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Bayesian Subset Selection of Binomial Parameters 
Using Possibly Misclassified Data 

 
James D. Stamey Thomas L. Bratcher Dean M. Young 

  Baylor University 
 

 
Three Bayesian approaches are considered for the selection of binomial proportion parameters when data 
is subject to misclassification. The cases where the misclassification is non-differential and differential 
were considered, thus extending previous work which considered only non-differential misclassification. 
In this article, various selection criteria are applied to a simulated data set and a real data set. 
 
Key words: Bayes, posterior approximation, Gibbs Sampler, binomial parameter subset selection 
 

 
Introduction 

 
A decision maker is often interested in selecting 
the population from among several populations 
that will produce the largest or smallest 
parameter value. For example, an experimenter 
might be interested in determining which 
production technique gives the lowest 
percentage of defects; a crime analyst might 
consider which reporting district has the highest 
rate of violent crimes; a baseball fan might 
inquire about the best home run hitter of the 
twentieth century. In each case a selection of a 
population parameter must be made from a set 
of parameters using data from the populations of 
interest. This process is known as the subset-
selection problem. Of course various procedures 
exist for selecting a subset that contains the best 
(largest or smallest) parameter. Here, the 
concern is with the Bayesian subset selection 
paradigm. 
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The concept of subset selection 

essentially began with an article by Gupta and 
Sobel (1957), who described a statistic that can 
be used in parameter ranking and selection for 
multiple populations. Early work on Bayesian 
subset selection was initiated by Bratcher & 
Bhalla (1974), who have used a constant loss 
function to derive a Bayesian subset selection 
procedure, and Govindarajulu & Harvey (1974). 
For other Bayesian subset-selection approaches 
and related topics, see Goel & Rubin (1977), 
Gupta & Hsu (1977), Berger (1979, 1980), 
Gupta & Yang (1985), Gupta & Liang (1987), 
Berger & Deely (1988), Dixon & Simon (1991, 
1994), Schulter, Deely, & Nicholson (1997) and 
Deely & Smith (1998).  
 Examples abound where interest might 
be in selecting a subset of binomial proportion 
parameters using correctly classified and 
misclassified data. For example, Hanson, 
Johnson, & Gardner (2003) have considered the 
prevalence of the disease bovine brucellosis in 
cattle herds in twenty regions of Mexico. This 
application can be thought of as a type of quality 
control in which one wishes to determine a set of 
herds deemed most likely to develop bovine 
brucellosis or, conversely, perhaps a set of herds 
that could be considered least likely to have the 
disease.  A second application of a subset-
selection method for binomial proportion 
parameters using possibly misclassified data is 
auditing. For instance, Raats & Moors (2004) 
have estimated the proportion of errors in social 
security payments in the Netherlands combining 
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fallible and validation data. One could also 
compare or select a subset of the proportion 
parameters of errors in auditing across 
geographical regions, industries, or some other 
variable of interest.  
 In both of the above examples, one 
cannot reasonably assume the observed counts 
are infallible. Most diagnostic tests are well 
known to be fallible. That is, most diagnostic 
tests can indicate that subjects have a disease 
when they do not or that they are disease free 
when they are actually infected. An appropriate 
statistical model will adjust for the error rates of 
the fallible test. Joseph, Gyorkos, & Coupal 
(1995) and Dendukuri & Joseph (2001) 
considered the case of estimating the prevalence 
of one population with fallible data. Hanson et 
al. (2003) have extended this work to multiple 
populations. Hanson et al. (2003) assumed that 
the properties of the diagnostic tests remain 
constant across populations. This assumption is 
referred to as non-differential misclassification.  
 Two subset-selection criteria of Schluter 
et al. (1997) and a subset- selection criterion 
proposed by Stamey, Bratcher, & Young (2004) 
are applied here to the bovine brucellosis data 
found in Hanson et al. (2003). Also proposed is 
a method of extending the hierarchical model to 
allow for differential misclassification. 
Differential misclassification occurs when the 
false positive and false negative rates are 
different in each population. For this scenario it 
is assumed that an expensive error-free classifier 
is available for a small sample of units. A 
sample where both fallible and infallible 
observations are made is often called a 
validation sample. A simulated binomial 
parameter subset-selection problem with 
differential misclassification motivated by an 
auditing application in Raats & Moors (2004) is 
considered.  
 

