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Adaptive Tests for Ordered Categorical Data 
 
 
 

Vance W. Berger 
Biometry Research Group 
National Cancer Institute 

 

Anastasia Ivanova 
Department of Biostatistics  

University of North Carolina 
 

Consider testing for independence against stochastic order in an ordered 2xJ contingency table, under product 
multinomial sampling. In applications one may wish to exploit prior information concerning the direction of 
the treatment effect, yet ultimately end up with a testing procedure with good frequentist properties. As such, 
a reasonable objective may be to simultaneously maximize power at a specified alternative and ensure 
reasonable power for all other alternatives of interest. For this objective, none of the available testing 
approaches are completely satisfactory. A new class of admissible adaptive tests is derived. Each test in this 
class strictly preserves the Type I error rate and strikes a balance between good global power and nearly 
optimal (envelope) power to detect a specific alternative of most interest. Prior knowledge of the direction of 
the treatment effect, the level of confidence in this prior information, and possibly the marginal totals might 
be used to select a specific test from this class. 
 
Key words: Contingency table; exact conditional test; linear rank test; omnibus test; permutation test. 
 

Introduction 
When comparing two treatments on the basis of an 
ordinal endpoint, the data can be summarized as a 
2xJ contingency table. The objective tumor 
response data, e.g., from 35 ovarian cancer 
patients treated with cisplatin-based combination 
chemotherapy and salvage platinum-based therapy 
(Chiara et al., 1993) are (4,7,2,2) and (1,6,7,6) for 
patients with treatment-free intervals ≤ 12 months 
and > 12 months, respectively, with categories for 
‘progressive disease’, ‘stable disease’, ‘partial 
response’, and ‘complete response’. Combining 
the two ‘non-response’ categories, as is common, 
yields counts C1 = (11,2,2) and C2 = (7,7,6) in the 
two groups. For simplicity, the case J = 3 is 
treated, but with modification the results apply 
more generally.  It is common in practice to 
dispense with the specification of the alternative 
hypothesis, and proceed directly to the analysis. 
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 This failure to make the specific 
alternative hypothesis explicit is unfortunate, 
because it should serve as the basis for selecting 
and evaluating the analysis.  Linear rank tests, 
based on assigning numerical scores to the 
categories, are the most powerful tests to detect 
point alternatives.  If one wishes to test for the 
superiority of one treatment to another, then 
stochastic order serves as a reasonable (composite) 
alternative hypothesis (Cohen and Sackrowitz, 
1998). Unless the margins satisfy pathological 
conditions, there is no uniformly most powerful 
test or monotone likelihood ratio.  When testing 
for stochastic order, nonlinear rank tests, including 
the Smirnov, improved (Berger and Sackrowitz, 
1997), convex hull (Berger, Permutt, and Ivanova, 
1998; henceforth BPI), and COM(L) Fisher tests, 
tend to have better overall power profiles than 
linear rank tests do. 

Berger’s (1998) adaptive nonlinear rank 
test can be generalized to provide an entire class of 
exact, admissible, adaptive nonlinear rank tests, 
each of which balances omnibus power for any 
stochastically ordered alternative against optimal 
power to detect a specific alternative of greatest 
interest. The margins may be used to suggest the 
selection of one particular test from this novel 
class of tests. The exact conditional powers of 
some of the aforementioned tests are compared. 
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Notation and Formulation 

 Consider product multinomial sampling, 
with n1 and n2 (each fixed by the design) patients 
treated with the control and active treatments, 
respectively. The vectors of cell probabilities 
(each summing to one) are π1=(π11,π12,π13) and 
π2=(π21,π22,π23), respectively, and the 
corresponding trinomial random vectors are C1 = 
(C11,C12,C13) and C2 = (C21,C22,C23), with ni = 
Ci1 + Ci2 + Ci3, i = 1, 2. The log odds ratios, θ1 
and θ2, are calculated from π1 and π2 as 

θ1 = log{(π11π23)/(π21π13)} and  
θ2 = log{(π12π23)/(π22π13)}.  

Let Tj = C1j + C2j, j = 1,2,3. Conditional on T = 
(T1,T2,T3), the sample space Γ is the set of 2 × 3 
contingency tables with nonnegative integer cell 
counts, and row and column totals n = (n1,n2) and 
T, respectively.  Given T, n, and c = (C11,C12), 
the entire 2 × 3 contingency table can be 
reconstructed as C13 = n1 – C11 – C12 and C2 = 
T – C1. Thus, c suffices to denote a point of Γ.  
 
Figure 1.  The permutation sample space �for the 
data set {(11,2,2);(7,7,6)}, with n=(15,20) and 
T=(18,9,8). 

C11

C
12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2
3

4
5

6
7

8
9

v=1/7, p=0.066, o=2
v=0, p=0.228, o=10

7C11+6C12=89

C11+C12=13

 Figure 1 displays C12 plotted against C11 
for all 87 tables of Γ for the example, 
{(11,2,2);(7,7,6)}, with observed table (11,2) 

circled.  With K(T;θ)=1/ (H
∈Γ∑c

c)exp[θ 'c], 

θ =(θ1,θ2 ), π =(π1,π2 ), and 

H(c)=n1!n2!/ 2
1=Π i

3
1=Π j Cij!, the density follows 

the exponential family: 
 

Pπ{c|T} = Pθ{c|T} = K(T;θ )H(c)exp[θ 'c]. (2.1) 

 
 Let ∆1 = π11 - π21, and ∆2 = (π11 + 
π12)- (π21 + π22) = π23 - π13. If ∆1 ≥ 0, and ∆2 
≥ 0, at least one strictly, then the active treatment 
is objectively superior to the control. One may 
wish to test H: π1 = π2 against the one-sided 
alternative hypothesis that the active response 
distribution is stochastically larger than the control 
response distribution, HA

' : ∆1 ≥ 0, ∆2 ≥ 0, π1 ≠  
π2. As will be explained, this is not actually 
possible with a conditional test. By (2.1), Pπ{c|T} 
depends on π only through θ (π), so if θ (π) = 
θ (π∗), then c offers no information with which to 
distinguish π from π∗.  To be identifiable, then, 
the hypotheses must be formulated in terms of 
θ (Berger, 1998). 

