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Performance of Some Correlation Coefficients When  
Applied to Zero-Clustered Data 

 
L. W. Huson 

Biostatistics Group, F.Hoffman-La Roche 
 

 
Zero-clustered data occur widely in medical research and are characterised by the presence of a group of 
observations of value zero in a distribution of otherwise continuous non-negative responses. A simulation 
study was conducted to investigate the properties of a number of correlation coefficients applied to 
samples of zero-clustered data. 
 
Key words: zero-clustered data, Pearson correlation, Spearman correlation, weighted rank correlation. 
 
 

Introduction 
 

The defining characteristic of zero-clustered data 
is the presence of a group of observations of 
value zero in a distribution of otherwise 
continuous non-negative responses. This type of 
data is regularly encountered in a wide variety of 
medical and clinical applications (see e.g. 
Lachenbruch 1976; 2001a, 2001b, 2002).  

Delucchi and Bostrom (2004) discussed 
a number of endpoints often used in psychiatric 
studies which typically exhibit zero-clustering, 
and Berk (2002) gave, as further examples of 
zero-clustered data, the antibody response to a 
vaccine, levels of alcohol consumption, severity 
rating of side-effects, and intensity of pain 
during labour. In the field of Health Economics, 
Buntin and Zaslavsky (2004) commented on the 
“spike of zero values” that is often seen in 
otherwise non-negative observations in data on 
health care costs or resource usage, and Chang 
and Pocock (2002) discussed a specific example 
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of such data in their analysis of numbers of 
hours of personal care services received by a 
group of elderly patients. Other terms which 
have appeared in the literature to describe this 
type of data are semi-continuous (e.g. Schafer & 
Olsen 1999) and zero-inflated (e.g. Tu, 2002). 
Specifically excluded from consideration here 
are zero-inflated count data, which constitute a 
separate and widely studied phenomenon. 

Some authors note that in the analysis of 
zero-clustered data, it may be appropriate to bear 
in mind the different possible origins of the zero 
values. Zeros may arise, for instance, by the 
deliberate censoring of any negative values and 
the setting of such values to zero. An example of 
such an endpoint is the ACRn score widely used 
in studies of rheumatoid arthritis (van Riel & 
van Gestel, 2000). Alternatively the zeros may 
arise from an unintentional censoring process, 
such as an imprecise or insensitive measuring 
device, where small values of an endpoint 
cannot be detected and response is therefore 
recorded as zero (see e.g. Moulton & Curriero, 
2002 ). Finally, the zeros may be genuine and 
accurate values properly representing a patient’s 
response (e.g. Chang & Pocock, 2002).  

The proportion of zero values seen in 
practice in this type of data is variable from one 
type of endpoint to another. Delucchi and 
Bostrom (2004), for example, analysing data on 
addiction severity scores, reported proportions 
of zeros in different data sets ranging from 6% 
to 77%. Tu and Zhou (1999) cited data on 
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hospital in-patient charges in which 
approximately 75% of the values are zero. In 
many applications, however, the proportion of 
zeros would be expected to be smaller – 
Lachenbruch (2001a), for example, studied cases 
in which 10% or 20% of the values were zeros. 

A further characteristic of zero-clustered 
data is that the distribution of non-zero part of 
the data is often skewed, with a long tail of high 
values. Models often suggested as appropriate 
for the non-zero part of the data are the 
lognormal or log-gamma distributions (see e.g. 
Lachenbruch, 2001a; Moulton & Curriero, 
2002). 

Although methods of analysis of zero-
clustered data have been studied in the literature 
(see e.g. Lachenbruch 1976; 2001a, 2001b, 
2002), the problem of measuring the degree of 
correlation between two samples of zero-
clustered data has not previously been 
investigated. This article describes the results of 
a simulation study designed specifically to 
examine the performance of a number of 
different measures of correlation when applied 
to zero-clustered data. The study reported here 
was split into two parts. In the first simulation 
study the performance of two conventional 
correlation measures – the Pearson and 
Spearman correlation coefficients – was studied 
in the context of application to zero-clustered 
data. The second simulation study investigated 
the performance of three little known weighted 
rank correlation coefficients when applied to the 
same data structure. 
 

Methodology I 
 

Generating Samples of Correlated Zero-
Clustered Data 

Two different models were used to 
generate zero-clustered data for the simulation 
study – the binomial-lognormal model and the 
truncated lognormal model (Lachenbruch, 
2001a; Moulton & Curriero, 2002). The first 
model assumes that the zero-clustered data arise 
from combination of binary and lognormal 
responses, and the second that the zeros arise 
from a process of truncation of lognormal data. 
These models are described in more detail 
below.  