Methodology 
 

A parametric hierarchical model for binomial 
data with misclassification analogous to Hanson 
et al. (2003) is provided and a Bayesian 
extension is proposed for the case of differential 
misclassification. For the non-differential 
misclassification model, consider the case where 
only a single classifier is utilized; however, the 

method is easily extended to allow for two or 
more classifiers. The hierarchical model is  
  

Zi | πi, η, θ ~ binomial(ni, pi) 
 
with 
  

pi = πiη + (1 – πi)(1 – θ), 
 
where pi is the population proportion of 
observable occurrences in population i = 1, …, 
m. The parameter πi is the true probability of a 
positive response for population i and is 
assumed to vary across populations. The 
parameter η = 1 – P(false negative) is the 
sensitivity, or probability that a true positive is 
observed and is assumed to be the same for all 
populations. The parameter θ =   1 – P(false 
positive) is the specificity, or probability that a 
true negative is labeled as a negative and is also 
assumed to be the same for all populations.  The 
first-stage priors of the Bayesian hierarchical 
model are 
 

πi ~ beta(α, β), 

       η ~ beta(αη, βη), 
and 

 θ ~ beta(αθ, βθ). 
 
The beta prior is the usual first-stage prior for 
hierarchical binomial models and is consistent 
with the models of Hanson et al. (2003). One 
can elicit priors for the sensitivity and specificity 
by using the approaches of Chaloner (1996) and 
Kadane & Wolfson (1996). 
 To model the heterogeneity of the 
prevalences, the parametric prior of Hanson et 
al. (2003) is used for both its convenience and 
ease of interpretation. Here, α = μγ  and β = γ , 
where the parameter μ is the grand mean of the 
population prevalences and γ controls the 
heterogeneity of the prevalences since the 

variance is (1 )
1

−
+

μ μ
γ

. Specifically, the larger the 

value of γ, the tighter the distribution of the 
prevalences.  To finish the hierarchy, assume μ 
~ beta(αμ, βμ) and γ ~ gamma(αγ, βγ), where αμ, 
βμ, αγ, and βγ are hyperpriors specified by the 
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experimenter. The joint posterior of all 
parameters is proportional to 
 

1 11 11 1

1

( , , , , | )

(1 ) (1 ) (1 ) (1 )i i i

i
r

z n z
i i i i

i

p

p pη ηθ θ α βα βμγ γ

π θ η μ γ

π π θ θ η η− −− − −− −

=

∝ − − − −∏
d . 

Hanson et al. (2003) provided a method for 
eliciting values for the parameters of the priors. 
However, in the analyses diffuse non-
informative priors are used. No apparent closed-
form posterior distributions exist, but the 
parameters can be estimated using either Monte 
Carlo integration or Markov Chain Monte Carlo 
methods. The free software WinBugs is used to 
approximate the posterior densities that is used. 
These WinBugs software programs are available 
from the first author.  
 The assumption that the sensitivity and 
specificity do not vary across populations is 
quite strong and often fails in practice. Here the 
model of Hanson et al. (2003) is extended to the 
case where the sensitivity and specificity are not 
the same across populations. If it is believed that 
the misclassification parameters vary across 
populations, it is recommended to use one of the 
following approaches. If the number of 
populations is not large, an expert to elicit prior 
parameters for each specificity and sensitivity 
can be used, using methods detailed in Chaloner 
(1996) and Kadane & Wolfson (1996). This 
approach results in the following change in the 
hierarchical model: ηi ~ beta(αηi, βηi) and θi ~ 
beta(αθi, βθi). 

However, if expert opinion is not 
available for each of the sensitivities and 
specificities, another method is needed. One 
possibility is to use validation data for each 
population. For instance, Raats & Moors (2004) 
have assumed that a large sample of accounts is 
audited by a fallible auditor, and then a small 
random sample of these accounts is double 
checked by an infallible expert.  Suppose in each 
population ri units are classified by both the 
fallible and infallible procedure. The validation 
data adds the following binomial likelihoods to 
the experiment likelihood: 
 

Ti | πi ~ binomial(ri, πi), 

Xi | ti, ηi ~ binomial(ti, ηi), 
and 

Yi | ti, θi ~ binomial(ri – ti, θi). 
 

