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Within Groups Multiple Comparisons Based On Robust Measures Of Location 
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Consider the problem of performing all pair-wise comparisons among J dependent groups based on measures 
of location associated with the marginal distributions. It is well known that the standard error of the sample 
mean can be large relative to other estimators when outliers are common. Two general strategies for 
addressing this problem are to trim a fixed proportion of observations or empirically check for outliers and 
remove (or down-weight) any that are found. However, simply applying conventional methods for means to 
the data that remain results in using the wrong standard error. Methods that address this problem have been 
proposed, but among the situations considered in published studies, no method has been found that gives good 
control over the probability of a Type I error when sample sizes are small (less than or equal to thirty); the 
actual probability of a Type I error can drop well below the nominal level. The paper suggests using a slight 
generalization of a percentile bootstrap method to address this problem. 
 
Key words: M-estimators, trimming, bootstrap.  
 
 

Introduction 
 
Outliers (unusually small or large values) can 
inflate the standard error of the sample mean 
which in turn can result in relatively poor power, 
and outliers can distort the sample mean resulting 
in a misleading representation of the typical 
response (e.g., Rosenberger & Gasko, 1983; 
Staudte & Sheather, 1990; Wilcox, 2001). When 
dealing with measures of location, two general 
strategies have been proposed for dealing with this 
problem.  
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  The first is to simply trim a fixed 
proportion of the extreme values. In terms of 
maintaining a relatively low standard error under 
normality yet deal with situations where outliers 
are rather common, a 20% trimmed mean is often 
recommended (which is formally defined in the 
next section of this paper). The other strategy is to 
empirically check for outliers and remove (or 
downweight) any that are found. Various 
textbooks recommend some variation of the latter 
strategy and often refer to this as data cleaning. 

If outliers are removed and the values are 
not erroneous (merely unusually large or small), 
applying standard methods for means to the 
remaining data results in using the wrong standard 
error, which in turn means poor control over the 
probability of a Type I error and inaccurate 
confidence intervals. Effective methods for 
dealing with this problem were derived for a range 
of situations, but when comparing measures of 
location associated with the marginal distributions 
of dependent groups, practical problems remain. 
Methods that avoid Type I error probabilities well 
above the nominal level are available, but when 
empirically checking and discarding outliers, the 
actual probability of a Type I error can drop well 
below the nominal level.  
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For J dependent groups, let θj be some 
measure of location associated with the jth 
marginal distribution. More formally, this paper is 
concerned with all pairwise comparisons where for 
every j < k, the goal is to test 

 
: .0H j kθ θ=            (1) 

 
 Of particular interest is controlling the 
family-wise error rate (FWE), meaning the 
probability of at least one Type I error. When the 
sample size is small and the goal is to have FWE 
equal to .05, extant simulation results indicate that 
it is possible to ensure FWE will not exceed .05 by 
a substantial amount using 20% trimmed means in 
conjunction with a generalization of the bootstrap 
method (Wilcox, 1997b). A concern, however, is 
that the actual FWE can drop well below the 
nominal level suggesting that the method might 
have relatively low power. 
 Wilcox (1997b) also found that when 
using an estimator that in effect discards outliers 
(called a one-step M-estimator with Huber’s Ψ), 
poor control over FWE is obtained with sample 
sizes less than or equal to thirty. Currently, no 
method has been found that performs reasonably 
well in simulations when using this particular M-
estimator and the sample size is small. So a 
practical issue remains: Is it possible to find a 
method that, in simulations, not only avoids FWE 
rates larger than the nominal level, it ensures that 
FWE will not be substantially below the nominal 
level when extreme values are discarded. This 
paper describes such a method which is based on a 
slight generalization of the percentile bootstrap. 
 
Description of the Robust Estimators  
 The focus is on three measures of location. 
The first is a 20% trimmed mean. Generally, 
trimmed means simply remove a fixed proportion 
of the extreme observations. By fixed proportion is 
meant that the amount of trimming is not 
determined empirically by, for example, checking 
to see what proportion of the observations are 
outliers. The median and mean are trimmed means 
that represent the two extremes of the maximum 
amount and least amount of trimming, 
respectively. The choice of 20% trimming 
provides reasonably good efficiency under 
normality and it maintains relatively high 

efficiency in situations where the sample mean 
performs poorly (Rosenberger & Gasko, 1983; 
Wilcox, 1997a), so we focus on it here. The 20% 
trimmed mean removes the smallest 20% of the 
observations, as well as the largest 20%, and 
averages the values that remain. If X 1,…,X n is a 
random sample, let X (1) ≤ …≤ X (n) be the 
observations written in ascending order and let g 
be equal to .2n rounded down to the nearest 
integer. Then a 20% trimmed mean is 
 