Samples sizes of 25, 50, 100, 200 and 
1000 were used in the simulation study, with 
correlations in the data specified to be 0.30, 0.60 
or 0.90, representing low, medium and high 
correlations respectively. The proportion of 
zeros in the generated samples was 10%, 20% or 
30% in different series of simulations. For each 
of these combinations of parameters, 10000 
simulated datasets were generated, and the value 
of each of the chosen correlation coefficients 
was calculated for each generated sample of 
data.  
 
Binomial-Lognormal Model 

For these simulations, samples of zero-
clustered data were generated as a mixture of 
binary responses and lognormal responses, with 
the same correlation applied to both components 
of the data. This gives samples of paired, 
correlated data which follow the binomial-
lognormal model (Lachenbruch, 2001a).  

The correlated binary components were 
generated using the algorithm described by 
Kang and Jung (2001), and the correlated 
lognormal components were generated using the 
methods described by Saucier (2000).  The 
method of Kang and Jung permits the generation 
of pairs of binary observations - values (0,0), 
(0,1), (1,0) and (1,1) - with specified 
probabilities and correlations. For each sample 
size studied, a full set of such correlated binary 
pairs was generated, and also a full set of 
correlated lognormal responses. The final 
correlated zero-clustered binomial-lognormal 
dataset was then derived simply by multiplying 
these two sets of values together. Thus, a binary 
pair (0,0) and a lognormal pair (X1,X2) when 
multiplied together yield the pair (0,0), a binary 
pair (0,1) and a lognormal pair (X3,X4) when 
multiplied together yield the pair (0,X4), and 
similarly for other combinations.  
 
Truncated Lognormal Model 

In this series of simulations, zero-
clustered data were generated by truncating 
correlated lognormal data. To do this, correlated 
lognormal data were first generated, using the 
methods described by Saucier (2000), then, to 
generate a sample containing a given proportion 
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Table 1. Mean Value of Pearson and Spearman Correlation Coefficient Estimates 
[Binomial-Lognormal Model - 10000 Simulations] 

____________________________________________________________________________________________ 
 
                     True Correlation=0.3    True Correlation=0.6    True Correlation=0.9 
                     --------------------    --------------------    -------------------- 
Sample               Proportion of Zeros     Proportion of Zeros     Proportion of Zeros 
Size  Coefficient    0.1     0.2     0.3     0.1     0.2     0.3     0.1     0.2     0.3 
____________________________________________________________________________________________ 
 
25   Pearson        0.30    0.28    0.27    0.56    0.54    0.53    0.85    0.85    0.84 
     Spearman       0.32    0.30    0.29    0.56    0.56    0.56    0.81    0.83    0.85 
 
50   Pearson        0.29    0.27    0.26    0.57    0.55    0.53    0.86    0.85    0.85 
     Spearman       0.33    0.31    0.29    0.57    0.56    0.57    0.82    0.84    0.85 
 
100  Pearson        0.29    0.27    0.26    0.57    0.55    0.53    0.87    0.86    0.86 
     Spearman       0.33    0.31    0.30    0.57    0.56    0.57    0.82    0.84    0.86 
 
200  Pearson        0.29    0.27    0.25    0.57    0.55    0.54    0.88    0.87    0.86 
     Spearman       0.33    0.31    0.30    0.57    0.57    0.57    0.83    0.84    0.86 
 
1000 Pearson        0.28    0.26    0.25    0.57    0.55    0.54    0.89    0.88    0.87 
     Spearman       0.33    0.31    0.30    0.57    0.57    0.57    0.83    0.84    0.86 
_____________________________________________________________________________________________ 
 

 
Table 2. Mean Value of Pearson and Spearman Correlation Coefficient Estimates 

[Truncated Lognormal Model - 10000 Simulations] 
 

____________________________________________________________________________________________ 
 
                       True Correlation=0.3    True Correlation=0.6    True Correlation=0.9 
                       --------------------    --------------------    -------------------- 
Sample                 Proportion of Zeros     Proportion of Zeros     Proportion of Zeros 
  Size  Coefficient    0.1     0.2     0.3     0.1     0.2     0.3     0.1     0.2     0.3 
____________________________________________________________________________________________ 
 