The null hypothesis π1 = π2 is equivalent 
to H: θ (π) = 0, but unless 0≤ θ2 ≤ θ1, θ (π) 
provides insufficient information with which to 
determine if π satisfies HA

' because no conditional 
alternative hypothesis is equivalent to H'A.  Note, 
e.g., that {(3,3,4)/10;(2,4,4)/10} satisfies HA

' and 
{(21,51,328)/400; (7,34,164)/205} does not, yet 
θ = (log(3/2),log(3/4)) for both. The conditional 
power to detect π depends on θ (π) only, so no 
conditional test that preserves the α-level 
whenever H'A does not hold can be globally 
powerful whenever it does hold. 

However, if π satisfies H'A, then θ1(π) > 0; 
and if θ1 > 0, then for any θ2 there exists (Berger 
and Sackrowitz, 1997) π satisfying H'A such that 
θ (π) = (θ1,θ2). As such, θ1 is the key parameter; 
the active treatment is superior on ΩA = {θ |θ1 > 
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0}, no different on Ω0 = {θ |θ1 = 0}, and inferior 
on ΩC = {θ |θ1 < 0}. It is reasonable, then, to test 
H against HA : θ1 > 0. The large unconditional 
indifference region, where neither group 
stochastically dominates the other, has, by 
conditioning, been absorbed into Ω0 ∪ ΩA ∪ ΩC. 

 Let δ(θ) = 1 - θ2/θ1 be the direction of 
the effect.  As θ1 increases in both ∆1 and ∆2, 
while θ2 (θ1 - θ2) increases in ∆2 (∆1), and 
decreases in ∆1 (∆2), the superiority of the active 
treatment to the control is due primarily to a shift 
from the middle to the best outcome (∆2 > ∆1) if 
δ(θ) is small, or from the worst to the middle 
outcome (∆1 > ∆2) if δ(θ) is large. Let Ωv = {θ |θ1 
> 0, δ(θ) = v}. As δ(θ) is generally unknown a 
priori, omnibus tests that are sensitive to 
departures from H0 in each direction of ΩA = 

∪v∈ℜ
1 Ωv are preferred to tests that lack this 

desirable property. 
If the ϕ rejection region Rα(ϕ) contains 

D[Γ], the set of directed extreme points of Γ (BPI, 
1998), then ϕ is omnibus. The challenge is to 
exploit prior information about δ(θ) to construct 
omnibus tests with especially good power in one 
preferred direction, Ωv. For reasons articulated by 
Berger (2000) and Berger et al. (2002), we 
consider only exact conditional tests in this 
formulation.  

 
A New Look at Linear Rank Tests 
 Linear rank tests are based on numerical 
scores (v1,v2,v3), v1 < v3, assigned to the three 
outcome levels. With v = (v2 - v1)/(v3 - v1), ϕv 
uses test statistic zv(c) = C11 + (1 - v)C12. New 
notation allows for greater insight into linear rank 
tests. Let Mv(c) = {c∗∈ Γ | zv(c∗) ≥  zv(c)} be the ϕv 
extreme region of c, with boundary Bv(c) and p-
value pv(c) = P0{Mv(c)|T}. The level set (Frick, 
2000, p. 719) of zv(c) is Bv(c) ∩ Γ, with ov(c) its 
order, or the number of points of Bv(c) ∩ Γ. If c = 

(C11,C12)∈Γ and c∗ = ( *
,C11 , *C12 ) ∈ Γ - c, then 

zv(c∗) = zv(c) if and only if v = 1 - (C11 - 
*C11 )/( *C12  - C12), say v = vc,c∗ (vector valued for 

J > 3). Let V(c) = {v1(c),v2(c),..., 
cKv (c)} be the 

ordered set { *,cc
v  | | *,cc

v | < ∞, c∗∈ Γ - c}, and let 

v0(c) = -∞ and 1+cKv  (c) = ∞. For finite v, ov(c) > 
1 if and only if v ∈ V(c). 
 Let ε(c) = mink[vk+1(c) - vk(c)]/2, ⊥

vz (c) = 

C12 + (v - 1)C11, +Βv (c) = {c∗ ∈ Bv(c) ∩ Γ | 

z ⊥
v (c∗) > z ⊥

v (c)}, B −
v (c) = {c∗∈ Bv(c) ∩ Γ  | 

z ⊥
v (c∗) < z ⊥

v  (c)}, v∗(c) = {v∗ | pv∗(c) ≤  pv(c) for 
all v}. 
 By Lemma 1 (in the Appendix), v∗(c) 
consists of the scores that minimize not just pv(c) 
but also pmin(v)(c) = min(limu⇓vpu(c), limu⇑vpu(c)) = 

p
v
(c) - max(P

0
{B −

v (c)},P
0
{B +

v (c)}).  Hence, 
pmin(v)(c), which also equals min{pv-ε(c)(c), 
pv+ε(c)(c)}, is a true p-value.  As Γ has finitely 
many subsets, there can be only a finite number of 
values for pv(c), so the minimum p-value is 

attained, and v∗(c) ≠ ∅. If v ∈ V(c), then ov(c) > 1, 
−Βv (c) ∪ +Βv (c) ≠ ∅, pmin(v)(c) < pv(c), and v ∉ 

v∗(c). Hence, v∗(c) ∩ V(c) = ∅, and, by Lemma 1, 
v∗(c) consists of one or more open intervals of the 
form (vk(c),vk+1(c)).  For {(11,2,2);(7,7,6)}, c = 
(11,2), Kc = 42, ε(11,2) = 1/84, and V(c) = 
{-6, -5, -4, -3, -5/2, -2, -5/3, -3/2, -4/3, -5/4, -6/5, -
1, -5/6, -4/5, -3/4, -2/3, -3/5, -4/7, -1/2, -3/7, -2/5, -
1/3, -2/7, -1/4, -1/5, -1/6, -1/7, 0, 1/7, 1/6, 1/5, ¼, 
2/7, 1/3, 2/5, ½, 2/3, 1, 3/2, 2, 5/2, 3, 4, 5, 6}. 