1 .( )2 1

n g
X X it n g i g

−
= ∑− = +

 

 
However, 20% trimmed means in particular, and 
trimmed means in general, suffer from at least two 
practical concerns. First, the amount of trimming 
is assumed to be fixed in advance. If the amount of 
trimming is set at 20%, efficiency is reasonably 
good versus the mean under normality, but when 
sampling from a sufficiently heavy-tailed 
distribution, efficiency can be poor versus using 
more trimming or switching to some robust M-
estimator of location. A second general concern is 
that typically trimmed means assume symmetric 
trimming. That is, the same proportion of 
observations are trimmed from both tails of an 
empirical distribution. When sampling from an 
approximately symmetric distribution, symmetric 
trimming seems reasonable, but asymmetric 
trimming might be more appropriate as the degree 
of skewness increases. Well known theoretical 
results indicate how to estimate the standard error 
of a trimmed mean when asymmetric trimming is 
used (e.g., Huber, 1981), but now unsatisfactory 
probability coverage can result when sample sizes 
are small (e.g., Wilcox, 1997a). Also, if the 
amount of trimming is empirically determined, 
and the standard error is estimated by conditioning 
on this amount of trimming, even poorer control 
over probability coverage can result.  
 The second measure of location is a 
particular robust M-estimator. Generally, robust M 
estimators are more flexible than trimmed means 
in the sense that they empirically determine 
whether a value is unusually large or small and 
then such values are down weighted in some 
manner. The particular M-estimator of interest 
here is the one-step M-estimator based on Huber’s 
Ψ: 



WILCOX & KESELMAN 283

 

 
2

1
2 1 ( )1

1 2

1.28( )( )
,

n i
ii i

MADN i i X

n i i

−

= +
− +

− −
∑

   (2) 

 
where M is the usual median, MAD is the median 
of the values X1-M ,…, Xn-M , 
MADN=MAD/.6745, i1 is the number of 
observations X i such that (X i - M ) < -K(MADN), 
i 2 is the number of observations X i such that (X i - 
M ) > K(MADN), and K is some constant usually 
chosen to achieve good properties under 
normality. (See, for example, Staudte and 
Sheather, 1990.) This estimator empirically 
determines whether an observation is an outlier, 
trims it, averages the values that remain, but with 
asymmetric trimming an adjustment is made based 
on a measure of scale, MAD. The adjustment 
based on MAD is a consequence of how the 
population value of the one-step M-estimator is 
defined. It is the value θ satisfying  
 

0,XE
MADN

θ −  Ψ =    
                  (3) 

 
where Ψ(x) = max[-K; min(K; x)]. Equation (3) 
can be solved with the Newton-Raphson method 
and a single iteration of this technique yields (with 
K = 1.28) equation (2). The choice K = 1.28 
provides good efficiency under normality and its 
finite sample breakdown point is .5, the highest 
possible value. (The finite sample breakdown 
point of an estimator is the smallest proportion of 
observations, which when altered, can drive the 
value of an estimator to plus or minus infinity.) 
However, when performing all pair-wise 
comparisons among J dependent groups based on 
this one-step M-estimator, none of the techniques 
examined by Wilcox (1997b) performed well in 
simulations. Moreover, situations arise where even 
the most successful method can have Type I error 
probabilities well below the nominal level.  

The third measure of location considered 
here is a so-called modified one-step M-estimator 
(MOM). The MOM estimator belongs to the class 
of skipped estimators originally proposed by 
Tukey and studied by Andrews, Bickel, Hampel, 
Huber, Rogers and Tukey (1972). The idea is 
simple: Check for outliers, discard any that are 

found, and then average the values that remain. 
The class of skipped estimators studied by 
Andrews et al. is based on a boxplot outlier 
detection rule which has a finite sample 
breakdown point of only .25. Here an outlier 
detection rule based on M and MADN is used 
instead resulting in a location estimator having a 
finite sample breakdown point of .5 as well. 
(Huber, 1993, argues that at a minimum, an 
estimator should have a finite sample breakdown 
point of at least .1.) 

An apparent disadvantage of skipped 
estimators is that expressions for their standard 
errors are very complicated when sampling from 
an asymmetric distribution. One of the main points 
in this paper is that a variation of the percentile 
bootstrap method not only circumvents this 
problem, it provides good probability coverage in 
simulations where no effective method based on a 
robust M-estimator has been found.  