Here, Ti is the number of positive responses 
determined by the infallible classifier, Xi is the 
number of true positive responses correctly 
labeled as positive by the fallible classifier, and 
Yi is the number of true negative responses 
labeled as negative by the fallible classifier. 
Then, a hierarchical structure for the sensitivity 
and specificity parameters similar to that used on 
the prevalences is used. That is, ηi ~ beta(αη, βη) 
and θi ~ beta(αθ, βθ) and define η η ηα = μ γ , 

η ηβ = γ , θ θ θα = μ γ , and θ θβ = γ . The 
hierarchy is completed with the priors 

 
   μη ~ beta(αμη, βμη), 
   γη ~ gamma(αγη, βγη), 
   μθ ~ beta(αμθ, βμθ), 

and 
   γθ ~ gamma(αγθ, βγθ). 

 
The WinBugs computer programs used to 
approximate the posterior distributions are 
available from the first author. 
 
Three Subset Selection Procedures 
 Reviewed next are two subset selection 
criteria from Schluter et al. (1997) and a 
decision theoretic subset selection criterion from 
Stamey, Bratcher, & Young (2004) and extend 
them to apply to the binomial parameter case 
using possibly misclassified data.  
 
A Posterior Probabilities Approach (Schluter et 
al. (1997)) 
 The first subset-selection procedure that 
is considered uses the posterior probability that a 
site has the largest prevalence or is largest by a 
multiple of, say, ν. That is, 
 
       ( ) ( , | )i i jp P j iν = π > νπ ∀ ≠ z       (1) 
 
where z represents the vector of observed data. 
The probability (1) does not have a closed form; 
however, MCMC methods make (1) trivial to 
calculate. Suppose that after an initial burn-in, 
the Gibbs sampler is run B iterations. One can 
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approximate the posterior probability (1) by 
counting the number of times 
 

1 1, 1,max( ,..., , , , ..., ),ik k i k ik i k mk− +π = νπ νπ π νπ νπ  
 

where k = 1, …, B. Specifically, probability (1) 
is approximated as 
 

1 1, 1,

( )
#( max( ,..., , , ,..., ))

i

ik k i k ik i k mk

p

B
− +

ν ≈
π = νπ νπ π νπ νπ  

 
where #( )⋅  denotes the number of elements in a 
set. In this case count the number of Gibbs 
sampler iterations such that the prevalence of 
interest is the largest. Schluter et al. (1997) have 
remarked that if ν = 1, then (1) simply becomes 
the probability that πi is the largest prevalence. 
The populations can be ranked via  
 

i) the use of the posterior probability (1),  
ii) the use of some probability threshold 

chosen such that the groups selected are 
the smallest subset where the sum of the 
pi(ν) probabilities exceed the threshold, or  

iii) the choice of r < m largest probabilities to   
   be included in the superior set. 

 
A Predictive Probabilities Approach (Schluter, 
et al., 1997) 
 A second criterion is based on the 
predictive number of future occurrences in a 
future sample. The criterion is based on the 
probability that a future number of true 
positives, say Wi, exceeds some experimenter-
chosen quantity, say w*, or 
 
          * *( ) ( | )i i 0pd w P W w ,n= > z      (2) 
 
where n0 represents the future sample size. To 
compute probability (2) with the Gibbs sampler, 
add the variables Wi | πi ~ binomial(n0, πi) for i = 
1, 2,…, m, to the likelihood. The approximation 
 

 
*#( )( ) i

i i
W wpd w

B
≥

≈  

 
is then straightforward to calculate. One can 
rank the populations via probability (2) and then 

either include the top r of them in a superior set 
or select all populations whose predictive 
probability (2) is greater than some user-
specified value P0. Difficulties with this criterion 
include determining a meaningful future sample 
size n0 and defining a meaningful comparison 
number w*. 
 
A Decision Theoretic Approach (Bratcher & 
Bhalla (1974)) 
 Stamey et al. (2004) used a constant loss 
function for Poisson parameters with 
misclassified data. Here a similar loss function 
for the binomial data case is utilized,  
 

    [ ]
1 2 max

1 max

#( ) if ,( )
#( ) 1 if

c S c S
L

c S S
π

π
π

+ ∉⎧
= ⎨ − ∈⎩

 

 
where S denotes the superior set, #(S) denotes 
the number of parameters in the superior set, and 

max S∈π   represents   placing  the    actual 
maximum proportion in the superior set. The 
corresponding risk is a linear combination of the 
expected size of the superior set and the 
probability of correct selection.  Formally, the 
risk is 
 