 Figure 1 shows M
1/7

(11,2) by dark dots 
and M

0
(11,2)-M

1/7
(11,2) by crosses. Because 

(11,2) minimizes z ⊥
71 / (11,2) = 7C

12 
- 6C

11
 over 

B
1/7

(11,2) ∩  Γ (Table 1), −Β 71 / (11,2) = ∅ and 
p1/7(11,2) = lim

u⇑1/7 p
u
(11,2) = 0.066. Also 

p
v
(11,2) = 0.020 for v ∈ (1.0,1.5) = v∗(11,2). If v 
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∈ V(11,2), then P
0
{ −Βv } ≤  P0{ +Βv } for v > 1.5, 

and P
0
{ −Βv } ≥  P

0
{ +Βv } for v < 1.0. The 

optimality of most powerful (MP) test ϕδ(θ) to 
detect lθ , for l>0 (BPI, 1998), is offset by its  

potentially poor power on ΩA - Ωδ(θ). In fact, 
D[Γ] may not be contained in the ϕv critical region 
Rα(ϕv) for any ν, so for  

 

 

Table 1.  All possible linear rank tests with scores (0,v,1), with middle score v∈[0,2], for the data set 

{(11,2,2);(7,7,6)}, along with the number of points in its level set, the endpoints and null probabilities of 

each segment of its level set, and various p-values. (null probabilities of various extreme regions). 
_________________________________________________________________________________________________ 
 
v  ov(11,2)    Endpoints of: pv           pv

-         pv
+ P0{Bv

+} P0{Bv
-} pv,∞  Mv-Mv,∞ 

      Bv
+ Bv

- (minimum is underlined) 
 
v ∈ (-1/7,0)  1      0.2262  0.2262  0.2262    0.2262 
v = 0   10   (4,9)  (12,1)  0.2277  0.2262  0.0661  0.1615 0.0015  0.0726 (7,6)- 
   -(10,3) -(13,0)       (10,3)  
v ∈ (0,1/7)  1      0.0661  0.0661  0.0661    0.0661   
v = 1/7    2   (5,9)   0.0661  0.0661  0.0661   2.1*10-5  0.0661 
v ∈ (1/7,1/6)  1      0.0661  0.0661  0.0661     0.0661 
v = 1/6    2   (6,8)   0.0661  0.0661  0.0657   0.0004  0.0661 
v ∈ (1/6,1/5) 1      0.0657  0.0657  0.0657     0.0657 
v = 1/5    2  (7,7)    0.0657  0.0657  0.0629   0.0028  0.0657 
v ∈ (1/5,1/4)  1      0.0629  0.0629  0.0629     0.0629 
v = 1/4    2   (8,6)   0.0629  0.0629  0.0538   0.0091  0.0629 
v ∈ (1/4,2/7)  1     0.0538  0.0538  0.0538     0.0538 
v = 2/7    2   (6,9)   0.0538  0.0538  0.0538   5.7*10-6  0.0538 
v ∈ (2/7,1/3)  1     0.0538  0.0538  0.0538     0.0538 
v = 1/3    3   (7,8)   0.0538  0.0538  0.0387   0.0152  0.0387 (9,5) 
   -(9,5) 
v ∈ (1/3,2/5)  1    0.0387  0.0387  0.0387     0.0387 
v = 2/5    2   (8,7)  0.0387  0.0387  0.0382   0.0005  0.0387 
v ∈ (2/5,1/2)  1     0.0382  0.0382  0.0382     0.0382 
v = 1/2    4   (9,6) (12,0)  0.0385  0.0382  0.0237  0.0148 0.0003 0.0249 (10,4) 
   -(10,4) 
v ∈ (1/2,2/3)  1    0.0237  0.0237  0.0237     0.0237 
v = 2/3    2  (10,5)  0.0237  0.0237  0.0220   0.0017  0.0237 
v ∈ (2/3,1) 1     0.0220  0.0220  0.0220     0.0220 
v = 1    5  (11,4) (11,1) 0.0276  0.0220  0.0198  0.0078  0.0056 0.0276 
   -(11,3) -(11,0) 
v ∈ (1,3/2) 1    0.0198  0.0198  0.0198     0.0198 
v = 3/2    2   (10,0)  0.0205  0.0198  0.0205   0.0008  0.0205 
v ∈ (3/2,2)  1     0.0205  0.0205  0.0205     0.0205 
v = 2    4  (12,3) (10,1)  0.0294  0.0205  0.0289  0.0005 0.0089  0.0294 
    -(9,0) 
v ∈ (2,5/2)  1      0.0289  0.0289  0.0289     0.0289 
_________________________________________________________________________________________________ 
 
Note that all the values are calculated at the outcome (11,2); pv,∞ and Mv,∞ are the p-value and extreme 
region, respectively, of the adaptive test based on v and τ =∞. 
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each ν there will exist θ ∈ Ω
A
 for which the power 

of ϕv to detect lθ tends to zero as l gets large (BPI, 
1998). Podgor, Gastwirth, and Mehta (1996) 
proposed the maximin efficiency robust test 
(MERT) in hopes of providing better power than 
linear rank tests. Ironically, the MERT is itself a 
linear rank test; its rejection region may also fail to 
contain D[Γ], leading to poor power on parts of Ω

A
 

and no power in the limit in some directions. 
Berger and Ivanova (2002) showed that at certain 
α-levels the most stringent linear rank test is ϕvS, 
where v

S
 is such that the two points of D[Γ] that 

are furthest (in Euclidean distance) from each 
other are equated by zvS(c). For {(11,2,2),(7,7,6)}, 
this gives vS = 0, because Γ has two directed 
extreme points, D[Γ]={(15,0);(6,9)}, and z0(15,0) 
=15+(1-0)(0)=15=6+(1-0)(9)= z0(6,9). 