The modified one-step M-estimator begins 
by declaring X i an outlier if  

 
 

 
.6745

,iX M
K

MAD
−

>  

 
where K is adjusted so that efficiency is good 
under normality. (Outlier detection rules based on 
the sample mean and variance are known to be 
unsatisfactory, e.g., Wilcox, 2001, pp. 34-35.) 
Then MOM is given by  
 

2

1

( )

1 1 2

ˆ ,
n i

i

i i

X
n i i

θ
−

= +

=
− −∑       (4) 

 
where now i 1 (i 2) is the number of observations 
less (greater) than the median that are declared 
outliers. Here, K = 2.24 is used which is 
approximately equal to the square root of the .975 
quantile of a chi-square distribution with one 
degree of freedom. This particular outlier 
detection rule is a special case of a general method 
suggested by Rousseeuw and van Zomeren (1990.) 
It is noted that this choice for K yields good 
efficiency under normality. 
 In particular, using simulations with 
10,000 replications, we found that with K = 2.24, 
the standard error of the sample mean divided by 
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the standard error of θ̂ is approximately .9 for n = 
20(5)100. For n = 10 and 15, this ratio is .88. 
 
The Proposed Method for Pair-wise Comparisons 
 Here, ˆ

jθ represents the estimate of the 
measure of location associated with jth marginal 
distribution. Let X ij , i = 1, …, n, j = 1,…, J 
represent a random sample of size n from some J-
variate distribution. So for fixed j and when using 
a trimmed mean, ˆ

jθ would be the 20% trimmed 
mean associated with X 1j ,…, X nj , ignoring the 
other data.  

First consider a basic percentile bootstrap 
method for testing (1) which stems from Liu and 
Singh (1997) as well as Hall (1986) and is applied 
as follows. Obtain bootstrap samples by 
resampling with replacement n rows from the n by 
J matrix of X ij values. Repeat this process B times 
and let *ˆ

bjθ be the bootstrap estimate of θj based on 
the bth bootstrap sample, b = 1,…, B; j = 1,…, J . 
(Here, θj represents the population value of any of 
the three estimators under consideration.) Let 
 * * *ˆ ˆ( )jk j kp P θ θ= >  
based on a random bootstrap sample. Here this 
probability is estimated with *ˆ jkp , the proportion 

of bootstrap samples having * *
bj bkθ θ> . Then if H0 

is true, *ˆ jkp  has, asymptotically, a uniform 

distribution, so reject if * *ˆ ˆmin( ,1 ) 2.jk jkp p α− ≤  
 To control FWE, some type of 
sequentially rejective method can be used. Here 
consideration was given to the approach derived 
by Rom (1990) as well as Hochberg (1988) which 
are outlined below. A positive feature of the 
methods just outlined is that for all three measures 
of location, simulation estimates of the FWE were 
less than or equal to the nominal level for all of the 
situations described in our simulations. This is true 
when using the Rom or the Hochberg method. 
However, a negative feature when testing at the 
.05 level was that when using MOM or Huber’s 
M-estimator, the estimated FWE was typically less 
than .05 by an unacceptable amount. In fact, 
estimates dropped below .01, particularly when the 
correlations among the variables are high. 
 An examination of the simulation results 

indicated why this problem arose. When ˆ ˆ
j kθ θ= , 

it should be the case that *ˆ .5jkp = . Near equality 
was found when the correlation between X ij and 
Xik is close to zero, but as the correlation 
increased, the difference between E( *ˆ jkp ) and .5 
increased as well.  

This observation suggests the following 
modification. Set  

 
ˆ

ij ij jD X θ= − .  
 
That is, shift the data so that the null hypothesis is 
true. Obtain a bootstrap sample of size n from the 
Dij values and let *

ĉjθ be the resulting estimate of 

jθ . Repeat this process B times and let *ˆ cjkp  be the 

proportion of times *
ĉjθ  is greater than *

ĉkθ . Set 
  

       * * *ˆ ˆ ˆ( .5)ajk jk cjkp p pλ= − − , 
 
where λ is a constant to be determined. Then for 
fixed j and k, reject 0 : j kH θ θ=  if *ˆ ajkp  is 
sufficiently large or small.  