1 1 2 1( ) [#( )] ( )(1 ( ))R c E S c c P CS c= + + − −π  
 
where P(CS) denotes probability of correct 
selection, i.e., πmax is selected. The Bayes 
threshold for inclusion is 
 
          max( )ip π = π ≥  1/(c +1),        (3) 
 
where c = c2/c1. This loss ratio represents the 
relative seriousness of the two types of mistakes: 
leaving the largest parameter out of the superior 
set and putting a parameter in the superior set 
that is not the largest. Additionally, c + 1 may be 
considered the rate of change in E[#(S)] with 
respect to P(CS). To guarantee that at least one 
parameter is placed in the superior set S, it is 
required that 1c m≥ − . The left side of (3) is 
approximated identically to (1) when ν = 1. The 
estimated probabilities are then compared to 1/(c 
+ 1), and the parameter kπ  is placed in the 
superior set S when 
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1 1, 1,#( max( ,..., , , ,..., ))
( ) ik k i k ik i k mk

ip
B

− +π = νπ νπ π νπ νπ
ν ≈  

> 1/(c + 1). 

Results 

The methods discussed are now applied to real 
data originally found in  Hanson et al. (2003). 
Twenty cow herds in an area of Mexico where 
the disease is known to occur are sampled and 
tested with the buffered acidified plate 
agglutination (BAPA) serologic test. The BAPA 
is known to be imperfect, and its properties are 
discussed in Stemshorn et al. (1985). Point 
estimates of the sensitivity and specificity are 
.75 and .97, respectively. As in Hanson et al. 
(2003), this article used an equivalent sample 
size of 20 for the beta priors based on the prior 
means of .75 and .97, respectively. That is, seek 
beta priors with means of .75 and .97 where the 
sum of the parameters is 20; thus, η ~ beta(15,5) 
and θ ~ beta(19.4, .6) was used. Had an 
equivalent sample size of 40 been used, it would 
have been assumed that η ~ beta(30, 10) and θ ~     
beta(38.8, 1.2). Interestingly, virtually identical 
inferences resulted from the two sets of priors 
with only a slight decrease in posterior variation. 
For this example the non-informative priors μ ~ 
beta(1, 1) and γ ~ gamma(.001, .001) were used 
for the hierarchical parameters in the model for 
the prevalences.  

WinBugs was used to approximate the 
posterior distributions. We show a plot of the 
approximate posterior densities for the bovine 
brucellosis prevalences in Figure 1. For this data 
one can visually see that clear differences exist 
among the posterior densities. The posterior 
distributions for the prevalences π15 and π7 are 
centered at considerably larger values than the 
posterior distributions of the other prevalences. 
Using (1), the posterior probabilities that each 
prevalence was the largest were calculated. 
Table 1 gives results for the posterior 
probabilities approach of selecting the largest 
prevalence for values of ν of 1, 1.1, and 1.25. In 
the table there are sites and corresponding 
posterior probabilities where 

( , | )i jP j iπ > νπ ∀ ≠ z  exceed 0.01 when ν = 1. 
If one use criterion ii) with a threshold of .9 in 

conjunction with the posterior probability 
criterion, one can see from Table 1 that the two 
prevalences π15 and π7 were the only elements 
contained in the superior set S using the 
posterior probability criterion. If the threshold 
had been increased to .99, then the prevalences 
π14 and π19 would be added to the superior set S. 
If one increases ν to 1.1 and 1.25, then it 
becomes evident from Table 1 that π15 is the sole 
choice for the largest prevalence.  

Next, the predictino approach criterion 
is applied to the bovine brucellosis data. It was 
assumed a future sample size of n0 = 10 and 
provided the probabilities for various values of 
w*. Figure 2 is a plot of the results for values of 
w* ranging from 0 to 5. For illustrative purposes 
supposed w* = 3 and P0 = .8, then placed a 
rectangle or box in the area of Figure 2 where 
the prediction criterion holds. All curves that fall 
inside the box, which in this case corresponded 
to the prevalences π7, π14, and π15, satisfied the 
prediction criterion. The graph could easily be 
changed to allow for different values of P0 and 
w*.  

