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The Correlation Coefficients 
 

Rudy A. Gideon 
University of Montana  

 
 
A generalized method of defining and interpreting correlation coefficients is given. Seven correlation 
coefficients are defined — three for continuous data and four on the ranks of the data. A quick calculation 
of the rank based correlation coefficients using a 0-1 graph-matrix is shown. Examples and comparisons 
are given. 
 
Key words: Pearson, Spearman, Kendall, Gini, Greatest Deviation, median, absolute value,      
nonparametrics, correlation, tied values 
 
 

Introduction 
 
Definitions 

This article introduces a system of 
estimation that has numerous advantages over 
current practice. Among these advantages is the 
global tied value procedure for nonparametric or 
rank based correlation coefficients making 
estimation functional over all data and advanced 
statistical methods, such as multiple regression; 
the currently used local tied value procedure is 
very restrictive. This system has produced a way 
of viewing correlation that has allowed other 
correlation coefficients to be defined. In 
particular, the new continuous absolute value 
and median correlation coefficients should be 
used for L1 methods or the MAD scale estimate. 
It is general and provides a robust estimation 
procedure in correlation analysis and in 
advanced statistical procedures if robust 
correlation is used (www.math.umt.edu/gideon). 
 

 
Rudy Gideon received the Ph.D. in Statistics in 
1970 under John Gurland at the University of 
Wisconsin. His academic career began in the 
Department of Mathematical Sciences at the 
University of Montana in 1970; he retired from 
the Department in June of 2005. He has worked 
extensively with Masters and Doctoral students 
as well as on a multitude of various applied 
statistical projects. His prime goal in retirement 
is to disseminate his original correlation 
estimation system that encompasses basic 
statistical methods.    

 
To make the definitions of the 

correlation coefficients more natural, Pearson's r 
is reformulated. This re-expression of r also 
makes possible a natural definition of parametric 
and nonparametric correlation coefficients based 
on absolute values and medians. Let CC and NP 
stand for correlation coefficient and for 
nonparametric. Some NPCCs are defined based 
on counting techniques. A 0-1 graph-matrix is 
used to establish relationships. Finally, some 
data is analyzed to examine the relative 
robustness of the NPCCs .  

Let niyx ii …,2,1),,( =  be a bivariate 
data set. The usual mean notation will be used 
and xxx ii −=* , niyyy ii …,2,1,* =−=  are 
the centered data. The sample covariance is 
proportional to ∑ **

ii yx . To prepare for later 
definitions, this covariance is rewritten as  

 
( )∑ ∑ ∑ −−+= 4/)()( 2**2****

iiiiii yxyxyx . 
 
In the uncentered notation, this can be written 
as  
 

( )
)

2

2

(

( ) / 4
i i

i i

x x y y

x x y y

− + −

− − − +
∑
∑

. 

 
This form of the covariance function appeared as 
an interpretation of Pearson's r in Rodgers and 
Nicewater (1988), when their rescaled variance 
interpretations were added. Heuristic motivation 
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for this form as a measure of the relationship 
between the x-y data is now given and it holds 
for all CCs that are to be defined.  

When there is positive correlation the 
terms 22** )()( yyxxyx iiii −+−=+  will 
tend to be large, because the two deviations will 
tend to be in the same direction. The distance 
from a negative relationship is large, so the 
correlation would be positive. The terms 

niyx ii …,2,1,)( 2** =−  will have some 
canceling effect, so they will tend to be small. 
The net effect is that the covariance will be 
large. The distance from a positive relationship 
is small so that the correlation would be positive. 
When x and y are independent variables, a 
similar amount of canceling occurs in both terms 
and the covariance will fluctuate around zero. 
When there is negative correlation the distance 
from positive correlation will be large as the 

niyx ii …,2,1,)( 2** =−  terms will tend to be 
large, but cancellation will be occurring in the 

niyx ii …,2,1,)( 2** =+  terms, so the distance 
from negative correlation is small. Throughout 
this article the term distance does not mean 
just Euclidean distance, but is meant to 
describe the numerical measures of 
deviations from perfect positive or negative 
correlation.  

These concepts are next elaborated in 
Euclidean n-space. For this paragraph x and y 
are the n-dimensional vectors of the centered 
data, normalized so that each has Euclidean 
length one, 1== yx . Consider the vector x 
+ y in n-space; the farther this vector is from the 
origin (for this vector the origin represents 
perfect negative correlation) the more positive is 
the correlation. For perfect positive correlation,  
cos(x, y) = 1 and 2=+ yx ; that is, distance 
from the origin is maximum. Consider the vector 
x – y. The closer this vector is to the origin, the 
more positive the correlation. For x – y, the 
origin represents perfect positive correlation and 
hence, yx −  small means distance from 
perfect positive correlation is small. Throughout 
this article the term distance does not mean just 
Euclidean distance, but is meant to describe the 

numerical measures of deviations from perfect 
positive or negative correlation.  