For convenience, set  
 

* * *ˆ ˆ ˆmin( ,1 )p p pmjk ajk ajk= −  

 
and assume the goal is to have FWE equal to α. 
One approach to controlling FWE is to proceed 
along the lines in Hochberg (1988). Writing the 

2 ˆ( ) / 2 mjkC J J p= −  values as pm1,…,pmC , put 
these C values in ascending order yielding 

( 1 ) ( )ˆ ˆ...m m Cp p≤ ≤ . For any i = C, C-1, … , 1, if 

( )ˆ / 2( 1)m ip C iα≤ − + , reject the corresponding 
hypothesis as well as all hypotheses having 
smaller ( )ˆ m ip  values.  

Rom’s (1990) method is applied in the 
same manner as Hochberg’s technique, only 

/ 2( 1)C iα − +  is replaced by a value tabled by 
Rom. Situations were found where Rom’s method 
was a bit less satisfactory in avoiding FWE above 
the nominal level, so it is not considered further. 
Yet another approach was derived by Benjamini 
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and Hochberg (2000), but it is known that this 
method does not control FWE, so it is not 
considered here.  

There remains the problem of choosing λ. 
The strategy was to determine an appropriate 
value under normality with all correlations equal 
to zero and all marginal distributions having a 
common variance. The reason for considering all 
correlations equal to zero was that when using a 
trimmed mean, MOM, or an M-estimator with 
Huber’s Ψ, this was found to maximize the 
probability of at least one Type I error among all 
the situations considered in the next section. For n 
= 11 and 20, it was found that λ = .1 gave good 
results when using MOM or the M-estimator 
considered here when used in conjunction with 
Hochberg’s method, and as n increases, the term 

*ˆ( .5 )cjkpλ − becomes negligible. Using λ = 0 
results in FWE typically being less than the 
nominal level, but often it was far below the 
nominal level. As for 20% trimmed means, λ = 0 
performed well (no correction is needed) when 
using Hochberg. 
 

Results 
 
The small-sample properties of the methods just 
described were studied for J = 4 with simulations 
where observations were generated from a 
multivariate normal distribution via the IMSL 
(1987) subroutine RNMVN. Nonnormal 
distributions were generated using the g-and-h 
distribution (Hoaglin, 1985). That is, first generate 
Z ij from a multivariate normal distribution and set  
 

2exp( ) 1
exp( / 2 ).ij

ij ij

gZ
X hZ

g
−

=  

 
For g = 0 this last expression is taken to be  
 

2exp( / 2 ).ij ij ijX Z hZ=  
 
The case g = h = 0 corresponds to a normal 
distribution. Setting g = 0 yields a symmetric 
distribution, and as g increases, skewness 
increases as well. Heavy-tailedness increases with 
h. The values for g and h were taken to be (g, h) = 
(0, 0), (0, .5), (.5, 0) and (.5, .5). Table 1 contains 

skewness 1( )κ  and kurtosis 2( )κ  values for the 
four g-and-h distributions used in the simulations. 
 

 
 When h > 1/k, ( )kE X µ− k is not 
defined and the corresponding entry in Table 1 is 
left blank. A possible criticism of simulations 
performed on a computer is that observations are 
generated from a finite interval, so the moments 
are finite even when in theory they are not, in 
which case observations are not being generated 
from a distribution having the theoretical skewness 
and kurtosis values listed in Table 1. In fact, as h 
gets large, there is an increasing difference 
between the theoretical and actual values for 
skewness and kurtosis. Accordingly, Table 1 also 
lists the estimated skewness 1ˆ( )κ and kurtosis 

2ˆ( )κ  values based on 100,000 observations 
generated from the distribution. Simulations were 
also run where the marginal distributions were 
lognormal or exponential.  

Simulations were run where the marginal 
distributions had equal and unequal variances. 
When working with skewed distributions, the 
marginal distributions were first shifted so that 
they have a θ value of zero, and for the unequal 
variance case the ith observation in the jth group 
was multiplied by σj , (σ1, σ2, σ3, σ4) = (1, 3, 4, 5). 
That is, for skewed distributions, before 
multiplying the X ij by σj, the observations were 
shifted by subtracting the population value of θ so 
that when multiplying by σj, the null hypothesis 
remains true.  

Five patterns of correlations were used. 
Four of the five correlation matrices have a 
common correlation, ρ, with ρ = 0, .1, .5 and .8. 
The fifth correlation matrix had ρ12 = .8, ρ13= .5, 
ρ14= .2, ρ23= .5, ρ24= .2 and ρ34= .2. The largest and 
smallest estimates of FWE consistently occurred 
with the first and latter two correlation matrices, 
so for brevity, only the results for the first and fifth 
matrices are reported. These two correlation 
matrices are labeled C1 and C2, respectively. 
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Table 2 contains the estimated probability of at 
least one Type I error when using the multiple 
comparison procedure described in the previous 
section. The results are based on 2,000 
replications. As is evident, reasonably good 
control over the probability of a Type I error is 
achieved. The main difficulty is that when using 
MOM, there are two instances where the estimate 
drops below .02. 
 

