 
reliability measures using uncensored data 
 Wu (2001) and Faucher and Tyson 
(1988) proposed semi parametric estimation of 
the parameters of exponential and Pareto 
distributions using the empirical distribution 
function based on complete samples. The results 
are further extended, to the study of geometric 
distribution, by Mathachan and Jeevanand 
(2005). From (2.5) 
 
           { }( )( ) ( ) ( )ln ln 1i iS x x θ= − .               (3.1) 

 
Equation (3.1) can be written in the form, 

i iY AX= , where ( )ln 1A θ= − , ( )i iX x=  and 

( ) ( )ln ( )i iY S x= . By least square procedure, the 

estimator of A  is  
 

                      
( )( )( )

( )

1

1

ln
ˆ

n

i
i

n

i
i

S x
A

x

=

=

=
∑

∑
  (3.2) 

 

An estimate of the survival function 

( )( )iS x  is :
ˆ[1 ( ; )]i nF x q−  where :i nx  is the thi  

order statistic and :
ˆ ( : )i n

iF x q
n

= , the empirical 

distribution function. In order to avoid log(0) , 
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D’Agostino and Stephans (1986) suggested that, 

:
ˆ ( : )i nF x q can be approximated by 

2 1
i c

n c
−

− +
, 

1,2,...,i n=  where 0 1c≤ < , generally. In this 
article three popular values for c are taken and 
considered in Wu (2001), Faucher and Tyson 
(1988), viz. 0, 0.3 and 0.5c = . Then (3.2) 
becomes 

 

( )

1

1

1ln
1 2ˆ

n

i
FS n

i
i

n c i
n cA

x

=

=

+ − −⎛ ⎞
⎜ ⎟+ −⎝ ⎠=

∑

∑
  (3.3) 

 
The estimated asymptotic variance of Â  is 
 

                ( )ˆˆ
2

xy
yy

xx
FS

S
S

S
V A

n

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
−

             (3.4) 

where 
 

2 2 2 2

1 1

,
n n

xx i yy i
i i

S X nX S Y nY
= =

= − = −∑ ∑  and 

1
 

n

xy i i
i

S X Y nX Y
=

= −∑ . 

 
Estimation of the parameter of the geometric 
model 

An estimator of the parameter of the 
model (2.4) using the uncensored sample is  

 
ˆˆ 1 FSA

FS eθ = −     (3.5) 
 
with estimated asymptotic variance 
 

( ) ( )ˆ2ˆ ˆˆ ˆFSA
FS FSV e V Aθ = .   (3.6) 

 
Estimation of the survival function 

The corresponding estimator of the 
survival function is  

 
            ( ) ( )ˆ ˆ

FS FSS x Exp x A=               (3.7) 

 
and the estimated asymptotic variance is 
 

       ( )( ) ( )ˆ2ˆ ˆ ˆˆ ˆFSx A
FS FS FS FSV S x A e V A= .         (3.8) 

 
Estimation of the hazard function 

The estimator of the hazard function of 
the model (2.4) is 

 
                ( )ˆ ˆ

FS FSh x θ=                      (3.9) 
 
with estimated asymptotic variance  
 
         ( )( ) ( )ˆ2ˆ ˆˆ ˆFSA

FS FSV h x e V A= .          (3.10) 

 
Estimation of the mean residual life function 

The estimator of the mean residual life 
function of the model (2.4) is  

 

( ) ( ) 1ˆˆ 1 FSA
FSr x e

−
= −         (3.11) 

 
with estimated asymptotic variance 

( )
( ) ( )

ˆ2

2ˆ
ˆˆ ˆˆ

1

FS

FS

A

FS FS
A

eV r V A
e

=
−

      (3.12) 

Estimation of the geometric parameter and 
reliability measures using Type II censored data 

With the high reliability products that 
are common today, testing under normal 
conditions is time consuming and even 
expensive. Thus, in life testing experiments, it is 
a common practice to cease testing before all the 
components under observation have failed. The 
resulting sample is a censored sample. Censored 
data occur frequently in medical research, and 
estimation of the reliability measures viz. 
survival function, hazard function and mean 
residual life function has been an attractive topic 
when the data are censored. Estimation of 
hazard function and mean residual life function 
has drawn less attention than that of the survival 
function. For the survival function, the Kaplan-
Meier estimator (1958) is a widely used non-
parametric estimator. It is strongly consistent 
and is asymptotically normal (see, Kim, et al., 
2005, and Jan, et al., 2005). The focus of this our 
discussion is estimation of the survival function, 
hazard function and mean residual life function 
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of geometric distribution under Type II 
censoring. 
 