 

Nonlinear Rank Tests 

 By allowing the boundary of Rα(ϕ) to 
curve, nonlinear rank tests often require smaller α-
levels to ensure that D[Γ] ⊂ Rα(ϕ) than linear 
rank tests would. However, this is not always the 
case. Berger and Ivanova (2002) provide an 
example in which the proportional odds and 
proportional hazards tests (McCullagh, 1980) are 
not nonlinear enough to be omnibus at reasonable 
α-levels. The Smirnov test, ϕS, uses as the test 
statistic the largest of three quantities, 0, D1 = 
C11/n1 - C21/n2, and D2 = (C11 + C12)/n1 - (C21 + 
C22)/n2. Among tests routinely available in 
standard statistical software packages (ϕS is a 
standard feature of StatXact), ϕS minimizes the α-
level required for its rejection region to contain 
D[Γ]. However, ϕS is not generally admissible 
(Berger, 1998). 

Permutt and Berger (2000) and Ivanova 
and Berger (2001) each proposed refinements of 
ϕS that break its ties. Although such refinements 
are necessarily uniformly more powerful than ϕS 
(Rohmel and Mansmann, 1999, p. 158), the term 

“improvement of ϕ” is reserved for a test whose 
exact (possibly randomized) version is uniformly 
more powerful than the exact (possibly 
randomized) version of ϕ. By this definition, 
refinements are rarely improvements. Berger and 
Sackrowitz (1997) developed methodology for 
constructing improvements of a given 
inadmissible test. In fact, by improving the 
“ignore-the-data” test, ϕITD(c) = α for all c ∈ Γ, 
Berger and Sackrowitz (1997) constructed the first 
known test for this problem that is simultaneously 
admissible and unbiased. However, rejection 
regions at different α-levels need not be nested, so 
these improved tests may not yield unambiguous 
p-values, and thus are of somewhat limited value. 

Berger (1998) established the one-to-one 
correspondence between the class of convex hull 
type tests and the minimal complete class of 
admissible tests. The convex hull test (BPI, 1998), 
ϕCH, is the simplest member of this convex hull 
class, and is qualitatively similar to the 
improvements of both ϕS and ϕITD, while 
minimizing, among all families of tests, the α-
level required for its rejection region to contain 
D[Γ]. 

In addition, ϕCH is based on a test 
statistic, so rejection regions at different α-levels 
are nested, and p-values are provided. As such, 
ϕCH is about as good a test as there is for testing 
H against HA, which is about as close as one can 
get to testing H against H'A when dealing with 
θ instead of π. Specifically, admissible (unbiased) 
tests of H against HA are conditionally admissible 
(unbiased) as tests of H against H'A (Berger and 
Sackrowitz, 1997).  However, θ (π) is a nonlinear 
function, and maps small corners of π -space 
(neighborhoods of structural zeros) into large 
regions of θ -space. By giving each direction δ(θ ) 
equal consideration, ϕCH accommodates these 
small corners as much as it does the large regions 
of π -space that are of greatest unconditional 
interest. As such, ϕCH may not be ideal when 
viewed unconditionally. Cohen and Sackrowitz 
(1998) proposed another member of the convex 
hull class, called the COM(L) Fisher test, or 
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ϕCOM(L), based on repeatedly adding to the 
critical region those directed extreme points of the 
current acceptance region that are least likely 
under H0. Because the test statistics of ϕCOM(L) 
and ϕCH are defined not algebraically but 
relationally, by the relative position of c within Γ, 
the rejection regions need to be constructed 
recursively. This feature is a barrier to their use. 

 
Adaptive Tests 

 Gross (1981, Section 5) suggested that an 
”analysis based on ... data-dependent scores may 
yield procedures that compare favorably to fixed-
score procedures ...”. Distinct from another 
definition used, e.g., by Rukhin and Mak (1992), 
Hogg (1974, p. 917) and Edgington (1995, pp. 
371-373) defined adaptive tests as tests with data-
based test statistics. This allows Γ to be partitioned 
into regions sharing a common test statistic. 
Because the region need not be even nearly 
ancillary, conditioning on the region (as suggested 
by Donegani, 1991, and Good, 1994, p. 122) may 
entail a loss of power. Comparing the value of the 
test statistics across regions avoids this loss of 
power. The intuitive objection to ”comparing 
apples to oranges” notwithstanding, such an 
approach is “good” or “bad” only to the extent to 
which it produces a “good” or “bad” test. This 
approach results in tests with excellent power 
properties. In fact, Gastwirth (1985) stated that 
“when the MERT for a particular problem has a 
low r2, adaptive procedures are needed”. 