Conclusion 
 
The main point is that currently, no method for 
comparing robust measures of location associated 
with the marginal distributions is very satisfactory 
in simulations with small sample sizes. The results 
reported here illustrate that by using a slight 
generalization of the percentile bootstrap method, 
good control over the probability of a Type I error 
can be achieved in a wide range of situations when 
outliers are removed. 
 As for trimmed means, a basic 
(unmodified) percentile bootstrap method 
performs well. The three estimators used in Table 
2 are designed to have reasonably good efficiency 
under normality, they have high efficiency when 
sampling from a heavy-tailed distribution where 
the sample mean performs poorly, so comparing 
groups as described would seem to have practical 
value. The M-estimator and modified M-estimator 
seem particularly attractive, and now it appears 
that a viable method for performing all pair-wise 
comparisons, based on the measures of location 
associated with the marginal distributions, is 
available when sample sizes are small. 

 
References 

 
 Andrews, D. F., Bickel, P. J., Hampel, F. 
R., Huber, P. J., Rogers, W. H., & Tukey, J. W. 
(1972). Robust estimates of location: Survey and 
advances. Princeton University Press, Princeton, 
NJ.  
 Benjamini, Y. & Hochberg, Y. (2000). On 
the adaptive control of the false discovery rate in 
multiple testing with independent statistics. 
Journal of Educational and Behavioral Statistics, 
25, 60-83.  
 

 
 
 
 Donoho, D. L. & Gasko, M. (1992). 
Breakdown properties of location estimates based 
on halfspace depth and projected outlyingness. 
Annals of Statistics, 20, 1803-1827.  
 Hall, P. (1986). On the bootstrap and 
confidence intervals. Annals of Statistics, 14, 
1431-1452.  
 Hoaglin, D. C. (1985) Summarizing shape 
numerically: The g and h distributions. In D. 
Hoaglin, F. Mosteller and J. Tukey (Eds.) 
Exploring data tables, trends, and shapes. (p. 461-
515). New York: Wiley.  
 Hochberg, Y. (1988). A sharper 
Bonferroni procedure for multiple tests of 
significance. Biometrika, 75, 800-802.  
 Huber, P. J. (1981). Robust statistics. New 
York: Wiley.  
 Huber, P. (1993). Projection pursuit and 
robustness. In S. Morgenthaler, E. Ronchetti & W. 
Stahel (Eds.) New directions in statistical data 
analysis and robustness. Boston: Birkh¨auser 
Verlag.  
 IMSL (1987). Library I, vol. II. Houston: 
International Mathematical and Statistical 
Libraries. 
  Liu, R. Y. & Singh, K. (1997). Notions of 
limiting P values based on data depth and 
bootstrap. Journal of the American Statistical 
Association, 92, 266-277.  
 Rom, D. M. (1990). A sequentially 
rejective test procedure based on a modified 
Bonferroni inequality. Biometrika, 77, 663-666.  



WILCOX & KESELMAN 287

 Rosenberger, J. L., & Gasko, M. (1983). 
In D. C. Hoaglin, F. Mosteller and J. W. Tukey 
(Eds.) Understanding robust and exploratory data 
analysis. New York: Wiley.  
 Rousseeuw, P. J., & van Zomeren, B. C. 
(1990). Unmasking multivariate outliers and 
leverage points (with discussion). Journal of the 
American Statistical Association, 85, 633-639.  
 Staudte, R. G., & Sheather, S. J. (1990). 
Robust estimation and testing. New York: Wiley.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Wilcox, R. R. (1997a). Introduction to 
robust estimation and hypothesis testing. San 
Diego, CA: Academic Press.  
 Wilcox, R. R. (1997b). Pairwise 
comparisons using trimmed means or M-
estimators when working with dependent groups. 
Biometrical Journal, 39, 677-688.  
  Wilcox, R. R. (2001). Fundamentals of 
modern statistical methods: Substantially 
improving power and accuracy. New York: 
Springer. 


	Journal of Modern Applied Statistical Methods
	11-1-2002

	Within Groups Multiple Comparisons Based On Robust Measures Of Location
	Rand R. Wilcox
	H. J. Keselman
	Recommended Citation


	tmp.1377145100.pdf.UhS02