Estimation of the parameter of the geometric 
model 

A least square estimator is proposed for 
the parameter of the geometric distribution with 
survival function (2.5) when the data is censored 
at a pre defined time T. Suppose n components 
with geometric life times are put on test and 
observed the number of components failed at 
each time point ,  ,  2 ,...t t k t k+ + up to the time 
T. Define, jn  as the number of components still 
functioning at the time 

,  0,1,...,j jt t jk j t T= + = ≤  and jd  as the 
number of components whose failures occur in 
the time interval ( )1,j jt t− . Then, the Kaplan-

Meier estimator of the survival function ( )S t  
(see Jan et al. (2005)) for a given t  is 

  

( )
( ):

*
j

j j

j t t j

n d
S t

n≤

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏ .       (4.1) 

 
For ( )1t t< , ( )* 1S t = . From the survival 

function (2.5), the following may be written:  
 

( )( ) ( )ln * ln 1S t t θ= − .        (4.2) 
 
Now, (4.2) is of the form y At= , with 

( )( )ln *y S t=  and ( )ln 1A θ= − . By least 
square procedures, there is 
 

( )( )
1

1

ln *
ˆ

n

j
j

CS n

j
j

S t
A

t

=

=

=
∑

∑
 

 
and the estimated asymptotic variance of Â  is  
 

( )ˆˆ
2

xy
yy

xx
CS

S
S

S
V A

n

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
−

. 

 

Consequently, a least square estimator of the 
parameter θ  is 
 

ˆˆ 1 CSA
CS eθ = −            (4.3) 

 
with estimated asymptotic variance 
 

       ( ) ( )ˆ2 ˆˆ ˆCSA
CS CSV e V Aθ = .                (4.4) 

 
Estimation of the survival function 

Substituting (4.3) in (2.5), a least square 
estimator of the survival function of the 
geometric distribution considered in (2.4) under 
Type II censoring scheme is obtained as 
 

                 ( ) ˆˆ CSx A
CSS x e=                          (4.5) 

 
with asymptotic variance 
 

( )( ) ( )ˆ2ˆ ˆ ˆˆ ˆCSxA
CS CS CSV S x A e V A= .     (4.6) 

 
Estimation of the hazard function 

Substituting (4.3) in (2.6), an estimator 
of the hazard function under the Type II 
censoring scheme is obtained as 

 
ˆ ˆ
CS CSh θ=            (4.7) 

 
and the asymptotic variance of the estimator is 
 

( ) ( )ˆ2ˆ ˆˆ ˆCSA
CS CSV h e V A= .        (4.8) 

 
Estimation of the mean residual life function 

Substituting (4.3) in (2.7), an estimator 
of the mean residual life function under this 
scheme is obtained as 
 

1ˆ ˆCS
CS

r
θ

=           (4.9) 

 
with asymptotic variance 
  

( )( )
( ) ( )

ˆ2

CS 2ˆ
ˆˆ ˆˆV r x

1

CS

CS

A

CS
A

e V A
e

=
−

.    (4.10) 
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Simulation Study 
 These procedures are assessed by a 
numerical study based on simulated samples 
with different values of the parameters of the 
model. Performances of the proposed estimators 
are examined empirically by generating samples 
from the geometric distribution. In the study, the 
bias of the estimator is defined as  
 

Bias = Average value of the estimate – 
Parameter value 

 
and the mean square error (MSE) of an estimator 
is determined as  
 

MSE = Variance of the estimator + (Bias) 2 

 

The simulated absolute bias, SD and MSE of 
the estimators proposed for the reliability 
measures using uncensored samples of sizes 20, 
50 and 100 for 1000 replications corresponding 
to different choices of the parameter values are 
given in Tables 1 – 3, respectively. 