  25    Pearson       0.33    0.33    0.33    0.59    0.59    0.59    0.86    0.86    0.85 
        Spearman      0.36    0.36    0.36    0.57    0.57    0.57    0.79    0.79    0.79 
 
  50    Pearson       0.32    0.32    0.32    0.59    0.59    0.59    0.87    0.87    0.86 
        Spearman      0.36    0.36    0.36    0.58    0.58    0.58    0.80    0.80    0.80 
 
 100    Pearson       0.31    0.31    0.32    0.59    0.59    0.59    0.88    0.88    0.87 
        Spearman      0.37    0.37    0.37    0.58    0.58    0.58    0.81    0.80    0.80 
 
 200    Pearson       0.31    0.31    0.31    0.60    0.60    0.60    0.89    0.89    0.88 
        Spearman      0.37    0.37    0.37    0.58    0.58    0.58    0.81    0.81    0.81 
 
1000    Pearson       0.30    0.30    0.31    0.60    0.60    0.60    0.90    0.89    0.89 
        Spearman      0.37    0.37    0.37    0.58    0.58    0.59    0.81    0.81    0.81 
__________________________________________________________________________________________ 
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p of zero data, any lognormal value lower than 
exp(probit(p)) to was set to zero.  
 

Results I 
 

First Simulation Study 
Pearson and Spearman Correlations applied to 
the Binomial-Lognormal Model 

Table 1 shows the results of the 
simulation study of the performance of the 
Pearson and Spearman correlation coefficients, 
when applied to zero-clustered data generated 
using the binomial-lognormal model.  

The most obvious finding is that, under 
this data model, both the Pearson and Spearman 
coefficients on average slightly underestimate 
the true correlation in most simulated scenarios. 
The bias is relatively small, but persists across 
all sample sizes and for low, medium and high 
correlations. A second finding is that the bias of 
the Pearson correlation increases slightly as the 
proportion of zeros in the data increases. In 
contrast, with the Spearman estimate, the bias 
either remains much the same as the proportion 
of zeros increases, or diminishes slightly. The 
other interesting feature of the results is that the 
Spearman estimate is generally more accurate 
for low and medium correlations, across all 
sample sizes, while the Pearson estimate 
performs better for high correlations. 
 
Pearson and Spearman Correlations applied to 
the Truncated Lognormal Model 

Table 2 shows the results of the 
simulation study of the performance of the 
Pearson and Spearman correlation coefficients 
with correlated zero-clustered data generated 
using the truncated lognormal model. Under this 
data model, both the Pearson and Spearman 
coefficients tend to underestimate the true 
correlation for medium and high correlations, 
but tend to overestimate the true value when the 
true correlation is 0.3. When the true correlation 
is high, the bias of the Pearson correlation 
increases slightly as the proportion of zeros in 
the data increases, whereas with the Spearman 
estimate, the bias either remains much the same 
as the proportion of zeros increases, or 
diminishes slightly. Under this data model, the 
Pearson correlation performs better than the 
Spearman for most scenarios. 

Methodology II 
 

Weighted Rank Correlation Coefficients 
Introduction 

For the second simulation study 
correlation estimates were selected that were (a) 
based on ranks or functions of ranks, and (b) 
were defined in a way which allows lower 
weights to be attached to the zero values in the 
data, and higher weights to the non-zero values. 
These were considered likely to be properties 
which would result in better estimation of 
correlation in the presence of data containing 
many zeros. 

Three weighted rank correlation 
coefficients which have these properties are 
described in the literature and are easily 
computed, but they are little known and little 
used in practice. They are the “top-down” 
correlation, the Blest-Genest-Plante correlation, 
and the Costa-Soares correlation.  The second 
part of the simulation study investigated the 
properties of these three coefficients when 
applied to correlated zero-clustered data. 
 
Top Down Correlation 

Iman and Conover (1987) described a 
correlation estimate which they termed the “top 
down” correlation. This coefficient places 
emphasis on the higher ranked data in a sample 
(i.e. assigns lower weights to low-ranked zero 
values) by computing the correlation using 
Savage scores derived from the ranked data. 
Savage scores are defined as follows: 
 

     

                              Si =  ∑
=

n

j 1
1/j                      (1) 

     
 
where i is the rank assigned to the ith order 
statistic in a sample of size n. For example, with  
n = 3, the three Savage scores are S1 = 1 + 1/2  + 
1/3 , S2 = 1/2 +1/3, and  S3 = 1/3. The top-down 
coefficient is calculated as: 
                          

            rtd  =   ( ∑
=

n

j 1
SRi SQi  - n ) / (n – S1)      (2) 
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where S indicates the Savage score, the Ri  and 
Qi are the ranks of the data in the two samples, 
and n is the sample size. A full description of the 
properties of this coefficient is given by Iman 
and Conover (1987). 
 