Without knowing θ a priori, it is unclear 
where to maximize the power. One could estimate 

δ(θ ) from c, say as δp(c), perhaps using maximum 

likelihood, and use the MP test 
Pδ

ϕ ˆ . The p-value 

of 
Pδ

ϕ ˆ evaluated at observed outcome c, 
P

p
δ̂

(c), 

is stochastically too small to serve as a valid p-
value, but 

P
p

δ̂
(c) can be used as a test statistic, to 

be compared to its null distribution (Rohmel and 
Mansmann, 1999, p. 165). Variation in c is 
reflected in 

P
p

δ̂
(c) through both the argument and 

the subscript. Using either 
P

p
δ̂

(c) or 
P

z
δ̂

(c), 

suitably normalized, as a test statistic, any 

estimator δp(c) of δ(θ) induces an adaptive test, 

with regions Γv = δ-1(v ) = {c ∈ Γ| δp(c) = v}. If 
the regions are Γ0 = {c ∈ Γ | C12 > n1T2/(n1 + 
n2)}, Γ1 = Γ - Γ0, and Γv = ∅ for v ∉ {0,1}, and 
the ϕv test statistic zv(c) is used on Γv, with C11 + 
C12 (v = 0) and C11 (v = 1) normalized to D2 and 
D1, respectively, to facilitate the comparison of 
points from Γ1 (D1 > D2) to those from Γ0 (D2 
≥  D1), then ϕS results. Similar binary adaptive 
tests might define Γ0 and Γ1 by whichever of ϕ0 

and ϕ1 yields a smaller p-value or a larger χ2. 
Berger (1998) proposed judging outcome 

c by how small a p-value it can yield with an MP 
test; that is, ϕA uses pv∗(c)(c)=min-∞≤v≤∞pv(c) as 
the test statistic. This is a continuous version of the 
adaptive test based on min(p0(c), p1(c)), and 

estimates δ(θ) non-uniquely as δc=v for any value 

v∈ v∗(c). The induced regions are Γv = {c ∈Γ|v 

∈ v∗(c)}. The ϕA critical region is Rα(ϕA) = 

∪v∈R1 Rα
∗(v)(ϕv) for some set of α∗(v) < α, so 

ϕA is intuitively similar to union-intersection tests 
(Roy, 1953; Marden, 1991). Despite being 
constructed non-recursively, ϕA is a convex hull 
type test (Berger, 1998); hence ϕA is always 
admissible. Also, ϕA tends to be omnibus, as D[Γ] 
⊂ Rα(ϕA) for reasonable α-levels. 
 
Accommodating a Favored Alternative 
 Suppose that one believes a priori that 
δ(θ) = δP. Let τ≥0 be a measure of the strength in 
the belief that δ(θ) = δP. The dual objectives are 
ensuring nearly MP power on 

PδΩ and reasonable 

power on ΩA - 
PδΩ , with relative importance 

dictated by τ. One might use
Pδϕ (which is MP on 

PδΩ ) for large τ, or ϕA (which is a good omnibus 
test) for small τ, but none of the aforementioned 
test suffices for intermediate values of τ. Linear 



BERGER & IVANOVA 275

combinations such as (τ
Pδϕ  + ϕA)/(τ + 1) would 

not suffice either, because they have large 
randomization regions and small critical regions, 
consisting only of the intersection Rα(

Pδϕ ) 

∩ Rα(ϕA). Of course, these inadmissible tests 
could be improved to admissibility, but then the 
procedure would be complicated, and p-values 
may not be defined.  There is another approach to 
bridge the gap between 

Pδϕ and ϕA. Specifically, 

start with ϕA, but penalize those c whose 
minimizing MP p-value is obtained by v far from 
δP. To this end, let ατδϕ ,,P

 (or τδϕ ,P
) be the level-

α adaptive test based on the test statistic 
Α(δP ,τ,c) = 

∞≤ν≤∞−
min [ρmin(v)(c)(1 + |δP - v|)τ]. 

Let ],[ τδP
v (c) ={v | pmin(v)(c)(1 + |δP - v|)τ  = 

A(δP,τ,c)}. Clearly, 0,Pδϕ =ϕA for any δP and 

pmin(v)(c)(1 + |δP - v|)τ  ≤  1 if v ∈ ],[ τδP
v (c). 

Lemmas 2-4 confine ],[ τδP
v (c) to a finite subset of 

an interval that shrinks, as τ gets large, to {δP}. 
By Lemma 4, ∞δϕ ,P

 induces the same ordering on 

Γ as 
Pδϕ  does, thereby optimizing power on 

PδΩ . 

Yet because the ∞δϕ ,P
 test statistic is )min( P

p δ (c), 

and not necessarily 
P

pδ (c), ∞δϕ ,P
 is a refinement 

of 
Pδϕ , and pmin(v)(c) ≤ pv,∞(c) ≤ pv(c) for all v 

and c. From Table 1, e.g., p0.5(11,2)=0.0385, but 
p0.5,∞(11,2)=0.0385-P0{(10,4)|T}=0.0249.  Each 
test in the class of adaptive tests is admissible. 
 
Theorem 1. For any triple δP ∈ ℜ1, τ  ≥  0, and 
α ∈ [0,1], ατδϕ ,,P

 is admissible. Graubard and 
Korn (1987) suggested that without a reason to use 
a different δP, ϕ0.5 should be used. The desire to 
focus power on the ”central” direction, Ω0.5, is 
understandable, but the use of linear rank tests in 
general (BPI, 1998; Berger and Ivanova, 2002), 
and ϕ0.5 in particular (Ivanova and Berger, 2001), 
have been criticized. Now ϕ0.5,τ offers good 
central power without sacrificing global power 

(unless τ = ∞).  Βut even if τ = ∞, ϕ0.5,∞ is still 
more powerful than, and hence preferable to ϕ0.5. 
 
Margin-Based Selection of δP and τ 
 Recall that vS can be determined from the 
margins (n and T, summarized by Γ). In some 
cases, it may be reasonable to use vS as δP. In 
others, it may be reasonable to use the margins to 
find the largest τ that allows Rα( ατδϕ ,,P

) to 
contain D[Γ]. Unless |δP-vS| is small, the larger τ 
is, the less τδϕ ,P

 focuses on omnibus power.  