To restate, for x – y the surface of the 
centered n-dimensional ball of radius 2 
represents perfect negative correlation, so 

yx −  large means distance from perfect 
positive correlation is large. For perfect negative 
correlation, cos(x, y ) = –1, and yx −  = 0, so 
the distance from the ball of radius 2 is a 
maximum.  

Another way to express this, in terms of 
parameters, is that there is positive correlation 
when V(X+Y) > V(X–Y) and negative 
correlation when the inequality goes in the other 
direction. The connection between distance 
away from negative correlation and V(X+Y) and 
also for distance away from positive correlation 
and V(X–Y) is now illustrated for a bivariate 
normal distribution. 

Let Z1 and Z2 be standardized normal 
random variables with CC ρ . Note that 
E(Z1Z2) = ρ  = [V(Z1+Z2) – V(Z1–Z2)] / 4. 
The term V(Z1+Z2) equals distance from perfect 
negative correlation and is a linear function of 
ρ , namely ρ22 + . For 1−=ρ  this distance 
is zero but for 1+=ρ , this distance is 4. 
Similarly, V(Z1–Z2) is distance from perfect 
positive correlation and it is ρ22 − . For 

1−=ρ , this distance is 4, but for 1+=ρ , this 
distance is 0. Note that these distances are 
monotonic functions of ρ and the overall 
correlation V(Z1+Z2) –V(Z1–Z2) combines to 
equal 4 ρ . However, for some of the other 
correlation coefficients this combining of the 
distance measures does not simplify. Also note 
that in the case of Fisher’s normal 
transformation,  

 
1 2

1 2

1 21

1 2

( )1 1 1ln ln
2 ( ) 2 1

( )
tanh ln

( )

V Z Z
V Z Z

V Z Z
V Z Z

ρ
ρ

ρ−

+ += =
− −

+
=

−

. 

 
It is possible that a similar normalizing concept 
would work for other correlation coefficients. 
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Additionally, a correlation coefficient could be 
based on the ratio, V(X+Y) / V(X–Y), which 
would be less than one for negative correlation, 
one for independent random variables, and 
greater than one for positive correlation.  
 Pearson’s r and other correlation 
coefficients based on absolute values and 
medians can now be defined. Let SSx stand for a 
centered sum of squares and SAx stand for the 
sum of absolute values about the mean; i.e.,  
 

∑ −= xxSA ix . 
 
Continuous correlation coefficients 
Definition 1: Pearson’s r 
 

* * * *
2 2

( , )

1 ( ) ( )
4

i i i i

x y x y

r x y

x y x y
SS SS SS SS

=

⎛ ⎞
⎜ ⎟+ − −
⎜ ⎟
⎝ ⎠
∑ ∑

 (1) 

 
= {(standardized distance from perfect negative 
correlation) – (standardized distance from 
perfect positive correlation)} divided by a 
constant, that puts the value between –1 and +1. 

 
Definition 2: An absolute value CC, rav 
 

* * * *

( , )

1
2

av

i i i i

x y x y

r x y

x y x y
SA SA SA SA

=

⎛ ⎞
+ − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑       (2) 

 

where    y,i.e. ∑∑ +
y

i

x

i

SA
y

SA
x **

 = 2 

  
Definition 3: The Median Absolute Deviation 
correlation coefficient. 
 

For the final continuous correlation, a 
correlation analog of the MAD, median absolute 
deviation estimate of variation, is given and 
denoted by madr . For a random sample, define 

)( iix xmedxmedMAD −=  and similarly for 
the data from Y. A median-type correlation 
coefficient is defined as  

( ) ( )

1
2 ( ) ( )

i i i i

x y

mad

i i i i

x y

x med x y med ymed
MAD MAD

r
x med x y med ymed

MAD MAD

⎛ ⎞− −+⎜ ⎟
⎜ ⎟

= ⎜ ⎟
− −⎜ ⎟− −⎜ ⎟

⎝ ⎠

.    (3) 

 
It is not true that rmad ≤1. Let 

xi
* =

xi − med(x)
MADx

, and similarly for yi
* . Now, 

med xi
* = med yi

* = 1. 

The proof that rmad ≤1 breaks down is 
because the median of the sum of two sets of 
nonnegative numbers is not always less than the 
sum of the medians. It would be true if the 
following equation held for rmad . 

 

( )* * * * * *

2
i i i i i imed x y med x y med x med y+ ≤ + ≤ +

=
 

However, the second inequality does not 
always hold. The computer package S+ has been 
used to examine rmad , and values slightly 
greater than one were occasionally obtained. 
Simulation studies of rmad  show it to behave 
very much like other correlation coefficients 
even with the anomaly of occasionally being 
greater than one. The spread of the distribution 
is very close to other correlations, and only 
when the population correlation is very near one 
can rmad  become slightly greater than one. In 
the case when X, Y have a bivariate normal 
distribution with parameters, μ x ,μ y ,σx

2,σ y
2,ρ , 

the population value is known to 

be
2

1
2

1 ρρρ −−+=mad . Substitute y for x 

in formula (3) and essentially MAD is 
recovered. Note that the same heuristic 
motivation for Pearson’s r holds for this absolute 
value CC.  