Blest-Genest-Plante correlation 

Blest (2000) also defined a rank 
correlation coefficient which allows lower 
weights to be assigned to lower ranked values in 
a dataset. This coefficient, whilst having some 
desirable properties, suffers from the 
disadvantage that in its original form it is not 
symmetric (i.e. corr[X,Y] does not equal corr 
[Y,X]). However, the Blest estimate was later 
modified by Genest and Plante (2003) to a 
symmetrical form, and this symmetric version 
for the simulation study reported here. The 
coefficient is calculated as: 

 
rbgp    =  -((4n+5)/(n-1))  

+  ( 6/(n3 - n) ∑
=

n

j 1
Ri Qi (4- (Ri + Qi)/ n+1)))    (3) 

                   
 
where the Ri  and Qi are the ranks of the data in 
the two samples, and n is the sample size. The 
detailed properties of the original Blest 
coefficient and its symmetrical generalization 
are described by Genest and Plante (2003). 
 
Costa-Soares correlation 

Costa and Soares (2005) also defined a 
rank correlation coefficient which, like the top-
down correlation and the Blest-Genest-Plante 
correlation, allows lower weights to be assigned 
to lower ranked values in a dataset, and hence in 
this application allows lower weights to be 
assigned to the zero values in the zero-clustered 
data. The coefficient takes the form: 
 

  rcs  =  1  -  6 ∑
=

n

j 1
(Ri - Qi)2  / (n3 – n)          (4)                                                              

 
 
where the Ri  and Qi are the ranks of the data in 
the two samples, and n is the sample size. The 
properties of this coefficient, and in particular a 
comparison of the properties with those of the 

Blest correlation, are described by Costa and 
Soares (2005). 
 

Results 
 
Second Simulation Study 
Weighted Correlations with the Binomial-
Lognormal Model 

Table 3 shows the results of the 
simulation study of the performance of the 
weighted correlation coefficients with zero-
clustered data generated using the binomial-
lognormal model. These weighted correlation 
coefficients all slightly underestimate the true 
correlation in the data when the true correlation 
is medium or high, and overestimate the value 
when it is low, Their performance generally is as 
good as or better than that of the Spearman 
estimate. 
Weighted Correlations with the Truncated 
Lognormal Model 

Table 4 shows the results of the 
simulation study of the performance of the 
weighted correlation coefficients with zero-
clustered data generated using the truncated 
lognormal model. As with the Pearson and 
Spearman coefficients, the general tendency of 
the estimates under this data model is that low 
correlations are overestimated and medium and 
high correlations are underestimated. Again 
under most conditions the weighted coefficients 
perform on average at least as well or better than  
the Spearman estimates. 
 

Conclusion 
 

The literature contains no recommendations on 
an appropriate choice of correlation coefficient 
for use with zero-clustered data, but Delucchi & 
Bostrom (2004) reported the results of an 
informal survey showing that 22 of 35 articles 
reported analyses of zero-clustered data that 
used standard normal theory methods, despite 
the clear non-normality of such data. Hence it 
seems likely that some practitioners, in the 
absence of any specific alternative, might choose 
to apply commonly-used correlation measures - 
such as Pearson’s correlation or Spearman’s 
rank correlation – to zero-clustered data. 
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Table 3 Mean Value of Some Weighted Rank Correlation Coefficients 
[Binomial-Lognormal Model - 10000 Simulations] 

____________________________________________________________________________________________ 
                             
                       True Correlation=0.3    True Correlation=0.6    True Correlation=0.9 
                       --------------------    --------------------    -------------------- 
Sample                 Proportion of Zeros     Proportion of Zeros     Proportion of Zeros 
  Size  Coefficient    0.1     0.2     0.3     0.1     0.2     0.3     0.1     0.2     0.3 
____________________________________________________________________________________________ 
 
   25   Top-Down       0.31    0.28    0.27    0.55    0.54    0.53    0.83    0.82    0.83 
        Blest-Genest-P 0.33    0.31    0.31    0.56    0.56    0.57    0.82    0.83    0.86 
        Costa-Soares   0.33    0.30    0.29    0.56    0.55    0.56    0.82    0.83    0.84 
 