Hence, the α-level required for Rα( ατδϕ ,,P
) to 

contain D[Γ] tends to increase in τ. If a range of α-
levels would be considered, say 0.01 ≤ α ≤ 0.1, 
then use the smallest α-level in selecting τ. 
Restricting attention to the integer values of τ, and 
using δP = 0.5, note that for {(11,2,2),(7,7,6)}, 
D[Γ] = {(6,9);(15,0)} is contained by 
R0.01(ϕ0.5,18), R0.025(ϕ0.5,20), R0.05(ϕ0.5,22), 
and R0.1(ϕ0.5,24); but none of R0.01(ϕ0.5,19), 
R0.025(ϕ0.5,21), R0.05(ϕ0.5,23), or 
R0.1(ϕ0.5,25) contain (6,9). Consequently, 
ϕ0.5,18 would be used by this approach. 
 
Comparisons of Tests 

 The exact conditional power of the one-
sided nonrandomized versions of ϕ0.0, ϕ0.5, ϕ1.0, 
ϕS, ϕCH, ϕCOM(L), and some adaptive tests, at 
α ≤ 0.05, are compared considering all 87 2 × 3 
tables with row and column margins as in the 
example, T = (18,9,8), n = (15,20). Figure 2 
illustrates extreme regions. The exact conditional 
power of ϕ to detect θ is calculated as 
Pθ{R0.05(ϕ)|T}. Here 4 × 7 = 28 alternatives, 
with θ1∈{0.5,1.0,1.5,2.0} and θ2 = {-1.5,-1.0,-
0.5,0.0,0.5,1.0,1.5}, are considered, along with the 
null case, θ1 = θ2 = 0. Bold entries represent the 
best power, for given θ, among the six targeted 
tests in columns 4-9 and among five omnibus tests 
in columns 10-13. Because the linear rank tests 
ϕ0.0 (α = 0.005), ϕ0.5 (α = 0.038), and ϕ1.0 (α = 
0.028) are excessively conservative, per the top  
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Figure 2. Extreme regions and p-values for {(11,2,2);(7,7,6)} and several tests including the linear rank test with 

equally-spaced scores ϕ0.5, the adaptive tests with similar direction but varying second parameter ϕ0.5,3, ϕ0.5,20, 

ϕ0.5,100, the omnibus adaptive test ϕA, the Smirnov test ϕS, the convex hull test ϕCH, and the ϕCOM(L) test.
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Table 2.  Exact conditional power of the conservative (nonrandomized) versions of linear rank tests (ϕ0, ϕ1, ϕ0.5), 

adaptive tests (ϕ0,100, ϕ1,100, ϕ0.5,100, ϕ0.5,1), omnibus adaptive test ϕA, the ϕCOM(L) test, Smirnov test ϕS, 

and convex hull test ϕCH, with α≤0.05, and table margins T=(18,9,8), n=(15,20).  Bold entries represent the best 

power among the tests in each block (narrow and omnibus) for each given θ. 

___________________________________________________________________________________  
 δ(θ)    θ      ϕ0    ϕ0,100  ϕ0.5   ϕ0.5,100            ϕ1    ϕ1,100  ϕ0.5,1     ϕA      ϕCOM(L)    ϕS     ϕCH  
___________________________________________________________________________________ 
 

0.0  0.0     0.005  0.040      0.038  0.044      0.028  0.039 0.046  0.047  0.050  0.031  0.035 
 
 -2.000   0.5  1.5    0.054  0.232      0.046  0.063      0.006  0.015 0.258  0.375  0.316  0.058  0.255                   
 -1.000   0.5  1.0      0.038  0.163      0.071  0.080      0.021  0.032         0.150  0.198  0.152  0.053  0.145 
 -0.500   1.0  1.5      0.107  0.325      0.151  0.174      0.039  0.067 0.290  0.332  0.244  0.131  0.285 
  0.000   0.5  0.5     0.025  0.120      0.103  0.110      0.057  0.070 0.109  0.108  0.090  0.073  0.093 
  0.000   1.0  1.0     0.079  0.264      0.212  0.223      0.099  0.126 0.219  0.215  0.169  0.151  0.200 
  0.000   1.5  1.5     0.184  0.447      0.352  0.371      0.149  0.208 0.366  0.361  0.292  0.270  0.349 
  0.250   2.0  1.5     0.280  0.606      0.603  0.615      0.370  0.445 0.524  0.491  0.460  0.485  0.489 
  0.333   1.5  1.0     0.143  0.417      0.442  0.455      0.288  0.328 0.379  0.333  0.310  0.346  0.330 
  0.500   1.0  0.5     0.055  0.231      0.274  0.291      0.200  0.225 0.244  0.196  0.189  0.223  0.193 
  0.500   2.0  1.0     0.231  0.593      0.689  0.704      0.560  0.597 0.615  0.543  0.537  0.605  0.542 
  0.667   1.5  0.5     0.109  0.390      0.521  0.550      0.454  0.481 0.483  0.391  0.395  0.475  0.390 
  0.750   2.0  0.5     0.188  0.560      0.754  0.785      0.723  0.741 0.738  0.634  0.640  0.735  0.634 
  1.000   0.5  0.0     0.015  0.096      0.137  0.157      0.121  0.147 0.140  0.104  0.116  0.127  0.100 
  1.000   1.0  0.0     0.038  0.201      0.333  0.378      0.332  0.368 0.347  0.258  0.283  0.339  0.257 
  1.000   1.5  0.0     0.082  0.349      0.585  0.646      0.612  0.642 0.621  0.499  0.521  0.617  0.499 
  1.000   2.0  0.0     0.153  0.514      0.799  0.851      0.836  0.852 0.841  0.736  0.748  0.839  0.736 
  1.250   2.0 -0.5     0.126  0.467      0.830  0.896      0.906  0.924 0.908  0.828  0.844  0.906  0.828 
  1.333   1.5 -0.5      0.062  0.302      0.634  0.729      0.736  0.779 0.744  0.628  0.665  0.737  0.628 
  1.500   1.0 -0.5      0.026  0.167      0.384  0.472      0.471  0.536 0.483  0.377  0.432  0.472  0.375 
  1.500   2.0 -1.0      0.106  0.429      0.854  0.920      0.944  0.963 0.948  0.899  0.915  0.944  0.899 
  1.667   1.5 -1.0      0.048  0.262      0.671  0.784      0.822  0.876 0.834  0.752  0.795  0.823  0.750 
  1.750   2.0 -1.5      0.093  0.401      0.874  0.930      0.965  0.983 0.970  0.945  0.958  0.965  0.945 
  2.000   0.5 -0.5      0.010  0.077      0.171  0.221      0.212  0.273 0.227  0.167  0.217  0.214  0.163 
  2.000   1.0 -1.0    0.018  0.136      0.426  0.552      0.593  0.692 0.617  0.524  0.604  0.593  0.520 
  2.000   1.5 -1.5      0.038  0.231      0.703  0.811      0.877  0.934 0.895  0.848  0.889  0.877  0.845 
  2.500   1.0 -1.5      0.013  0.111      0.463  0.602      0.687  0.810 0.730  0.668  0.756  0.687  0.660 
  3.000   0.5 -1.0      0.006  0.059      0.203  0.292      0.318  0.433 0.350  0.284  0.377  0.318  0.275 
  4.000   0.5 -1.5      0.004  0.044      0.231  0.348      0.419  0.591 0.487  0.435  0.558  0.419  0.416 
   