 
Rank based correlation coefficients 
  The first NPCC based on absolute 
values is now defined. In the same way that 
Spearman's CC is motivated from Pearson’s r by 
using direct substitution of ranks, so is this new 
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correlation coefficient obtained from Definition 
2 by substitution of ranks. An interesting 
historical note is that the NPCC in Definition 4 
was found first and rav determined from it.  
 
 First rewrite  
 

)()( yyxx ii −+− as )( yxyx ii +−+ .  
 

Replacing the data by their ranks and ordering 
the bivariate data by the x data, gives the data in 
rank form. this is just before the 

nipi i …,2,1),,( = . Thus ip  equals the rank of 
the yi for the x with rank i. The means of the 

ranked data are
2

1+n
, so yx +  becomes 1+n . 

The ranks ip  are here assumed distinct; tied 
values will be handled later. In Definition 2, 
with ranks substituted, the terms SAx and SAy 
are equal and can be factored from expression 
(2). Their value is 
 

1
2

1 1 2
2 2

x y i
nSA SA p

n n ii

+= = − =

+ + −− =

∑

∑ ∑
. 

 
For n odd, ∑ −+ in 21  can be shown to be 

2
12 −n

 and for n even it becomes 
2

2n
; for either 

even or odd n, it is ⎥
⎦

⎤
⎢
⎣

⎡
2

2n
, the greatest integer in 

2

2n
. Thus the denominator in (2) becomes  

 

∑ ⎥
⎦

⎤
⎢
⎣

⎡
=−+=

2
212

2ninSAx . 

 
Definition 4: Spearman’s modified footrule 
correlation coefficient, Gini (1914), Betro 
(1993) 

  ( )
2

( , )

1 /
2

mf

i i

r x y

nn p i p i

=

⎡ ⎤
+ − − − − ⎢ ⎥

⎣ ⎦
∑ ∑

         (4) 

 
The attempt by Spearman (1906) to 

make an absolute value rank CC was also 
documented in Kendall and Gibbons (1990). 
Spearman tried to make a computationally 
simple and robust CC and based it on one 
summation. The idea in this article is that all or 
at least most correlations should be a difference 
of two functions that measure distance from 
positive and negative correlation, which 
contrasts with Kendall’s method in Chapter 2 in 
Kendall and Gibbons (1990). There, Kendall 
advanced the idea that some type of inner 
product should be used to define all CCs. The 
above two absolute value CCs cannot be defined 
using Kendall’s inner product concept. This 
difference of two functions gives the necessary 
symmetry to a CC. The denominator arises from 
the absolute value of the numerator which 
occurs when ipi =  (correlation = +1), or when 

inpi −+= 1  (correlation = –1). Note again 
that the same heuristic motivation applies. The 
forumulation of Spearman's correlation 
coefficient based on Definition 1 is: 

 
Definition 5: Spearman's correlation coefficient, 
Spearman (1906) 
 

( )
2

2 2

( , )

( 1) ( 1 ) ( )
3

s

i i

r x y
n n n p i p i

=

− + − − − −∑ ∑
     (5) 

 

∑ −
−

−= 2
2 )(

)1(
61 ip

nn i . 
 

The linear restriction that allows rs to 
simplify as shown does not hold for rmf. Two 
more CCs are to be defined — Kendall’s, for 
which a linear restriction does allow a 
simplification of the defining formula and one 
based on maximum or greatest deviations for 
which no simplification occurs. Again the 
natural definitions are based on the difference of 
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two functions that measure distance from perfect 
positive and negative correlation and makes the 
distribution of the CCs symmetric about zero for 
the case when x and y are independent, i.e. the 
null case. It will also be shown that rmf can be 
computed from the quantities defined for the 
numerator of the Greatest Deviation CC.  
 Both Kendall’s CC (rk), usually called 
Tau, and the one based on greatest deviations 
(rgd) use a counting technique that can be 
defined with an indicator function. Let  
 

⎩
⎨
⎧

=
                      false if  0

 trueisargument   theif  1
(.)I  

 
Recall that the data are assumed ordered 

by the x data and for the ith largest element of x, 
the rank of the corresponding y data is ip . For 
Kendall’s correlation coefficient, let  

 

ic

n

ij
ij nppI ,

1

)( =>∑
+=

 

 
count the number of concordances and  
 

∑
+=

<
n

ij
ij ppI

1

)(  idn ,=  

 
count the number of discordances at position i 
(recall that no tied values are yet allowed). The 
larger the number of concordances the smaller 
the number of discordances. Let nc and nd be 
the sum over i, i=1,2,..., n-1 of the concordances 
and discordances, respectively. The concordance 
function, nc, is a counting function that 
measures distance of the ranked data from a 
perfect negative monotone relationship, whereas 
nd is a similar discrete measure of the ranked 
data from a perfect positive monotone 
relationship. 
  