The simulated absolute bias,  SD and 
MSE  of the estimators proposed for the 
reliability measures using Type II censored 
samples of sizes 20, 50 and 100 with different 
censoring schemes (i. e., for different choices of 
the censoring time ) for 1,000 replications are 
given in following tables, Table 4 – 6, 
respectively. These values are computed for 
different values of the parameters. 
 
A few features observed from Table 1 – 6: 

1. For smaller values of θ, the 
estimators under the two methods 
proposed have lesser bias and mean 
square error and a reverse trend is 
seen for larger values of θ. 

2. It seems that the bias and mean 
square error of all the proposed 
estimators become smaller as the 
sample size (or censoring times) 
increases for a given θ. 

Example for assessing the estimators with real 
data 

The pattern of natal dispersal in 
vertebrate animals is an important factor 
affecting the genetic and demographic processes 

within and between populations. The geometric 
probability distribution is a common way to 
model the frequency distribution of vertebrate 
dispersal distances (Porter and Dooley (1993), 
Greenwood et al., (1979)). They define X  as 
the number of units (home ranges, habitat, nest 
sites, territories etc. with a fixed diameter) 
moved before stopping (settling and / or dying) 
and θ , the probability of stopping while 
crossing any one unit of habitat before moving 
to an additional home- range diameter. 

For an illustration of the present study, 
used is the data about the dispersal distance (in 
units of 200 meters diameter) from natal site to 
first year breeding site for different categories of 
117 one-year-old male great tits given in page 
141, Appendix I, Greenwood et al. (1979). The 
estimators of the geometric parameter and the 
reliability measures based on the censored and 
uncensored samples are given in Table 7. 

The estimators are computed using  
Type II censored samples with different choices 
of the censoring time . The classical estimator of 
the geometric parameter under the maximum 
likelihood method of estimation ( MLE ) is 

 

1

ˆ
MLE n

i
i

n

n x
θ

=

=
+∑

. 

 
For the above data, the value 0.2566 is obtained. 
Table 7 suggests that the new semi-parametric 
estimates suggested are close to the MLE  in 
most cases. 
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Table 1: Estimators of ( )S x using uncensored samples when 5x =  

θ  ( )S x  n  c  Bias  SD  MSE  
0 0.0085 0.0764 0.0059 

0.3 0.0182 0.0774 0.0063 20 
 0.5 0.0266 0.0782 0.0068 

0 0.0141 0.0463 0.0023 
0.3 0.0179 0.0466 0.0025 50 

 0.5 0.0224 0.0469 0.0027 
0 0.0127 0.0336 0.0013 

0.3 0.0150 0.0337 0.0014 

0.1 
 
 
 
 

0.59049 
 
 
 
 

100 
 0.5 0.0176 0.0338 0.0015 

0 0.0339 0.0659 0.0055 
0.3 0.0417 0.0639 0.0058 20 

 0.5 0.0481 0.0622 0.0062 
0 0.0394 0.0419 0.0033 

0.3 0.0439 0.0412 0.0036 50 
 0.5 0.0474 0.0406 0.0039 

0 0.0443 0.0301 0.0029 
0.3 0.0470 0.0297 0.0031 

0.3 
 
 
 
 

0.16807 
 
 
 
 

100 
 0.5 0.0491 0.0295 0.0033 

0 0.0171 0.0178 0.0006 
0.3 0.0186 0.0164 0.0006 20 

 0.5 0.0198 0.0152 0.0006 
0 0.0212 0.0086 0.0005 

0.3 0.0219 0.0081 0.0005 50 
 0.5 0.0225 0.0078 0.0006 

0 0.0229 0.0059 0.0006 
0.3 0.0233 0.0056 0.0006 

0.5 
 
 
 
 

0.03125 
 
 
 
 