  Mean power    0.083  0.293  0.447  0.500      0.458  0.505  0.519  0.469  0.481  0.482  0.457 
___________________________________________________________________________________  
p-value for 
(11,2,2;7,7,6)    0.228  0.073      0.038   0.025     0.028  0.028 0.037  0.069  0.080  0.031  0.080 
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Table 3.  Pairwise comparisons of 11 tests for 4x7=28 values of θ, where each entry is the number of parameter values 
(out of 28 considered in the power calculations) for which the test to the left (defining the row) had greater power than 
the test above (defining the column). 
_________________________________________________________________________________________________ 

      ϕ0 ϕ0,100  ϕ0.5  ϕ0.5,100  ϕ1  ϕ1,100  ϕ0.5,1 ϕA  ϕCOM(L)   ϕS  ϕCH  Total 
 
ϕ0     -       0       1      0      4      3         0      0      0       0      0    8 
ϕ0,100     28     -        7      6    10      9         7      7      9       9      9 101 
ϕ0.5        27    21      -       0    14    12         6     14    13     12    17 136 
ϕ0.5,100    28    22    28      -    18    15     13     21    18     17    21 201 
ϕ1        24    18    14    10      -      0         0     19    14       0    20 119 
ϕ1,100       25    19    16    13    28      -     17     20    21     19    20 198 

 
ϕ0.5,1      28    21    22    15    28    11         -      25    23     28    28 229 
ϕA  28    21    14      7      9      8         3      -      10       8    28 136 
ϕCOM(L)    28    19    15    10    14      7         5     18      -      12    20 148 
ϕS  28    19    16    11    28      9         0     20     16       -    21 168 
ϕCH  28    19    11      7      8      8         0       0      8        7     -   96 

 
Total    272  179  144    79   161   82    51  144   132   112  184  

 
 
 

row of Table 2, they are dominated at α = 0.05 by 
their corresponding adaptive tests ϕ0.0,100 (α = 
0.040), ϕ0.5,100 (α = 0.044), and ϕ1.0,100 (α = 
0.039).  This is not surprising, and will be the case 
quite generally.  Note that ϕ0.5,1 maximizes the 
average power, at 0.519, or the area under the 
power curve.  The non-adaptive tests did not fare 
as well.  Among the omnibus tests (ϕA, ϕCOM(L), 
ϕS, and ϕCH), ϕ0.5,1 maximizes the power for 22 
of the 28 θ values (ϕA and ϕCOM(L) each 
maximize the power for three θ values). Also, 
ϕ0.5,1 (p = 0.037) and ϕS (p = 0.031) are the only 
omnibus tests to yield statistical significance at 
α = 0.05 for {(11,2,2);(7,7,6)}. Table 3, above, 
shows that ϕ0.5,1 dominates both ϕS and ϕCH, 
and almost dominates ϕA and ϕCOM(L) too, and 
does dominate them when δ(θ) is near the δP 
value of 0.5 used by ϕ0.5,1. In fact, only where 
δ(θ) ≤ -0.5 or δ(θ) ≥ 2.5 is ϕA or ϕCOM(L) more 
powerful than ϕ0.5,1. Among pairwise 
comparisons, ϕ0.5,1 has larger power than its 
competitor (each of the other ten tests are 
considered for each of 28 alternatives) for 229 out 

of 280 comparisons, and 104 of the 112 
comparisons to omnibus tests.  The non-adaptive 
tests did not fare as well, but ϕS attained168/280 
or 57/112, respectively, which is quite respectable. 
 