   50   Top-Down       0.31    0.29    0.27    0.56    0.55    0.54    0.84    0.84    0.84 
        Blest-Genest-P 0.33    0.31    0.31    0.57    0.56    0.57    0.82    0.84    0.86 
        Costa-Soares   0.33    0.31    0.29    0.57    0.56    0.56    0.82    0.83    0.85 
 
  100   Top-Down       0.31    0.29    0.28    0.57    0.55    0.54    0.85    0.85    0.85 
        Blest-Genest-P 0.33    0.31    0.31    0.57    0.57    0.58    0.83    0.84    0.86 
        Costa-Soares   0.33    0.31    0.29    0.57    0.56    0.56    0.83    0.84    0.85 
 
  200   Top-Down       0.32    0.29    0.28    0.58    0.56    0.55    0.86    0.85    0.85 
        Blest-Genest-P 0.34    0.31    0.31    0.57    0.57    0.58    0.83    0.84    0.87 
        Costa-Soares   0.33    0.31    0.29    0.57    0.56    0.56    0.83    0.84    0.85 
 
 1000   Top-Down       0.32    0.30    0.28    0.58    0.56    0.55    0.86    0.86    0.86 
        Blest-Genest-P 0.34    0.32    0.31    0.58    0.57    0.58    0.83    0.85    0.87 
        Costa-Soares   0.34    0.31    0.30    0.58    0.57    0.56    0.83    0.84    0.85 
 

 
Table 4. Mean Value of Some Differentially Weighted Correlation Coefficients 

[Truncated Lognormal Model - 10000 Simulations] 
 
____________________________________________________________________________________________ 
 
                       True Correlation=0.3    True Correlation=0.6    True Correlation=0.9 
                       --------------------    --------------------    -------------------- 
Sample                 Proportion of Zeros     Proportion of Zeros     Proportion of Zeros 
  Size  Coefficient    0.1     0.2     0.3     0.1     0.2     0.3     0.1     0.2     0.3 
____________________________________________________________________________________________ 
 
  25   Top-Down       0.33    0.33    0.33    0.57    0.57    0.57    0.83    0.83    0.83 
       Blest-Genest-P 0.36    0.36    0.37    0.58    0.58    0.59    0.81    0.81    0.81 
       Costa-Soares   0.36    0.36    0.36    0.58    0.58    0.58    0.81    0.81    0.81 
 
  25   Top-Down       0.33    0.33    0.33    0.58    0.58    0.58    0.84    0.84    0.84 
       Blest-Genest-P 0.36    0.37    0.37    0.59    0.59    0.59    0.82    0.82    0.82 
       Costa-Soares   0.36    0.36    0.36    0.58    0.58    0.58    0.82    0.82    0.81 
 
 100   Top-Down       0.34    0.34    0.34    0.59    0.59    0.59    0.86    0.86    0.86 
       Blest-Genest-P 0.37    0.37    0.37    0.59    0.59    0.60    0.82    0.82    0.83 
       Costa-Soares   0.37    0.37    0.37    0.59    0.59    0.59    0.82    0.82    0.82 
 
 200   Top-Down       0.34    0.34    0.34    0.60    0.60    0.60    0.86    0.86    0.86 
       Blest-Genest-P 0.37    0.37    0.37    0.59    0.59    0.60    0.82    0.83    0.83 
       Costa-Soares   0.37    0.37    0.37    0.59    0.59    0.59    0.82    0.82    0.82 
 
1000   Top-Down       0.34    0.34    0.34    0.60    0.60    0.60    0.87    0.87    0.87 
       Blest-Genest-P 0.37    0.37    0.38    0.60    0.60    0.60    0.83    0.83    0.83 
       Costa-Soares   0.37    0.37    0.37    0.59    0.59    0.59    0.83    0.82    0.82 
__________________________________________________________________________________________ 
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The first part of the simulation study 
reported here was designed to examine the 
performance of these common correlation 
coefficients when applied to this type of data. 
The second part of the study investigated the 
properties of three little-known weighted rank 
correlation coefficients. This summary suggests 
that, overall, the Pearson estimate is in fact, for 
most practical purposes, an adequate choice 
from the coefficients studied, and that among 
rank correlation coefficients, those allowing 
differential weighting of zero values generally 
perform better than the much more widely 
known Spearman coefficient.  

.  
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