Consider the decision theoretic approach 
to selecting herds with the largest bovine 
brucellosis prevalence. Only the prevalences π15, 
π7, and π14 would be selected at the boundary for 
the rate of change, (c + 1) = 20, which gave a 
critical probability of 1/(c + 1) = .05. Thus, for 
this example we assumed it is 19 times more 
serious to leave the largest prevalence out of the 
superior set than to include a prevalence in the 
superior set S that is not the largest. If it were to 
be considered to be 99 more times serious to 
leave the largest prevalence out of the superior 
set than to include a prevalence in the superior 
set S that is not the largest, the critical 
probability would decrease to .01, and the 
prevalences π15, π7, π14, and π9 would be 
included in the superior set.  
  
Auditing Application 
 As a second example, data were 
simulated similar to that found in Raats & 
Moors (2004). Suppose we wish to compare 15 
locations in terms of the proportion of errors in 
accounts. As in Raats & Moors (2004), we 
assumed that the initial audit is fallible, that is, 
some accounts   that are in error could be missed 
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Figure 1. Posterior densities of prevalences for bovine data 

 
    

  Table 1. Posterior probabilities of having the largest prevalence 

ν Herd 15 Herd 7 Herd 14 Herd 19 Others 
1 .773 .158 .052 .013 .004 
1.1 .469 .032 .000 .000 .000 
1.25 .123 .000 .000 .000 .000 

 
 

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

 
Figure 2. Predictive probabilities for bovine brucellosis data. The rectangle includes herds   that 

satisfy a predictive probability of 3 or more events with probability greater than .8. 
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and some accounts that are correct could be 
labeled as in error. For each of the 15 locations, 
the parameters of the populations with the 
following distributions: πi ~ beta(2, 18), ηi ~ 
beta(12, 8), and θi ~ beta(19, 1) were generated. 
These distributions are consistent with Raats & 
Moors (2004) in the sense that the overall 
proportion of errors is small with a mean of 
10%, the sensitivity is moderate with a mean of 
60%, and the specificity is high with a mean of 
95%. For each site the following was generated 
zi ~ binomial(500, pi), ti ~ binomial(60, πi), xi ~ 
binomial(ti, ηi), and yi ~ binomial(60 – ti, θi), 
where pi = πiηi + (1 – πi)(1 – θi).  

For the hierarchical model, allow for 
differential misclassification by using diffuse 
priors for all hyperprior distributions. 
Specifically, let μ ~ beta(1, 1), γ ~ gamma(.001, 
.001), μη ~ beta(1, 1), γη ~ gamma(.001, .001), 
μθ ~ beta(1, 1), and γθ ~ gamma(.001, .001).   

Two competing models were 
considered. The first was an independence-based 
model where each of the 15 sites was modeled 
independently and, thus, no information-sharing 
occurred among the sites. For the independence 
models beta(1, 1) priors were used for all 
parameters. Also considered was the hierarchical 
model of Hanson et al. (2003), previously used 
on the first example, where all the specificities 
and sensitivities were constant. For this non-
differential misclassification model, the actual 
distributions from which the sensitivities and 
specificities were generated are used as the prior 
distributions. That is, the priors η ~ beta(12, 8) 
and θ ~ beta(19, 1) were assumed. The 
generated proportions, posterior means of the 
validation data hierarchical model, and 95% 
intervals for all three models are provided in 
Table 3.  

Note that the 95% intervals for the 
hierarchical model and the independence model 
both contained the true parameter values in all 
cases while the non-differential misclassification 
model missed two of the parameters. Also, the 
hierarchical model had the narrowest intervals, 
thus supporting the use of this model. 
Table 4 gives the sites and corresponding 
posterior probabilities of having the largest 
prevalence for parameters where 

( , | )i jP j iπ > νπ ∀ ≠ z  exceed 0.01 when ν = 1. 
Probabilities are provided for the case where ν = 
1 and 1.1. Assuming criterion ii) with a 
probability threshold of .9, it was determined 
that the proportions π8, π1, and π3, were included 
in the superior set because the sum of their 
probabilities is .923.  In Table 4 are the three 
largest proportions used to generate the data in 
order from largest to smallest are π8, π3, and π1. 
Thus, the posterior probability procedure 
included the three largest proportions in this 
example. If the threshold was increased to .99, 
then the proportions π8, π1, π3, π10, π7, π9, and π2 
would all be included in the superior set S.  