Conclusion 

In an effort to improve the comparison of two 
treatments on the basis of ordinal data, a new class 
of adaptive tests was defined, and shown to be 
admissible, while providing unambiguous p-values 
and a non-iterative construction.  If one is 
interested in testing for θ1 > 0, and has no 
particular preference for any subset of ΩA relative 
to any other, then ϕCH would be a fine test to use. 
 However, ϕA and ϕ0.5,1 are also excellent 
omnibus tests, and are easier to compute then 
ϕCH. If one is interested in testing for stochastic 
order, and uses θ1 > 0 only as a surrogate, then ϕA 
and ϕ0.5,1 are probably better tests than ϕCH. 
Certainly if one is in the situation treated in this 
article, with a preferred direction, then an 
appropriate adaptive test would be the test of 
choice. There is nothing particular about ordered 
trinomial distributions that makes this problem 
especially amenable to treatment with the adaptive 



BERGER & IVANOVA 279

approach. For any hypothesis testing problem with 
a composite alternative hypothesis, one can 
enumerate the alternatives and the corresponding 
MP test for each. One can then apply each of these 
MP tests to a given outcome, and find the smallest 
of the resulting p-values.  Using this minimized 
MP p-value as a test statistic produces a test 
analogous to ϕA, and reduces to the uniformly 
most powerful test if one exists.  If not, then the 
adaptive tests that bridge the gap between ϕA and 
the MP tests to detect a favored direction should 
have good properties in a variety of contexts. 
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Appendix 

Lemmas (with Proofs), and Proofs of Theorems 
 
Lemma 1. Let c ∈ Γ and k ∈{0,1,...,Kc}. If |vk(c) ± 
ε(c)|< ∞ then vk(c)± ε(c)∉V(c). If 

v∈(vk(c),vk+1(c)), then Mv(c)= )()1( c+kvM (c)-
−

+ )()1( ckvB (c) = )()( ckvM (c) - +
)()( ckvB (c). 

Proof. Increasing (decreasing) v by ε(c) moves 
−
vB (c) ( +

vB (c)) into the interior of, and +
vB (c) 

( −
vB ((c)) completely out of, the new critical 

region, but if v ∈ V(c), then no points of Γ - Mv(c) 
are moved into the new critical region (Table 1). 
Hence, ov-ε(c)(c) = ov+ε(c)(c) = 1, and neither 
vk(c) - ε(c) nor vk(c) + ε(c) is in V(c). If v ∉ V(c), 

say vk(c) < v < vk+1(c), then ov(c) = 1, so +
vB (c) = 

−
vB (c) = ∅ and Mv(c) will not change when v 

varies within (vk(c),vk+1(c)). 
 
Lemma 2. If δP ∈ ℜ1, τ > 0, v∗ ∈ ],[ τδP

v (c), and 

v∗ ∈ v∗(c), then |δP -v∗| ≤ |δP-v∗|. 

Proof.  If there exist v∗ ∈ v∗(c) and 
v∗ ∈ v[δP,τ](c) such that |δP -v∗| < |δP-v∗|, then 

pv∗(c)(1 + |δP - v
∗|)τ < pmin(v∗)(c)(1 + |δP - v∗|)τ, 

and v∗ cannot be in ],[ τδP
v (c). 

Lemma 3. For any δP, τ > 0, and c ∈ Γ, ],[ τδP
v (c) 

⊂ V(c) ∪ δP. 

Proof. Assume there exists v ≠ δP in ],[ τδP
v (c) - 

V(c), say vk(c) < v < vk+1(c). Let v∗ = vk(c) if δP 
≤  vk(c), v∗ = δP if vk(c) < δP < vk+1(c), or v∗ = 

vk+1(c) if vk+1(c) ≤ δP. Now v∗ ⊂ V(c) ∪ δP and 

pmin(v)(c)(1 + |δP-v|)τ > pmin(v∗)(c)(1 + |δP-

v∗|)τ. 

Lemma 4. For any δP and c ∈ Γ, ],[ τδP
v (c) = {δP} 

for sufficiently large τ. 

Proof. Let Dc(δP) = 
PcVv δ−∈ )(min |δP-v| > 0. For 

τ > 0, let v ∈ ],[ τδP
v (c) - δP. By Lemma 3, v ∈ V(c) 

- δP, so |δP-v| ≥ Dc(δP). If τ > -
ln( )min( P

p δ (c))/ln(1 + Dc(δP)), then )min(vp (c)(1 + 

|δP-v|)τ ≥ )min(vp (c)(1 + |Dc(δP)|)τ >1, 

contradicting v∈ ],[ τδP
v (c). 

Proof of Theorem 1. By Theorem 3.3 of Berger 
(1998), it suffices to show that for any B ⊂ Γ, if c∗ 
minimizes A(δP,τ,c) over B, then c∗ ∈ D[B]. If 

c∗ ∉ D[B], then c∗ cannot, for any v, uniquely 
minimize pv over B, and for every v there exists c 

∈ B - c∗ such that pv(c) ≤ pv(c∗). If v ∉ V(c∗), 

then ov(c∗) = 1, so pv(c) ≠ pv(c∗), and pv(c) 

≤ pv(c∗) -minc∈ΓP0{c|Γ}. Let v1 ∈ ],[ τδP
v (c∗). By 

the continuity in v of the function (1 + |δP-v|)τ, 

one can, for any ε > 0, choose v
2 ∉V(c∗) suitably 

close to v1 to satisfy 
2vp (c∗) = )min( 1vp (c∗), and, 

thus, 

A(δP,τ,c) = min
∞≤ν≤∞−

[pmin(v)(c)(1 + |(δP – v|)τ] ≤ 

2vp (c)(1 + |(δP – v2|)τ 

≤ [
2vp (c∗) - min

Γ∈c
P

0
{c|Γ}](1+|δP - v2|)τ   

= [ )min( 1vp (c∗) - min
Γ∈c

P
0
{c|Γ}](1 + |δP - v2|)τ 

 <A(δP,τ,c∗) - min
Γ∈c

P
0
{c|Γ}(1 + |δP - 

 v2|)τ  + ε  < A(δP,τ,c∗),  
the last inequality holding for ε < 
minc∈Γ P0

{c|Γ}. This is a contradiction. 
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