Definition 6: Kendall’s rk correlation 
coefficient, see e.g. Kendall and Gibbons (1990) 
 

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −= ∑∑
−

=

−

= 2
/),(

1

1
,

1

1
,

n
nnyxr

n

i
id

n

i
ick             (6) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−=
2

/)(
n

nn dc  

 
(4 /( ( 1))) 1cn n n= − − =

          

1 (4 /( ( 1)))dn n n− − , 
 

because ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=+
2
n

nn dc . 

The quantity ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

 means n choose 2. This 

summation of nc and nd will be shown in the 
next section to be n choose 2 using a 0-1 graph-
matrix formulation of the calculation of rk.  
 For the Greatest Deviation CC let 

∑
=

+ >=
i

j
ji ipId

1
)( , a function that is large 

when there is negative correlation and small if 
not; that is, the measure is large if distance from  
positive correlation is great. Let 
 

∑
=

− >−+=
i

j
ji ipnId

1

)1( . 

 
This is a measure that is large if distance from 
negative correlation is great. 
  
Definition 7: The Greatest Deviation correlation 
coefficient, rgd; Gideon and Hollister (1987) and 
in Gideon, Prentice, and Pyke (1989) 
   

⎥⎦
⎤

⎢⎣
⎡−=

≤≤

+

≤≤

−

2
/)maxmax(),(

11

nddyxr
ni

i
ni

igd   (7) 

 

where ⎥⎦
⎤

⎢⎣
⎡
2
n

 is the greatest integer in n/2; it's 

value is the maximum value of the difference in 
the numerator.  
  This completes the definitions of the 
correlation coefficients under consideration. The 
next section gives some insightful examples; the 
work is considerably eased using a 
computational aid that allows computations of 
the four nonparametric correlation coefficients 



THE CORRELATION COEFFICIENTS 
 

522

from an augmented plot of the data with a 0-1 
matrix, called a graph-matrix.  
 

Methodology 
 

Computations using the graph-matrix 
The data in rank form are 

nipi i …,2,1),,( = . Let e = (1,2,....,n) and p = 
),,,( 21 nppp …  be the data in vector form. The 

graph of the ranked data will have e  plotted on 
the horizontal axis and p  plotted on the vertical 
axis. 

The YMCA basketball data that were 
used in illustrating the Greatest Deviation CC 
(Gideon & Hollister, 1987) is used here again. 
These data occurred as ranks and they will now 
be used to calculate all four of the NPCCs that 
have been defined. The e  contains the ranks of 
the won-lost records of the 16 teams that were in 
the fifth grade league in Missoula, Montana in 
1980. Rank one is the team with the best record. 
Throughout the season, after each game, each 
coach was asked to rate the sportsmanship of the 
opposing team and at the end of the season the 
cumulative ratings were presented in rank form 
with rank one being the team with the highest 
rated sportsmanship. These ranks were p  

)5,4,6,15,1,8,3,10,9,7,13,12,2,16,11,14(= .  
Note that in general the teams with the 

best won-lost records had the lower 
sportsmanship ratings. The correlation 
coefficients put a measure on the relationship 
between winning and sportsmanship.  

The graph-matrix appears in the middle 
of Figure 1 surrounded by auxiliary information. 
The two leftmost and the two rightmost columns 
as well as the two bottom rows are intermediate 
calculations explained below. Bordering the data 
plot are the axes labels. The *s indicate the 
plotted points nipi i …,2,1),,( =  and unlike a 
scatterplot, the Cartesian product, e  x e , on the 
graph is filled in with 0s above each of the 
plotted points and 1s below. The combination of 
these *s, 0s, and 1s are used to calculate all four 
NPCCs which appear on the three borders. 

Although the definitions of the 
correlation coefficients may seem unwieldy, the 
counting technique is easy and quick to use. It is 
really more convenient to use the method if the 

diagonals to the data plot are drawn in, which is 
easier done by hand. The line of slope one is 
denoted sl+1; this is the line through 

niii ,,2,1),,( …= . The line of slope minus one, 

sl-1, goes through points 
niini ,,2,1),1,( …=−+ .  

 Immediately below the graph are two 
rows that give the values necessary to calculate 
the Spearman and Absolute Value CCs. The 
upper row counts from the * to the line sl-1 with 
a minus sign if the * is below sl-1. The lower 
row counts from the * to the line sl+1 again with 
a minus sign if the * is below the line. It is 
readily apparent that this counting technique 
directly corresponds to the summands in the 
formulas of Definitions 4 and 5. The sum of the 
absolute values of these two rows are given just 
to the right of them (56, 106), followed by the 
sum of squares of them (348, 1012).  
 To the right of the graph-matrix are two 
columns that give the individual concordances 
and discordances in Kendall’s Tau as given in 
Definition 6. Starting at a * in position ),( ipi , a 
0 appears in column j>i (to the right of the *) if 
and only if the rank of that column jp  is in 

discordance ( ji pp > ) and a 1 appears in a 
column to the right of the * if and only if the 
rank of that column is in concordance 
( ji pp < ). To obtain the discordances, count 
the 0s to the right of the * in each column, and to 
obtain the concordances count the 1s to the right 
of each * in each column. These results appear 
in the two columns to the right of the graph. The 
sums of the two columns, the total numbers of 
con- and discordances, are given below the 
columns as (38, 82). Note that the ordering 
within the two columns does not match the 
standard algorithm used to calculate Kendall’s 
Tau, rk. 
 To the left of the graph are two columns 
headed by +

id  and −
id . They label the values for 

which the maximums need to be taken in 
Definition 7 of the Greatest Deviation 
correlation coefficient. For each element in the 