If non-differential misclassification is 
incorrectly assumed, then one would have 
incorrectly concluded that π13 was the largest 
proportion with a corresponding posterior 
probability  of  .865 of  being   the largest 
proportion. Also, if the incorrect non-differential 
misclassification model were applied, one would 
have determined that the second largest 
proportion was π10 with a posterior probability of 
.106 of being the largest proportion. In this case 
the non-differential misclassification assumption 
leads to incorrect inferences because neither site 
13 nor 10 was actually among the three largest 
proportions. 
 For this same data the prediction subset-
selection criterion was applied. It was assumed a 
future sample size of 50. For the validation-data 
model with differential misclassification, the 
plot for all 15 sites for values of w* from 0 to 6 
is given in Figure 3. Included is a decision box 
for w* = 2 and P0 = .6. It was found that sites 1, 
3, 7, 8, and 10 satisfied this particular 
configuration and, therefore, π1, π3, π7, π8, and 
π10 would be placed in the superior set. Recall 
that π1, π3, and π8 were the largest three 
proportions so, again, this proposed prediction 
subset-selection criterion yielded very 
reasonable results. 

For the decision theoretic approach, this 
article again considered c's of 19 and 99 that  
yielded critical probabilities of .05 and .99. For a 
critical probability of .05, the proportions π8, π1, 
and π3 were included in the superior set S. 



BAYESIAN SUBSET SELECTION OF BINOMIAL PARAMETERS 558

           
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.  Posterior means and intervals for simulated auditing example 
(Intervals that failed to cover the true parameter are bolded.) 

 

Site 
True 
value 

Posterior mean 
differential 
hierarchical 

95% Interval 
differential 
hierarchical 

95% Interval 
 independence 

95% Interval non-
differential 
hierarchical 

1 .141 0.157 (.080, .244) (.096, .290) (.117, .465) 

2 .076 0.102 (.051, .161) (.049, .175) (.000, .230) 

3 .148 0.137 (.089, .202) (.099, .258) (.000, .162) 

4 .017 0.047 (.012, .097) (.004, .087) (.000, 162) 

5 .055 0.044 (.010, .093) (.004, .083) (.000, .174) 

6 .131 0.100 (.055, .146) (.054, .163) (.000, .214) 

7 .126 0.118 (.067, .180) (.073, .229) (.000, .205) 

8 .201 0.190 (.128, .262) (.145, .295) (.122, .480) 

9 .103 0.119 (.068, .175) (.070, .183) (.003, .267) 

10 .101 0.120 (.063, .190) (.067, .221) (.150, .542) 

11 .059 0.063 (.023, .108) (.017, .117) (.000, .219) 

12 .092 0.090 (.046, .145) (.037, .149) (.000, .214) 

13 .070 0.061 (.017, .115) (.011, .113) (.200, .658) 

14 .119 0.079 (.037, .135) (.029, .142) (.072, .372) 

15 .089 0.090 (.038, .153) (.028, .163) (.065, .361)  
 
 

 
 

 
Table 4. Posterior probabilities of having the largest proportion of errors 

 
ν π8 π1 π3 π10 π7 π9 
1 .618 .246 .059 .026 .021 .015 

1.1 .452 .142 .023 .010 .007 .005  
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For a critical probability of .01, the 

proportions π10, π7, and π9 also entered the 
superior set. For the decision theoretic approach, 
this article again considered c's of 19 and 99 that 
yielded critical probabilities of .05 and .99. For a 
critical probability of .05, the proportions π8, π1, 
and π3  were included in the superior set S. For a 
critical probability of .01, the proportions π10, π7, 
and π9 also entered the superior set. 

 
Conclusion 

 
In this article, three ranking criteria were applied 
to a hierarchical binomial model with 
misclassification first proposed in Hanson et al. 
(2003). These criteria are easy to use and 
understand and are computationally practical 
because of currently available statistical 
software. This has also extended the non-
differential misclassification model of Hanson et  
 
 
 
 
 
 
 
 

 

 
al. (2003) to allow for differential 
misclassification. The example using simulated  
audit data with misclassified observations 
illustrates the importance of appropriately  
incorporating differential misclassification in the 
analysis. It is note that the Bayesian binomial 
parameter selection methods proposed here 
could also apply to psychology and medical 
subset-selection problems, where interest might 
lie in comparing various treatments when a  
fallible diagnostic test is used to assess presence 
of a particular psychological or medical 
condition. Finally, the computations in this 
article have been performed using WinBugs, 
which is a free statistical computing package 
available on the Internet.  
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Figure 3. Predictive probabilities for auditing example. The rectangle includes populations 
that satisfied a predictive probability of 2 or more events with probability greater than .6. 
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