100 
 0.5 0.0236 0.0055 0.0006 

0 0.0020 0.0019 0.0000 
0.3 0.0021 0.0016 0.0000 20 

 0.5 0.0021 0.0015 0.0000 
0 0.0023 0.0004 0.0000 

0.3 0.0023 0.0003 0.0000 50 
 0.5 0.0023 0.0003 0.0000 

0 0.0024 0.0001 0.0000 
0.3 0.0024 0.0001 0.0000 

0.7 
 
 
 
 

0.00243 
 
 
 
 

100 
 0.5 0.0024 0.0001 0.0000  
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Table 2: Estimators of h  using uncensored samples 

 
 

θ  h  n  c  Bias  SD  MSE  
0 0.0039 0.0247 0.0006 

0.3 0.0070 0.0254 0.0007 20 
 0.5 0.0097 0.0260 0.0008 

0 0.0048 0.0145 0.0002 
0.3 0.0060 0.0147 0.0003 50 

 0.5 0.0074 0.0149 0.0003 
0 0.0041 0.0105 0.0001 

0.3 0.0049 0.0106 0.0001 

0.1 
 
 
 
 

0.1 
 
 
 
 

100 
 0.5 0.0057 0.0107 0.0001 

0 0.0458 0.0735 0.0075 
0.3 0.0543 0.0747 0.0085 20 

 0.5 0.0618 0.0757 0.0096 
0 0.0425 0.0456 0.0039 

0.3 0.0473 0.0460 0.0044 50 
 0.5 0.0512 0.0464 0.0048 

0 0.0448 0.0328 0.0031 
0.3 0.0478 0.0330 0.0034 

0.3 
 
 
 
 

0.3 
 
 
 
 

100 
 0.5 0.0501 0.0332 0.0036 

0 0.1315 0.1199 0.0316 
0.3 0.1422 0.1193 0.0344 20 

 0.5 0.1514 0.1187 0.0370 
0 0.1259 0.0716 0.0210 

0.3 0.1322 0.0716 0.0226 50 
 0.5 0.1373 0.0715 0.0240 

0 0.1297 0.0526 0.0196 
0.3 0.1336 0.0526 0.0206 

0.5 
 
 
 
 

0.5 
 
 
 
 

100 
 0.5 0.1367 0.0526 0.0214 

0 0.1849 0.0882 0.0420 
0.3 0.1915 0.0853 0.0439 20 

 0.5 0.1969 0.0827 0.0456 
0 0.1907 0.0607 0.0401 

0.3 0.1946 0.0594 0.0414 50 
 0.5 0.1977 0.0584 0.0425 

0 0.1956 0.0427 0.0401 
0.3 0.1980 0.0422 0.0410 

0.7 
 
 
 
 

0.7 
 
 
 
 

100 
 0.5 0.1999 0.0417 0.0417 



MATHACHAN & JEEVANAND 
 

499

  

 
 
 
 
 
 
 
 
 

Table 3: Estimators of r using uncensored samples 
θ  r  n  c  Bias  SD  MSE  

0 0.1385 2.2796 5.2156 
0.3 0.1556 2.2097 4.9072 20 

 0.5 0.4002 2.1517 4.7898 
0 0.2734 1.3644 1.9362 

0.3 0.3830 1.3481 1.9640 50 
 0.5 0.5105 1.3292 2.0273 

0 0.3013 0.9592 1.0108 
0.3 0.3680 0.9522 1.0422 

0.1 
 
 
 
 

10 
 
 
 
 

100 
 0.5 0.4443 0.9442 1.0889 

0 0.3114 0.6412 0.5082 
0.3 0.3863 0.6211 0.5350 20 

 0.5 0.4485 0.6043 0.5663 
0 0.3625 0.3920 0.2851 

0.3 0.4039 0.3851 0.3114 50 
 0.5 0.4370 0.3795 0.3350 

0 0.4069 0.2778 0.2428 
0.3 0.4319 0.2748 0.2620 

0.3 
 
 
 
 

3.3333 
 
 
 
 