−
id  column count all the 0's on and to the left of 
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the sl-1 line. To obtain each element in the +

id  
column count all the 1's on and to the left of the 

sl+1 line. For example, ∑
=

+ >=
7

1
7 )7(

j
jpId  = 5, 

because exactly 65321 ,,,, ppppp  are greater 
than 7.  

Using the graph, there are exactly 5 1s 
on or to the left of sl+1 in row 7, corresponding 
precisely to the five spi ' mentioned above, 
because in that part of the plane, the second 
coordinate exceeds the first. Similarly, −

7d  =  
 

 
 

∑
=

=−<
7

1
)10717(

j
jpI  = 2 because only 4p  

and 7p  are less than 10. Now for −
id , the term 

ipn j >−+ 1  in the indicator function means  

inp j −+< 1 ; that is, count all the zeroes at 
in −+ 1  on the vertical axis on and to the left 

of the sl-1 line. So for i=7, count all the zeroes at 
17-7=10 on the vertical axis on and to the left of 
sl-1; the 0s appear only in columns 4 and 7 
corresponding to 4p  and 7p  being less than 10. 

 Just below the −
id and +

id  columns are 
the maximums for rgd and the below them are 
the sums of these two columns. It will be shown 
that these sums can be used to compute rmf. 

YMCA basketball data: correlation computations 
 

left: Greatest Deviation       bottom: Spearman and Absolute Value       right: Kendall 
 

di
+  di

−   vertical axis: sportsmanship rankings 
horizontal axis: won and lost standings 

nc nd  

0 1 16 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 
1 2 15 0 0 1 0 0 0 0 0 0 0 0 0 * 0 0 0 0 3 
2 1 14 * 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2 13 
3 2 13 1 0 1 0 0 * 0 0 0 0 0 0 1 0 0 0 1 9 
3 2 12 1 0 1 0 * 1 0 0 0 0 0 0 1 0 0 0 2 9 
4 1 11 1 * 1 0 1 1 0 0 0 0 0 0 1 0 0 0 4 10 
5 2 10 1 1 1 0 1 1 0 0 * 0 0 0 1 0 0 0 1 6 
6 2 9 1 1 1 0 1 1 0 * 1 0 0 0 1 0 0 0 2 6 
6 2 8 1 1 1 0 1 1 0 1 1 0 * 0 1 0 0 0 1 4 
5 2 7 1 1 1 0 1 1 * 1 1 0 1 0 1 0 0 0 4 5 
5 2 6 1 1 1 0 1 1 1 1 1 0 1 0 1 * 0 0 0 2 
4 3 5 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 * 0 0 
3 3 4 1 1 1 0 1 1 1 1 1 0 1 0 1 1 * 1 1 0 

3 2 3 1 1 1 0 1 1 1 1 1 * 1 0 1 1 1 1 5 1 

2 1 2 1 1 1 * 1 1 1 1 1 1 1 0 1 1 1 1 11 1 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 * 1 1 1 1 4 0 

6 3 gd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38 82 

53 28 mf -2 -4 2 -11 0 2 -3 0 2 -4 2 -4 11 3 2 4 56 348 

   13 9 13 -2 7 7 0 1 1 -7 -3 -11 2 -8 -11 -11 106 1012

Figure 1. 
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Note that twice 53 is 106 and twice 28 is 56, the 
numbers needed for rmf.  
 From the statistics given in Figure 1, the 
differences in the numerators of the four 
correlation coefficients can be obtained and the 
denominators are  
 

,128
2

2

=⎥
⎦

⎤
⎢
⎣

⎡n
 ,13603/)1( 2 =−nn ,120

2
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛n
 

.8
2

=⎥⎦
⎤

⎢⎣
⎡n

 

,3906.0
64
25

128
10656 −=−=−=mfr

4882.0
170

83
1360

1012348 −=−=−=sr  

 

,3667.0
30
11

120
8238 −=−=−=kr

.3750.0
8
3

8
63 −=−=−=gdr

 
 

Note that the two numbers in the numerator for 
rs and rk add to the denominator ( rs: 348 + 
1012 = 1360, and rk: 38 + 82 = 120), the well-
known linear restriction, but this does not occur 
for rgd and rmf as rgd: 6 + 3 = 9 > 8, and rmf: 
56 + 106 = 162 > 128.  
 
Special form for calculation of rgd 

If only rgd is desired, there is a 
convenient algorithm to compute the −

id  and 
+
id  values. Write down for i = 1,2, ..., n the 

three rows vectors )1,,( ii pnpi −+ . Compute 
+
id  by placing a marker just to the right of the 

ith position and count left in the ip  row and 

note all the ranks greater than i. Compute −
id  by 

keeping the same marker, but counting left in the 
ipn −+ 1  row noting all the ranks greater than 

i. This is done in Table 2. Note that −
id  in 

Figure 1 and Table 2 appear in the same order 
whereas, the +

id  values are reversed.  

Three theorems are given below which 
show some additional usefulness of this graph-
matrix approach. The first shows the relationship 
between the statistics used in rgd and rmf. 

 
Theorem 1: ∑ ∑ −=+ ipd ii2  and 

∑ ∑ −−+=− ipnd ii 12 , all sums from 1 to 
n. 
 
Proof: First the +

id  relationship is established. 

Clearly 0)(
1

=−∑
=

n

i
i ip ; that is, the sum of the 

deviations about the sl+1 is zero. Thus, 

∑∑
><

−=−−
ip

i
ip

i
ii

ipip )()( . Now ∑
>

−
ip

i
i

ip )(  

just counts all the 1s on or above the sl+1 line. 

But, ∑
=

+ >=
i

j
ji ipId

1
)(  counts all the 1s in row  

I that are on or above the sl+1 line so that 

∑ ∑∑
<>

+ −=−=
ip

i
ip

ii
ii

piipd )()(  or  

∑ ∑∑
=>

+ −=−=
n

i
i

ip
ii ipipd

i 1

)(22 . 

These equalities are demonstrated in 
Figure 1. The bottom two rows carry signs to 
allow these equalities to be easily seen. The 
proof of the −

id  relationship follows in a similar 
manner.  

 
Theorem 2: The number of 1s on or to the right 
of the sl-1 line in row i-1 equals the number of 0s 
on or to the left of sl-1 in row i, i=2,3,...,n. The 
number of 0s on or to the right of the sl+1 line in 
row i equals the number of 1s on or to the left of 
the sl+1 line in row i-1, i=2, 3,...,n. (In this 
theorem row i refers to the vertical axis, which 
are ranks; e.g. row 1 corresponds to the bottom 
row of the 0-1graph-matrix.) Figure 1 provides a 
guideline for the proof. 

The symmetry displayed in this theorem 
shows that the Greatest Deviation CC could 
have been equivalently defined in a right-handed 
fashion; i.e. instead of counting 0s and 1s from 
the left to the diagonal lines, counting could 
have been done from the right with a suitable 
adjustment. 



RUDY A. GIDEON 
 
525 

Theorem 3: For Kendall’s CC, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=+
2
n

nn dc . 

 
Proof: If the data positions (*s) fell on the 
diagonal of the graph-matrix it is clear that there 
would be a total of nn −2  0s and 1s with 
complete anti-symmetry. The permutation of the 
columns to depict the actual data does not 
change this total and hence, the total number of 
0s and 1s to the left of the *s must equal the total 
number to the right. Thus, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=−=+
22

2 nnnnn dc . Further, the number 

of 1s to the right (38 in Figure 1) equals the 
number of 0s to the left and the number of 0s to 
the right (82 in Figure 1) equals number of 1s to 
the left.  
 

Results 
 

Which correlation coefficients are outlier 
resistant? In this section two examples are given 
to illustrate that the four NPCCs can have quite 
different values on the same data. The maximum  
 
 
 
 
 
 

 
 
 
 

differences between rk and rs appear on page 34 
of Kendall and Gibbons (1990). The examples 
below suggest that rgd and rmf are the most 
robust, rk next, but that Spearman's rs is not very  
robust. Let e  and p be the rank vectors. The 
calculation of the correlation coefficients is left 
to the reader. The values of the NPCCs for n = 
10 and )6,7,8,9,10,1,2,3,4,5(=p  are  
 

,5200.0
50
26 ==mfr ,5152.0

33
17 ==sr

,1111.0
9
1 ==kr 6000.0

5
3 ==gdr . 

 
The values of the CCs now with 

)9,8,7,6,5,4,3,2,1,10(=p  are  
 

,2800.0
50
14 ==mfr ,0182.0

330
6 ==sr

,2444.0
45
11 ==kr .6000.0

5
3 ==gdr  

 
It is known that for the bivariate normal 
distribution, the NPCCs estimate a function that 
is less than the correlation parameter, ρ . When 
the CCs differ greatly, it suggests that there are 
strange observations in the data. Here, rgd and 
rmf give the   largest   indication   of   a  positive  

 
 
 
 
 

 
Table 2. Calculation of the Greatest Deviation CC 

 
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 max 
pi 14 11 16 2 12 13 7 9 10 3 8 1 15 6 4 5  
n+1-pi 3 6 1 15 5 4 10 8 7 14 9 16 2 11 13 12  
d+

i 1 2 3 3 4 5 5 6 6 5 4 3 3 2 1 0 6 
d-

i 1 2 1 2 2 1 2 2 2 2 2 3 3 2 1 0 3 
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relationship for the strange data of these two 
examples. Hence, they may be the most resistant 
to outliers or to any unusual data. (Work in 
progress shows them more resilient.) 
 