100 
 0.5 0.4514 0.2724 0.2780 

0 0.3576 0.3206 0.2306 
0.3 0.3873 0.3092 0.2456 20 

 0.5 0.4119 0.2996 0.2594 
0 0.3812 0.1869 0.1802 

0.3 0.3977 0.1831 0.1917 50 
 0.5 0.4108 0.1801 0.2012 

0 0.4008 0.1356 0.1791 
0.3 0.4108 0.1339 0.1867 

0.5 
 
 
 
 

2 
 
 
 
 

100 
 0.5 0.4185 0.1326 0.1927 

0 0.2857 0.1309 0.0988 
0.3 0.2951 0.1246 0.1026 20 

 0.5 0.3028 0.1193 0.1059 
0 0.3004 0.0819 0.0969 

0.3 0.3055 0.0795 0.0997 50 
 0.5 0.3096 0.0776 0.1019 

0 0.3094 0.0547 0.0987 
0.3 0.3125 0.0537 0.1005 

0.7 
 
 
 
 

1.42857 
 
 
 
 

100 
 0.5 0.3148 0.0529 0.1019  
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Table 4: Estimators of ( )S x  using censored samples when 5x =  

θ  ( )S x  t  Bias  SD  MSE  

5 0.0991 0.0118 0.0100 

10 0.0506 0.0143 0.0028 

20 0.0240 0.0065 0.0006 
0.1 

 
 

0.5905 
 
 30 0.0126 0.0108 0.0003 

5 0.0701 0.0059 0.0049 

10 0.0334 0.009 0.0012 0.3 
 

0.1681 
 15 0.0261 0.0066 0.0007 

5 0.0216 0.0023 0.0005 

7 0.0165 0.0045 0.0003 0.5 
 

0.0313 
 9 0.0114 0.0056 0.0002 

5 0.0019 0.0002 0.0000 0.7 
 

0.0024 
 7 0.0005 0.0004 0.0000 

 

Table 5: Estimators of h  using censored samples 
 

θ  h  t  Bias  SD  MSE  

5 0.0325 0.0042 0.0011 

10 0.0160 0.0047 0.0003 

20 0.0074 0.0020 0.0001 0.1 
 
 

0.1 
 
 30 0.0039 0.0033 0.0000 

5 0.0718 0.0076 0.0052 

10 0.0305 0.0088 0.0010 0.3 
 

0.3 
 15 0.0233 0.0062 0.0006 

5 0.1060 0.0203 0.0117 

7 0.0721 0.0262 0.0059 0.5 
 

0.5 
 9 0.0454 0.0241 0.0026 

5 0.0772 0.0169 0.0062 0.7 
 

0.7 
 7 0.0132 0.0117 0.0003 
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Table 6: Estimators of r  using censored samples 
 

θ  r  t  Bias  SD  MSE  

5 2.4462 0.2343 6.039 

10 1.3706 0.3536 2.0036 

20 0.6898 0.1782 0.5076 0.1 
 
 

10 
 
 30 0.3674 0.3133 0.2332 

5 0.6425 0.0549 0.4159 

10 0.3060 0.0826 0.1005 0.3 
 

3.3333 
 15 0.2393 0.0605 0.0609 

5 0.3485 0.054 0.1243 

7 0.2492 0.0804 0.0686 0.5 
 

2 
 9 0.1635 0.0836 0.0337 

5 0.1414 0.0278 0.0208 0.7 
 

1.4286 
 7 0.0261 0.0229 0.0012 

 
Table 7: Estimators of the parameter and the reliability measures using 

the real data when 5x =  
 

Censoring 
time t  

Estimate 
of θ  

Estimate of 
( )S x  

Estimate 
of h  

Estimate 
of r  

 
5 

 
0.3345 

 
0.1305 

 
0.3345 

 
2.9892 

 
10 

 
0.3229 

 
0.1424 

 
0.3229 

 
3.0973 

 
15 

 
0.3102 

 
0.1562 

 
0.3102 

 
3.2298 

 
Uncensored 

data 

 
0.2912 

 
0.1790 

 
0.2912 

 
3.4347 
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