Probabilities and asymptotics for the rank 
correlation coefficients  
 Some aspects of the rank CCs will be 
compared by using an example from Spearman 
(1906) concerning the relationship between the 
ability of people to add numbers quickly and 
accurately and their ability to distinguish 
between two sound tones. Spearman used this 
example to illustrate his footrule CC. The data 
were for eleven students of psychology; 
Spearman ranked their ability in pitch 
discrimination and a second person ranked 
independently for addition ability. The data are 
ordered by the addition variable and note the 
two tied values with the usual convention used, 
which could be called a local convention as 
opposed to a more useful global definition given 
below.  

Spearmans’s footrule CC is 
 

57.0
120

)5.8(61
1

)(6
1 2 =−=

−

−
−=
∑

>

n

ip
r ip

i

f
i . 

  
 

 
 
 
 
 
Because this footrule only involved distance 
from perfect positive correlation, it is not a valid 
correlation    coefficient.   It is interesting from a 
historical perspective. He compared this number 
to probable error (derived in his article) of 0.13 
and concluded because 0.57/0.13 = 4.38, “the 
faculty of adding numbers and that of 
discriminating pitch is just about large enough to 
be beyond all reasonable suspicion of mere 
chance coincidence” (p. 96).  

Spearman did not use a table of critical 
values but instead stated a heuristic value for the 
above ratio to be significant. The four 
nonparametric CCs and their corresponding 
probability values are now computed for this 
data. Referring to what is now known as the 
Spearman CC (the rank equivalent of Pearson’s 
CC; i.e., rs) Spearman said, “the effect of 
squaring is to give more weight to the extreme 
differences as compared with the median ones. 
This is probably a considerable advantage in 
most physical measurements. But in other fields 
of research, and perhaps above all in 
Psychology, these extreme cases are just the 
ones of most suspicious validity, so that the 
squaring is here more likely to do harm than 
good” (p. 99). Thus, Spearman wanted a robust 
CC for his data.  
 This example illustrates the definition of 
a rank CC when tied values are present. In 

 
Table 3 Spearman data 

Person addition sound 
D 1 3 
I 2 2 
H 3 1 
B 4 4.5 
J 5 4.5 
E 6 11 
A 7 6 
K 8 9 
F 9 8 
C 10 10 
G 11 7 
 (i) (pi)  



RUDY A. GIDEON 
 
527 

advanced work on the use of CCs in estimation, 
the current local methods of tied value 
calculations are not adequate and hence a global 
method first introduced in Hollister and Gideon 
(1987) is presented. In this method, the 
calculations are done twice: first when Person B 
is assigned rank 4 for sound and Person J is 
assigned rank 5 for sound, favoring positive 
correlation; in the second calculation ties are 
broken in the reverse direction to favor negative 
correlation. Note that rgd is the only CC without 
a change. Each CC can be defined uniquely by 
averaging the values of the two extreme 
correlation coefficients.    
 In Table 4, rgd remains at 0.6000 but 
rmf becomes (0.7333 + 0.7000)/2 = 0.7167.  A 
general global definition for an alternative tied 
value procedure is now given. 
 
Definition: The global values of rank CC when 
ties are present 
 Let ),( yx  be a set of data, and ),( +PI  
be the corresponding ranks which are assigned 
among the tied values in the way that most favor 
positive correlation, and let ),( −PI  the 
corresponding ranks assigned among the tied 
values in the way to most favors negative 
correlation. I  becomes e  and +P and −P  are 
permutations of e . Then a rank correlation 
coefficient, r , is defined uniquely from the two 
extremes, +P  and −P . Its value is  
 

     2/)),(),((),( −+ += PerPeryxr .   (8) 
 

The quantities ),( +Per  and 

),( −Per are abbreviated to r+ and r-, 
respectively.  As an example, let ),( yx  = 

((1,2,2,4,5), (1,1,2,1,3)). Then P+ = (1,2,4,3,5) 
and P- = (3,4,2,1,5). Thus, for rgd, 

  

0
2

)2/1(2/1
2

=−+=+=
−+ rrrgd . 

 
 Return to the level of significance for 
the Spearman example. The numerators and 
values of the four NPCCs as computed by the 0- 

1 graph-matrix method are given in Table 4. The 
denominators are  
 

5
2

11 =⎥⎦
⎤

⎢⎣
⎡ , 55

2
11

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, 60

2
112

=⎥
⎦

⎤
⎢
⎣

⎡
, 

.440
3

)111(11 2

=−
 

 
Tail probabilities are obtained from 

Neave (1978) for rk and rs, from Gideon and 
Hollister (1987) for rgd, and from Betro (1993) 
for rmf. The table values are compared to the 
asymptotic values computed from the 
asymptotic distributions which are given in 
Kendall and Gibbons (1990) for rs and rk and in 
Gideon, Prentice, and Pyke (1989) for rgd. The 
asymptotic null distributions ( ρ = 0) of the four 
CCs are given first. These are  

 
)1,0( is 1 Nrn s− ; )9/4,0( is 1 Nrn k− ; 

)1,0( is Nrn gd ; )3/2,0( is 1 Nrn mf− . 
 
For completeness the exact variances of each CC 
is given; )1/(1)( −= nrV s ;    

))1(9/()52(2)( −+= nnnrV k ; )( gdrV  is 

unknown; ))1(3/()2(2)( 22 −+= nnnrV mf  for 

n even and ))1)(1(3/()3(2 22 −−+ nnn  for n 
odd. The one tie is neglected and the data for the 
most correlation case, +P , is used. First, from 
tables, 
 

005.0)7636.0(001.0 ≤≥≤ srP ; 
025.0)5636.0(01.0 ≤≥≤ krP ;
05.0)6000.0(01.0 ≤≥≤ gdrP ; 

0013.0)7333.015/11( ==≥mfrP  and 

0024.0)7000.010/7( ==≥mfrP . 
 
 Thus, all of the CCs are significant with sr  and 

mfr  being the most significant. These results are 
now compared to the asymptotic approximations 
using the notation of Z  as N(0,1).  
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Table 4. 

 
Spearman’s 1906 Data and Correlations 

The pairs of numbers in the numerators show distances from – and + correlation 
Correlations are in second row of the named correlation 

 
 most + most - average 

gdr  5-2 5-2  

 0.6000 0.6000 0.6000 
    

mfr  60-16 60-18  

 0.7333 0.7000 0.7167 
    

kr  43-12 42-13  
 0.5636 0.5273 0.5455 
    

sr  388-52 386-54  
 0.7636 0.7545 0.7591 

 

Table 5: Some asymptotic comparisons 
 

( 0.7636) ( 10(0.7636)
2.4147) 0.0079

sP r P Z≥ ≅ ≥ =
=

 

10(0.5636)( 0.5636) (
2 / 3

2.6734) 0.0038

kP r P Z≥ ≅ ≥ =

=
 

( 0.6000) ( 11(0.6000)

1.9900) 0.0233
gdP r P Z≥ ≅ ≥ =

=
 

10(0.7333)( 0.7333) (
2 / 3

2.8401) 0.0023

mfP r P Z≥ ≅ ≥ =

=
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All of these approximate results are reasonably 
good. All four correlations support Spearman’s 
conclusion that his footrule CC gave. Spearman 
drew his conclusion by comparing his footrule 
value of 0.57 to the probable error, which he 
gave as 0.13. Thus, 0.57/0.13 = 4.38. This 
example is concluded by comparing the value of 
rmf, the modified footrule CC, 0.7333, to  

 
2

2

2(11 3)( )
3(10)(11 1)

0.0689 0.2625

mfV r += =
−

=

. 

 
Now, 0.7333/0.2625 = 2.7937 and by 
Spearman’s rule of “satisfactory demonstration” 
that this ratio be at least 4, had Spearman found 
the correct formulation, rmf , he would have 
drawn the opposite conclusion (p. 96).   

Again for this example it should be 
pointed out that rs and rk have a linear 
restriction but rmf and rgd do not. Hence, the 
terms in the numerator, when added give the 
denominator for rs and rk but not for rmf and 
rgd. For rs: 388+52 = 440 and for rk: 43+12 = 
55 whereas for rmf: 60+16 = 66 > 60 and for 
rgd: 5+2 = 7 > 5.  
 

Conclusion 
 

By viewing correlation broadly as the difference 
between measures of distance from perfect 
negative and perfect positive correlation, many 
new formulations of correlation may be defined. 
Two new continuous correlation coefficients are 
based on absolute values and medians. The 
median one is an extension of the MAD scale 
measurement and the absolute value one 
produces Gini’s CC when data ranks are 
substituted. A 0-1 graph-matrix was introduced 
as an extension to the plot of the bivariate rank 
data and used to compute all four nonparametric 
correlation coefficients and exhibit some 
relationships. Several examples suggest which 
of the correlations are most robust: the Greatest 
Deviation and Gini. A data set from Spearman 
was used to demonstrate the application of the 
asymptotic distributions, to compare the 
correlations on the same data, and to illustrate a 

global tied value procedure. This procedure does 
not seem critical here, but for later developments 
on the use of correlation coefficients in 
estimation it is essential. Several times the 
normal distribution was selected to set up 
notation but this is not necessary, as any 
distribution from the class of bivariate t 
distributions would suffice. The four 
nonparametric correlation coefficients would be 
distribution-free on this class of bivariate 
distributions with elliptical shaped contours, 
including the Cauchy distribution.  

  . 
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